(完整word版)椭圆基础训练题.doc

合集下载

2021高考数学(新高考版)一轮复习考点考法精练:第九章 第三讲 椭 圆 Word版含解析

2021高考数学(新高考版)一轮复习考点考法精练:第九章 第三讲 椭 圆 Word版含解析

析姓名,年级:时间:析第三讲 椭 圆1。

[2020湖南岳阳入学调研考试]已知定点M (1,0)和椭圆x 29+y 23=1上两个动点P ,Q 满足MP ⊥MQ ,则MP⃗⃗⃗⃗⃗⃗ ·QP ⃗⃗⃗⃗⃗ 取得最小值时点P 的横坐标为 ( )A 。

12B 。

1 C.32 D.522。

[2020安徽省示范高中名校联考]已知椭圆C :x 2a 2+y2b 2=1(a 〉b >0),F 1,F 2分别为其左、右焦点,|F 1F 2|=2√2,B 为短轴的一个端点,三角形BF 1O (O 为坐标原点)的面积为√7,则椭圆的长轴长为( )A 。

4B 。

8C 。

1+√332D 。

1+√333。

[2020陕西省部分学校摸底检测]已知F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a 〉b >0)的左、右焦点,点P 是椭圆上位于第一象限的点,延长PF 2交椭圆于点Q ,若PF 1⊥PQ ,且|PF 1|=|PQ |,则椭圆的离心率为( )A.2—√2B.√3-√2C.√2-1D.√6−√34.[2020福建省三明市模拟]已知P 是椭圆x 225+y 29=1上一点,F 1,F 2分别为椭圆的左、右焦点,且∠F 1PF 2=60°,则△F 1PF 2面积为( )A 。

3√3 B.2√3 C.√3 D.√335.[2019唐山市高三摸底考试]已知椭圆C :x 2a 2+y 2b 2=1(a 〉b >0)和双曲线E :x 2-y 2=1有相同的焦点F 1,F 2,且椭圆C 与双曲线E 的离心率之积为1,P 为两曲线的一个交点,则△F 1PF 2为 ( )A.锐角三角形B.直角三角形 C 。

钝角三角形 D 。

不能确定6.[2020洛阳市第一次联考]已知椭圆C 1:x 2a 12+y 2b12=1(a 1>b 1〉0)与双曲线C 2:x 2a 22−y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是曲线C 1与C 2的一个公共点,e 1,e 2分别是C 1和C 2的离心率,若PF 1⊥PF 2,则4e 12+e 22的最小值为 .7。

椭圆一题二十问(word版)

椭圆一题二十问(word版)

椭圆一题二十问设经过点)0,1(F 直线l 与椭圆1222=+y x 交于B A 、两点,(1)是否存在直线l ,使点F 恰好为AB 的中点?若存在,求出直线l 的方程。

(2)是否存在直线l ,使324=AB ?若存在,求出直线l 的方程。

(3)求三角形AOB ∆的面积AOB S ∆的最大值(4)求OB OA ⋅的取值范围(5)求直线l ,使以AB 为直径的圆经过原点O(6)设左焦点为1F ,若以AB 为直径的圆恰好过点1F ,求直线AB 的方程 (7)若OB OA OM +=,是否存在直线l 使点M 恰好落在该椭圆上 (8)求以OB OA 、为邻边的平行四边形OAPB 的顶点P 的轨迹方程 (9)求三角形AOB 重心的轨迹方程 (10)若FB AF 2=,求直线l 的方程。

(改编:若FB AF 2=,求直线l 的方程。

)(11)设)31,0(C ,当BC AC =时,求直线l 的方程。

(12)当直线l 的斜率为1时,以AB 的一边作正三角形ABD ,求顶点D 的坐标。

(13)若点P 在直线2=x 上的一点,是否存在直线l ,使得PAB ∆为正三角形?若存在,求直线l 的方程。

(14)若点P 在直线2=x 上的一点,是否存在直线l ,使得PB AP ⊥成立? 若存在,求直线l 的方程。

(15)设B '与B 关于x 轴对称,求证:B A '过定点。

(16)若过椭圆中心O 的弦MN 与AB 平行,求证:AB MN 2为定值 (17)若AOB ∠为锐角,求直线l 的斜率k 的取值范围. (18)若椭圆上点)3132(,P ,过点)0,3(G 的直线l 与椭圆C 交于不同的两点,M N . 证明:PN PM k k +为定值. (19)已知点S 是椭圆C 上位于x 轴上方的动点,直线21A A ,为椭圆的左右顶点, S A S A 21,与直线3:-=x l 分别交于M,N 两点,求线段MN 长度的最小值; (20)若324=AB 时,在椭圆C 上的T 满足:TAB ∆的面积为32, 确定点T 个数。

2020届分类汇编(27)椭圆Word版含答案

2020届分类汇编(27)椭圆Word版含答案

(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)12.已知动点P在椭圆上,若点A的坐标为(3,0),点M满足,则的最小值是A. 4B.C. 15D. 16【答案】B【解析】设P(x,y),A(3,0)为焦点,所以=,而焦半径,所以,选B.【点睛】切线长的平方=半径平方+点到圆心距离平方,同时焦半径范围,是解本题的关键。

20.设椭圆的左焦点为,离心率为,为圆的圆心.(1)求椭圆的方程;(2)已知过椭圆右焦点的直线交椭圆于,两点,过且与垂直的直线与圆交于,两点,求四边形面积的取值范围.【答案】(1);(2)【解析】试题分析:(Ⅰ)由题意求得a,b的值即可确定椭圆方程;(Ⅱ)分类讨论,设直线l代入椭圆方程,运用韦达定理和弦长公式,可得|AB|,根据点到直线的距离公式可求出|CD|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围试题解析:(1)由题意知,则,圆的标准方程为,从而椭圆的左焦点为,即,所以,又,得.所以椭圆的方程为:.(2)可知椭圆右焦点.(ⅰ)当l与x轴垂直时,此时不存在,直线l:,直线,可得:,,四边形面积为12.(ⅱ)当l与x轴平行时,此时,直线,直线,可得:,,四边形面积为.(iii)当l与x轴不垂直时,设l的方程为,并设,.由得.显然,且,.所以.过且与l垂直的直线,则圆心到的距离为,所以.故四边形面积:.可得当l与x轴不垂直时,四边形面积的取值范围为(12,).综上,四边形面积的取值范围为.(湖北省2019届高三1月联考测试数学(理)试题)20.已知椭圆的右焦点为,上顶点为,过且垂直于轴的直线交椭圆于、两点,若.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,且分别交直线和直线于、两点,试求的值.【答案】(1)(2)为定值【解析】【分析】(1)由通径公式得出,结合已知条件得出,再由c=1,可求出a、b的值,从而得出椭圆的方程;(2)设切点为(x0,y0),从而可写出切线m的方程为,进而求出点M、N的坐标,将切点坐标代入椭圆方程得出x0与y0之间的关系,最后利用两点间的距离公式可求出答案.【详解】(1)由题得解得∴椭圆的方程为(2)设切点为则令得即令得即∴为定值【点睛】本题考查直线与椭圆的综合,考查计算能力与推理能力,属于中等题.(山东省潍坊市2019届高三上学期期末测试数学(文科)试题)19.已知椭圆:的左、右焦点分别为,,椭圆的长轴长与焦距之比为,过且斜率不为的直线与交于,两点.(1)当的斜率为时,求的面积;(2)若在轴上存在一点,使是以为顶点的等腰三角形,求直线的方程.【答案】(1)12(2)【解析】【分析】(1)结合椭圆的基本性质,分别计算a,b,c的值,代入直线方程,即可。

椭圆的定义、标准方程及几何性质(分层练习)

椭圆的定义、标准方程及几何性质(分层练习)

椭圆的定义、标准方程及几何性质(分层练习)[基础训练]1.[2020天津河北区模拟]已知椭圆C 的中心在原点,焦点在x 轴上,且短轴长为2,离心率为255,则该椭圆的标准方程为( )A.x 25+y 2=1 B .x 23+y 2=1 C.x 24+y 2=1D .y 24+x 2=1答案:A 解析:由题意设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则2b =2,故b =1.又c a =255,a 2=b 2+c 2,∴a 2=5.∴椭圆C 的标准方程为x 25+y 2=1.故选A.2.[2020河北邯郸一模]椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍答案:A 解析:设线段PF 2的中点为D ,则|OD |=12|PF 1|,且OD ∥PF 1, ∵OD ⊥x 轴,∴PF 1⊥x 轴. ∴|PF 1|=b 2a =323=32.又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732=7|PF 1|. ∴|PF 2|是|PF 1|的7倍.3.[2020黑龙江哈尔滨六中模拟]设椭圆C :x 24+y 2=1的左焦点为F ,直线l :y =kx (k ≠0)与椭圆C 交于A ,B 两点,则|AF |+|BF |的值是( )A .2B .23C .4D .43答案:C 解析:设椭圆的右焦点为F 2,连接AF 2,BF 2.因为|OA |=|OB |,|OF |=|OF 2|,所以四边形AFBF 2是平行四边形,所以|BF |=|AF 2|,所以|AF |+|BF |=|AF |+|AF 2|=2a =4.故选C.4.[2020河南洛阳一模]已知椭圆x 211-m +y 2m -3=1的焦点在y 轴上,且焦距为4,则m 等于( )A .5B .6C .9D .10答案:C 解析:由椭圆x 211-m +y 2m -3=1的长轴在y 轴上,焦距为4,可得m -3-11+m =2,解得m =9.故选C.5.[2020安徽宣城一模]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM→·NF →=0,则椭圆的离心率为( ) A.32 B .2-12 C.3-12D .5-12答案:D 解析:由题意知,M (-a,0),N (0,b ),F (c,0), ∴NM→=(-a ,-b ),NF →=(c ,-b ). ∵NM→·NF →=0, ∴-ac +b 2=0,即b 2=ac . 又知b 2=a 2-c 2,∴a 2-c 2=ac . ∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去). ∴椭圆的离心率为5-12, 故选D.6.[2020安徽六安一中模拟]点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F ,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF |的最小值为( )A .42-4B .4-42C .6-25D .25-6答案:D 解析:设椭圆的左焦点为F 1, 则|PQ |-|PF |=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF |的最小值, 即求|PQ |+|PF 1|的最小值, 圆C 2的半径为2,所以|PQ |+|PF 1|的最小值等于|C 2F 1|-2=[-1-(-3)]2+(0-4)2-2=25-2,则|PQ |-|PF |的最小值为25-6,故选D.7.[2020山东临沂一模]已知点P 为椭圆x 2+2y 2=98上的一个动点,点A 的坐标为(0,5),则|P A |的最大值和最小值分别是________.答案:237和2 解析:设P (x 0,y 0),则|P A |=x 20+(y 0-5)2=x 20+y 20-10y 0+25.∵点P 为椭圆x 2+2y 2=98上的一个动点,∴x 20+2y 20=98,∴x 20=98-2y 20, ∴|P A |=98-2y 20+y 20-10y 0+25=-(y 0+5)2+148. ∵-7≤y 0≤7,∴当y 0=-5时,|P A |max =237; 当y 0=7时,|P A |min =2.8.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.解:(1)设椭圆右焦点F 2的坐标为(c,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12.所以椭圆的离心率e =22. (2)由(1)知,a 2=2c 2,b 2=c 2, 故椭圆方程为x 22c 2+y 2c 2=1.设P (x 0,y 0),因为F 1(-c,0),B (0,c ), 所以F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ). 由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 因为点P 在椭圆上,故x 202c 2+y 20c 2=1.② 由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c , 代入①,得y 0=c3,即点P 的坐标为⎝ ⎛⎭⎪⎫-43c ,c 3.设圆的圆心为T (x 1,y 1).则x 1=-43c +02=-23c ,y 1=c3+c 2=23c , 进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 由已知,有|TF 2|2=|MF 2|2+r 2, 又|MF 2|=22,故有⎝ ⎛⎭⎪⎫c +23c 2+⎝ ⎛⎭⎪⎫0-23c 2=8+59c 2, 解得c 2=3.所以所求椭圆的方程为x 26+y 23=1.[强化训练]1.[2020湖北1月联考]已知椭圆C :y 2a 2+x 216=1(a >4)的离心率是33,则椭圆C 的焦距是( )A .22B .26C .42D .46答案:C 解析:由e =c a =33,得a =3c ,所以c 2=a 2-b 2=3c 2-16,所以c 2=8,因此焦距为2c =4 2.2.[2020浙江温州1月模拟]如图,设P 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的动点,F 1,F 2分别为椭圆C 的左、右焦点,I 为△PF 1F 2的内心,则直线IF 1和直线IF 2的斜率之积( )A .是定值B .非定值,但存在最大值C .非定值,但存在最小值D .非定值,且不存在最值答案:A 解析:如图,连接PI 并延长交x 轴于点G ,由内角平分线定理,可得GI IP =F 1G PF 1,GI IP =F 2GPF 2,所以GI IP =F 1G +F 2G PF 1+PF 2=2c 2a =ca=e .设P (x 0,y 0),I (x I ,y I ),G (x G,0),则x 20a 2+y 20b 2=1, 所以a 2y 20a 2-x 20=b 2.由GI IP =c a ,得GI GP =GI GI +IP =y I y 0=c a +c ,故y I =cy 0a +c,由F 2G F 1G =PF 2PF 1,即c -x G x G +c =a -ex 0a +ex 0,得x G =e 2x 0.由GI IP =c a ,得GI GP =x I -x G x 0-x G =ca +c ,所以x I =ex 0.又kIF 1=y I x I +c ,kIF 2=y Ix I -c ,所以kIF 1·kIF 2=y 2Ix 2I -c 2=c 2y 20(a +c )2c 2a2x 20-c 2=1(a +c )2·a 2y 20x 20-a 2=-b 2(a +c )2. 所以直线IF 1和直线IF 2的斜率之积是定值.故选A.3.[2020福建福州一模]已知F 1,F 2为椭圆x 24+y 2=1的左、右焦点,P 是椭圆上异于顶点的任意一点,K 点是△F 1PF 2内切圆的圆心,过F 1作F 1M ⊥PK 于M ,O 是坐标原点,则|OM |的取值范围为( )A .(0,1)B .(0,2)C .(0,3)D .(0,23)答案:C 解析:如图,延长PF 2,F 1M 相交于N 点,∵K 点是△F 1PF 2内切圆的圆心, ∴PK 平分∠F 1PF 2,∵F 1M ⊥PK ,∴|PN |=|PF 1|,M 为F 1的N 中点, ∵O 为F 1F 2中点,M 为F 1N 的中点,∴|OM |=12|F 2N |=12||PN |-|PF 2|| =12||PF 1|-|PF 2||<12|F 1F 2|=c =3, ∴|OM |的取值范围为(0,3). 故选C.4.[2020安徽蚌埠一模]已知F 1,F 2是椭圆x 24+y 23=1的左、右焦点,点A 的坐标为⎝ ⎛⎭⎪⎫-1,32,则∠F 1AF 2的平分线所在直线的斜率为( ) A .-2 B .-1 C .-3D .-2答案:A 解析:解法一:∵F 1,F 2是椭圆x 24+y 23=1的左、右焦点,∴F 1(-1,0),F 2(1,0),又A ⎝ ⎛⎭⎪⎫-1,32,∴AF 1⊥x 轴, ∵|AF 1|=32,则|AF 2|=52,∴点F 2(1,0)关于l (∠F 1AF 2的平分线所在直线)对称的点F ′2在线段AF 1的延长线上,又|AF ′2|=|AF 2|=52,∴|F ′2F 1|=1,∴F ′2(-1,-1),线段F ′2F 2的中点坐标为⎝ ⎛⎭⎪⎫0,-12, ∴所求直线的斜率为32-⎝ ⎛⎭⎪⎫-12-1-0=-2.故选A.解法二:如图.设∠F 1AF 2的平分线交x 轴于点N , ∠F 1AN =β,∠ANF 2=α.∵tan 2β=|F 1F 2||AF 1|,∴232=43=2tan β1-tan 2β,∴tan β=12或-2(舍).在Rt △AF 1N 中,tan β=|F 1N ||AF 1|,即|F 1N |32=12,∴|F 1N |=34,∴k l =tan α=tan(π-∠ANF 1)=-tan ∠ANF 1 =-|AF 1||F 1N |=-3234=-2.故选A.5.[2020江西赣州模拟]已知A ,B 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的两点,且A ,B 关于坐标原点对称,F 是椭圆的一个焦点,若△ABF 面积的最大值恰为2,则椭圆E 的长轴长的最小值为( )A .1B .2C .3D .4答案:D 解析:如图所示,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2).联立⎩⎨⎧ty =x ,x 2a 2+y 2b 2=1可得y 2=a 2b 2b 2t 2+a2=-y 1y 2,∴△ABF 的面积S =12c |y 1-y 2| =12c (y 1+y 2)2-4y 1y 2=c a 2b 2b 2t 2+a 2≤cb ,当t =0时等号成立.∴bc =2.∴a 2=b 2+c 2≥2bc =4,a ≥2.∴椭圆E 的长轴长的最小值为4.故选D.6.已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=________. 答案:54 解析:由题意知,A ,C 为椭圆的两个焦点, 由正弦定理,得sin A +sin C sin B=|BC |+|AB ||AC |=2a 2c =a c =54. 7.[2020山东烟台一模]已知F (2,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.答案:8+2 解析:设椭圆的左焦点为F ′, 由椭圆的右焦点为F (2,0),得c =2, 又过F 且垂直于x 轴的弦长为6,即2b 2a =6, 则a 2-c 2a =a 2-4a =3,解得a =4,所以|MF |+|MA |=8-|MF ′|+|MA |=8+|MA |-|MF ′|, 当M ,A ,F ′三点共线时,|MA |-|MF ′|取得最大值, (|MA |-|MF ′|)max =|AF ′|=2, 所以|MF |+|MA |的最大值为8+ 2.8.[2020河北保定一模]与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案:x 225+y 216=1 解析:设动圆的半径为r ,圆心为P (x ,y ), 则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1.9.已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32.(1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E ,求证:△BDE 与△BDN 的面积之比为4∶5.(1)解:设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意,得⎩⎨⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1.所以椭圆C 的方程为x24+y 2=1.(2)证明:设M (m ,n ),则D (m,0),N (m ,-n ). 由题设知,m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n (x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎨⎧y =-m +2n (x -m ),y =n 2-m (x -2),得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2. 由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5.10.[2020云南曲靖模拟]已知椭圆C 的两个焦点分别为F 1(-3,0),F 2(3,0),且椭圆C 过点P ⎝⎛⎭⎪⎫1,32. (1)求椭圆C 的标准方程;(2)若与直线OP (O 为坐标原点)平行的直线交椭圆C 于A ,B 两点,当OA ⊥OB 时,求△AOB 的面积.解:(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意,得⎩⎨⎧ a 2-b 2=3,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)直线OP 的方程为y =32x ,设直线AB 的方程为y =32x +m ,A (x 1,y 1),B (x 2,y 2).将直线AB 的方程代入椭圆C 的方程并整理,得x 2+3mx +m 2-1=0,由Δ=3m 2-4(m 2-1)>0,得m 2<4,⎩⎪⎨⎪⎧x 1+x 2=-3m ,x 1x 2=m 2-1. 由OA ⊥OB ,得OA→·OB →=0, OA →·OB →=x 1x 2+y 1y 2=x 1x 2+⎝ ⎛⎭⎪⎫32x 1+m ⎝ ⎛⎭⎪⎫32x 2+m =74x 1x 2+32m (x 1+x 2)+m 2=74(m 2-1)+32m ·(-3m )+m 2 =54m 2-74=0,解得m 2=75.又|AB |=1+34(x 1+x 2)2-4x 1x 2=72·4-m 2,O 到直线AB 的距离d =|m |1+34=|m |72. 所以S △AOB =12|AB |·d =12×72×4-m 2×|m |72=9110.。

(完整版)椭圆基础训练题及答案

(完整版)椭圆基础训练题及答案

椭圆基础训练题姓名____________分数______________一、选择题1 .方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )A .—16〈m 〈25B .—16〈m 〈29 C .29〈m<25 D .m>292 .已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2B .3C .5D .73 .椭圆2241x y +=的焦距是( )A B .1C D .24 .对于椭圆22525922=+y x ,下列说法正确的是( )A .焦点坐标是()40±,B .长轴长是5C .准线方程是425±=yD .离心率是54 5 .椭圆2212x y +=的焦距是 ( )A .1B .2C .3D .46 .如果方程222=+ky x 表示焦点在y 轴的椭圆,那么实数k 的取值范围是( )A .),0(+∞B .)2,0(C .),1(+∞D .)1,0(7 .若椭圆221169x y +=上一点P 到它的右焦点是3,那么点P 到左焦点的距离是 ( )A .5B .1C .15D .88 .设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于 ( ) A .4B .5C .8D .109 .已知F 1、F 2是椭圆192522=+y x 的两个焦点,AB 是过F 2的弦,则△ABF 1 的周长等于 ( ) A .100 B .50C .20D .1010.椭圆4x 2+2y 2=1的准线方程是( )A .x=±1B .x=±21 C .y=±1 D .y=±21 11.已知椭圆1162522=+y x 上一点P 到椭圆一个点的距离为3,则P 点到另一个焦点距离为 ( ) A .2B .3C .5D .712.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于学科网( )A .12B .22C .2D .32学科网 13.椭圆2216x y m +=的焦距为2,则m 的取值是 ( )A .7B .5C .5或7D .1014.椭圆161522=+y x 的两条准线方程是 ( )A .2175-=y ,2175=y B .2175-=x ,2175=x C .y=-5,y=5 D .x=-5,x=5 15.椭圆2214x y +=的长轴长为 ( )A .16B .2C .8D .416.若椭圆x a 22+y b22=1的两焦点F 1、F 2三等分它两准线间的距离,则此椭圆的离心率为 ( )A .3B .33C .63D .以上均不对17.若椭圆x y b222161+=过点()-23,,则其焦距为 ( )A .23B .25C .43D .4518.已知焦点在x 轴上的椭圆的离心率为,21它的长轴等于圆0152:22=--+x y x C 的半径,则椭圆的标准方程为 ( )A .13422=+y xB .1121622=+y xC .1422=+y x D .141622=+y x 19.若椭圆两准线间的距离是焦距的4倍,则该椭圆的离心率为( )A .21。

(完整word)椭圆十二大题型精华总结(学生版),推荐文档

(完整word)椭圆十二大题型精华总结(学生版),推荐文档

椭圆十二大题型总结一、 椭圆的定义和方程问题 (一)定义1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙:P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P的轨迹是( )A.椭圆B.圆C.直线D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( ) A.椭圆B.圆C.直线D.点4. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。

5. 选做:F 1是椭圆15922=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。

(二) 标准方程求参数范围1. 试讨论k 的取值范围,使方程13522=-+-k y k x 表示圆,椭圆,双曲线。

2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( )A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3. 若方程1cos sin 22=+ααy x 表示焦点在y 轴上的椭圆,α所在的象限( ) A.第一象限B. 第二象限C. 第三象限D. 第四象限4. 方程231y x -=所表示的曲线是 。

5. 已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 。

(三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26;(2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆中心在原点,以坐标轴为对称轴,且经过)2,3(),1,6(21--P P ,求椭圆方程;2. 求下列椭圆的标准方程(1)32,8==e c ;(2)过(3,0)点,离心率为36=e ; (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。

(完整word版)高考数学椭圆填空题题集(附答案)

(完整word版)高考数学椭圆填空题题集(附答案)

椭圆填空题11、(1)离心率一条准线方程为x=的椭圆的标准方程为________________;(2)短轴端点与焦点间的距离等于5,一条准线的方程是椭圆的方程为___________________。

2、(1)上有一点P到右焦点的距离为1,则P的坐标为_______;(2)AB A、B的横坐标之和为-7,。

3、椭圆的中心在原点,一个焦点为F(0,6),中心到准线的距离为10,则椭圆方程为___。

4、椭圆的中心在原点,短轴端点到焦点的距离是6,一条准线方程是y=9,则椭圆方程为_____________.5、b= 。

6、(1)y2=1上点P到右焦点F P到左准线的距离为______;(2)1:3,则这点到左、右准线的距离分别为_______________。

7、(1)中心在原点,长半轴长与短半轴长的和为0.6的椭圆的方程为________;(2)对称轴是坐标轴,(2,0)的椭圆的方程是_______。

8、(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________;(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________。

9、的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____。

10、m= 。

11、一个椭圆的中心在原点,焦点在x 轴上,离心率为36,一条准线为x=3,则该椭圆的方程是____.12、椭圆的一个焦点和短轴两端点连成三角形,这个三角形有一个角为120°,则该椭圆的离心率为____.13、椭圆的准线间的距离是焦距的2倍,则它的离心率为____。

14、椭圆的长、短轴都在坐标轴上,长、短轴的长度之和为36,离心率为53,则椭圆方程为_____。

15、椭圆的中心在原点,一个顶点为(2,0)且短轴长等于焦距则椭圆的方程为___。

16、椭圆13610022=+y x 上一点M 到左、右焦点的距离之比为1:3,则点M 到左准线的距离为___。

(完整版)椭圆基础训练题(含答案提示),推荐文档

(完整版)椭圆基础训练题(含答案提示),推荐文档

提示:4c=d1+d2=2a,
∴e=
1 2
试卷
NewCyanine Education Advisory (changsha) Co.,Ltd
题目:16. 曲线 x 2 + y2 =1 与曲线 x 2 + y2 =1 (k<9),具有的等量关系是( )。
25 9
25- k 9 k
(A)有相等的长、短轴
a2
题目:12. 已知椭圆的对称轴是坐标轴,离心率 e= 2 ,长轴长为 6,那么椭圆的方程是( )。
3
(A) x 2 + y2 =1
36 20
(C) x 2 + y2 =1
95
(B) x 2 + y2 =1 或 x 2 + y2 =1
36 20
20 36
(D) x 2 + y2 =1 或 x 2 + y2 =1
95
59
答案:D
题目:13. 椭圆 25x2+16y2=1 的焦点坐标是( )。
(A)(±3, 0) (B)(± 1 , 0) (C)(± 3 , 0) (D)(0, ± 3 )
3
20
20
答案:D
题目:14. 椭圆 4x2+y2=4 的准线方程是( )。
(A)y= 4 3 x (B)x= 4 3 y (C)y= 4 3
16 9
16 9
题目:19. 已知椭圆的准线为 x=4,对应的焦点坐标为(2, 0),离心率为 1 , 那么这个椭圆的方
2
程为( )。
(A) x 2 + y2 =1
84
(B)3x2+4y2-8x=0
(C)3x2-y2-28x+60=0
(D)2x2+2y2-7x+4=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆基础训练题
1.已知椭圆长半轴与短半轴之比5:3,焦距是 8,焦点在 x 轴上,则此椭圆的标准方程是()(A) x2 y2 1 (B) x2 y2 1 (C) x2 y2 1 (D) x2 y2 1
5 3 25 9 3 5 9 25
2. 已椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是()
( A )1
(B) 2 (C) 3 (D) 3
2 2 2 3
3.椭圆mx2 y2 1 的离心率是
3
,则它的长半轴的长是()2
( A ) 1 (B) 1 或 2 (C ) 2 (D) 1
或 1 2
4. 已知椭圆的对称轴是坐标轴,离心率 e 2
,长轴长为6,那么椭圆的方程是()3
(A) x 2 y 2
1 (B)
x 2 y 2 x 2 y 2
1
36 20 36 20 1或
36
20
(C ) x2 y2 1 (D) x2 + y2 =1或 x2 y2 1
5 9 9 5 5 9
5. 椭圆25x2 16 y2 1的焦点坐标是()
( A )( 3,0) (B) ( 1
, 0) (C) ( 3 , 0) (D) (0, 3 ) 3 20 20
x2 y2
1 上的动点,过 P 作椭圆长轴的垂线PD,D 是垂足, M 是 PD 6. P( x, y)是椭圆
9
16
的中点,则M 的轨迹方程是()
(A) x2 y2 1 (B) x2 y2 1 (C) x2 4 y2 1 (D) x2 y2 1
4 9 64 9 16 9 16 36
7. 椭圆 4x2 9 y2 144 内有一点 P(3, 2) ,过P点的弦恰好以P 为中点,那么这条弦所在的直线方程是()。

A. 3x 2 y 12 0
B. 2x 3y 12 0
C. 4x 9 y 144 0 (D) 4x 9 y 144 0
8. 椭圆 x 2 y2 1 的焦距等于()。

32 16
(A ) 4 (B) 8 (C) 16 (D) 12 3
9. F 是椭圆的一个焦点,BB '是椭圆的短轴,若BFB ' 是等边三角形,则椭圆的离心
率e 等于 ( ).
( A )1
(B)
1
(C)
2
(D) 3 422 2
10.
椭圆
x 2 y 2 1 的焦点在
y 轴上,则
m 的取值范围是 ( ).
m
2
(m 1)
(A )全体实数
(B) m
1
且 m 1 (C) m
1 且 m 0 (D)
m
2
2
11.
与椭圆 x
2
y 2 1 共焦点,且经过点
P ( 3
,1) 的椭圆方程是 (

2 5
2
(A ) x 2
y 2
1
(B) x
2
5y 2 1
(C)
x 2 y 2 1 (D)
x 2 y 2 1
4
2
8
4
4
7
12.
直线
y kx 2 和椭圆 x 2
y 2 1 有且仅有一个公共点,则
k 等于 ( )。

4
3
(B)
3
(C) 3 (D)
3
( A )
2
4 4
2
13.
过椭圆 x
2
y 2
1 的一个焦点且倾角为
6
的直线交椭圆与 M 、N 两点,则 MN
9
等于 ( )
(A ) 8
(B) 4
(C) 2
(D) 1
14.
短轴长为
5 ,离心率为 2
的椭圆的两个焦点分别为
F 1, F 2 , 过 F 1 作直线交椭圆于
3
A 、
B 两点,则 ABF 2 的周长为 ( )。

( A ) 24
(B) 12
(C) 6
(D) 3
15.
椭圆 4x 2
16 y 2 1 的长轴长为
,短轴长为
,离心率为
,焦点
坐标是。

16. 已知两点 A(-3 ,0) 与 B(3 ,0) ,若 PA PB 10那么 P 点的轨迹方程是。

17. 椭圆的长 . 短轴都在坐标轴上
, 经过 A(0.2) 与 B (
1
, 3) 则椭圆的方程为。

2
18. 椭圆的长 . 短轴都在坐标轴上 , ,焦点间的距离等于长轴和短轴两端点间的距离,且经
3 3
,则椭圆的方程为。

过点
P (,
)
2
2
19. 椭圆
x 2 y 2 1 的离心率 e
1
则 k 的值是。

K 4 9
2
20.
如果椭圆的对称轴为坐标轴, 短轴的一个端点与焦点组成一正三角形,焦点在 x 轴上,
且 a c3 ,那么椭圆的方程是。

2
2
21.
在椭圆
x
y
1 内有一点 M(4 ,-1),使过点 M 的弦 AB 的中点正好为点 M ,求
40 10
弦 AB 所在的直线的方程。

相关文档
最新文档