九年级数学上册专训2证比例式或等积式的技巧

合集下载

九年级数学上册解题技巧专题比例式、等积式的常见证明方法(新版)北师大版

九年级数学上册解题技巧专题比例式、等积式的常见证明方法(新版)北师大版

1解题技巧专题:比例式、等积式的常见证明方法直接法、间接法一网搜罗1. 如图,四边形ABCD 的对角线 AC, BD 交于点F ,点E 是BD 上一点,并且/ BAC=3. ^如图,已知 AD 是厶ABC 的角平分线,EF 垂直平分AD,交BC 的延长线于E , 交 AD 于 F.求证:DE = BE- CE.♦类型二利用等线段代换2. 如图,在四边形 ABCD 中, AB= AD,AC 与BD 交于点E ,Z ADB=Z ACB 求证:ABAEAC AD♦类型一 找线段对应的三角形, 利用 相似证明/ BDC=Z DAE 求证:AB AEAC T ADDA解题技巧专题:比例式、等积式的常见证明2♦类型三 找中间比利用等积式代换 4. 如图,在△ ABC 中,点D 为BC 的中 点,AE// BC ED 交AB 于P,交AC 的延长线 于 Q.求证:PD- EQ= PE- DQ.1.证明:证法一:•••/ BAC=Z DAE•••/ BAO Z CAE=Z DAEF Z CAE 即/ BAE =ZCAD •••/ BAC=Z BDC / BFA=Z CFD• 180°—/ BAC-Z BFA= 180°—/ BDC- / CFD 即Z ABE=Z ACD •△ AB0A ACD • AB AE • A C T AD .证法二:•••/ BAC=Z DAE BAO/ CAE = / DAE + / CAE ,即 / BAE =/ CAD T Z BEA=Z DAE^Z ADE Z ADC= / BDO Z ADE Z DAE=Z BDC •Z AEB= AB AEZ ADCABE^A ACD •- T .AC AD2 .证明:•/ AB = AD , •Z ADB =Z ABE T Z ADB=Z ACB •Z ACB=Z ABEAB 又 T Z CAB=Z BAE •△ ACB P A ABE •屁3.证明:如图,连接 AE T EF 垂直平分 AD • AE = DE •Z DAE=Z 4. T AD 是 △ ABC 的角平分线,•Z 1 = Z 2. T Z DAE=Z 2+Z 3, Z 4=Z B +Z 1, •Z B=Z 3.又方法ACAB 又 T AB= ADAB _AC AE =AD3•••/ BEA=Z AEC •••△ BEA^A AEC /•圧• A E = BE- CE • D E = BE- CE 4.证明:T AE// DCQDC=/ E ,/ QCD=Z QAEQCX QAE • EQCD,T AE// BD,PD BD _ f PE =AE T 点PD- EQ= PE- DQ为BC 的中点, B[> CD ,PD DQPE = EQBE AE。

华师版九年级数学上册复习-解题技巧专题:比例式、等积式的常见证明方法

华师版九年级数学上册复习-解题技巧专题:比例式、等积式的常见证明方法

解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法—网搜罗◆类型一 找线段对应的三角形,利用相似证明 1.(虹口区模拟)如图,在△ABC 中,∠C =90°,AD 是∠CAB 的平分线,BE ⊥AE ,垂足为点E ,求证:BE 2=DE ·AE .2.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,且∠BAC =∠BDC =∠DAE .求证:AB AC =AEAD.3.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,M ,N 分别为垂足.求证:AM AB =MNAC.◆类型二 利用等线段代换证明4.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB .求证:ABAE =AC AD.5.如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F .求证:DE 2=BE ·CE .6.如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 且交AC 于F ,过F 作FG ∥AB ,交AE 于G .求证:AG 2=AF ·CF .◆类型三 找中间比利用等积式代换7.如图,在△ABC 中,点D 为BC 的中点,AE ∥BC ,ED 交AB 于P ,交AC 的延长线于Q .求证:PD ·EQ =PE ·DQ .8.★如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 于F .求证:AC ·CF =BC ·DF .9.★如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 为AC 的中点,ED 的延长线交AB 于F .求证:AB AC =DF AF.解题技巧专题:比例式、等积式的常见证明方法1.证明:∵AD 平分∠CAB ,∴∠CAD =∠BAD .∵∠C =90°,AE ⊥BE ,∴∠ADC +∠CAD =∠BDE +∠DBE .∵∠ADC =∠BDE ,∴∠CAD =∠DBE ,∴∠BAD =∠DBE ,∴Rt △ABE ∽Rt △BDE ,∴BE DE =AEBE,∴BE 2=DE ·AE .2.证明:证法一:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BAC =∠BDC ,∠BF A =∠CFD ,∴180°-∠BAC -∠BF A =180°-∠BDC -∠CFD ,即∠ABE =∠ACD ,∴△ABE ∽△ACD ,∴AB AC =AEAD. 证法二:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BEA =∠DAE +∠ADE ,∠ADC =∠BDC +∠ADE ,∠DAE =∠BDC ,∴∠AEB =∠ADC ,∴△ABE ∽△ACD ,∴AB AC =AEAD.3.证明:在▱ABCD 中,∠B =∠D ,AD =BC ,又∵∠AMB =∠AND =90°,∴Rt △AMB ∽Rt △AND ,∴AM AN =AB AD =ABBC.又∵AB ∥CD ,AN ⊥CD ,∴AN ⊥AB .∴∠BAM +∠MAN =∠BAM +∠B =90°,∴∠B =∠MAN ,∴△AMN ∽△BAC ,∴AM AB =MNAC.4.证明:∵AB =AD ,∴∠ADB =∠ABE .又∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AC =AE AB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =ACAD .5.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA =∠AEC ,∴△BEA ∽△AEC ,∴AE CE =BEAE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE .6.证明:∵BE ⊥AC ,∴∠AFB =∠BFC =90°,∴∠ABF +∠BAF =90°.∵四边形ABCD 是矩形,∴∠ABC =90°,∴∠ABF +∠CBF =90°,∴∠BAF =∠CBF ,∴△ABF ∽△BCF ,∴BF CF =AFBF,∴BF 2=AF ·CF .∵四边形ABCD 是矩形,∴AD =BC ,∠D =∠BCE =90°.又∵点E 是CD 的中点,∴DE =CE ,∴△ADE ≌△BCE ,∴AE =BE .∵GF ∥AB ,∴AG AE =BF BE,∴AG =BF ,∴AG 2=AF ·CF .7.证明:∵AE ∥DC ,∴△QCD ∽△QAE ,∴DQ EQ =CDAE .∵AE ∥BD ,∴△BDP ∽△AEP ,∴PD PE =BD AE .∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQEQ,即PD ·EQ =PE ·DQ . 8.证明:∵CD 是Rt △ABC 斜边AB 上的高,∴∠ACB =∠ADC =∠CDB =90°,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,∴△ADC ∽△CDB ,∴AD CD =AC BC .∵E 为BC的中点,∴DE =CE ,∴∠EDC =∠DCE =∠DAC ,∴∠FDC =∠F AD .又∵∠F =∠F ,∴△FDC ∽△F AD ,∴CF DF =CD AD ,∴DF CF =AD DC ,∴AC BC =DFCF,∴AC ·CF =BC ·DF .9.证明:∵∠BAC =90°,AD ⊥BC ,∴∠ADB =∠CDA =90°,∠BAD +∠CAD =90°,∴∠CAD +∠C =90°,∴∠BAD =∠C ,∴△ABD ∽△CAD ,∴AB AC =BDAD .在Rt △ADC 中,∵点E 为AC 的中点,∴DE =CE ,∴∠C =∠EDC ,∴∠BAD =∠EDC .又∵∠EDC =∠FDB ,∴∠FDB =∠BAD ,即∠FDB =∠F AD .又∵∠F =∠F ,∴△DFB ∽△AFD ,∴DF AF =BD AD .∴ABAC =DF AF.。

北师大版数学九年级上册解题技巧专题:比例式、等积式的常见证明方法 -课件

北师大版数学九年级上册解题技巧专题:比例式、等积式的常见证明方法 -课件
• You have to believe in yourself. That's the secret of success. 人必须相信、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/252021/9/252021/9/252021/9/259/25/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月25日星期六2021/9/252021/9/252021/9/25 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/252021/9/252021/9/259/25/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/252021/9/25September 25, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/252021/9/252021/9/252021/9/25
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/252021/9/25Saturday, September 25, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/252021/9/252021/9/259/25/2021 1:13:12 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/252021/9/252021/9/25Sep-2125-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/252021/9/252021/9/25Saturday, September 25, 2021

「初中数学」证比例式或等积式的六种常用技巧

「初中数学」证比例式或等积式的六种常用技巧

「初中数学」证比例式或等积式的六种常用技巧证比例式或等积式的题目时,若问题中无平行线或相似三角形,则需要构造平行线或相似三角形,得到成比例线段.若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若比例式或等积式中的线段分布不在两个三角形中,可尝试将它们转化到两个三角形中;若比例式或等积式中的线段分布在两个明显不相似的三角形中,可尝试用中间比代换.技巧一.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC 的延长线于点F,求证AE×CF=BF×EC.【分析】由AE×CF=BF×EC,变为AE/BF=EC/CF或AE/EC=BF/CF,成比例的线段明显的组不成三角形,于是寻求中间比进行代换,过C点作CM∥AB,交DF于M,如图,则BF/CF=BD/CM,AE/EC=AD/CM,而D为AB的中点,则AD=BD,∴BF/CF=AE/EC,即AE×CF=BF×EC.另,过C点作CM∥DF交AB于M,如图则AE/EC=AD/DM,又BF/CF=BD/DM,而AD=BD,∴AE/EC=BF/CF,即AE×CF=BF×EC.另,过B点作BM∥AC,交FD的延长线于M,如图则BF/CF=BM/EC,而D为AB的中点,易证AE=BM,∴BF/CF=AE/EC,即AE×CF=BF×EC,这里巧用AE等量代换了BM,得证.另,过B点作BM∥DF交AC的延长线于M,如图则BC/CF=CM/EC,∴(BC+CF)/CF=(CM+EC)/EC,即BF/CF=EM/EC,而DE是△ABM的中位线,AE=EM,∴BF/CF=AE/EC,即AE×CF=BF×EC.另,过A点作AM∥DF交BF的延长线于M,如图∵D为AB的中点,∴BF=FM,又AE/EC=FM/CF,∴AE/EC=BF/CF,即AE×CF=BF×EC.另,过A点作AM∥BC,交FD的延长线于M,如图则AM/CF=AE/EC,而D为AB的中点,易证AM=BF,∴BF/CF=AE/EC,即AE×CF=BF×EC.技巧二.构造相似三角形法2.已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,求证AB×DF=BC×EF.【分析】由AB×DF=BC×EF,变形为AB/BC=EF/DF,成比例的线段可构成△ABC,而EF,DF构不成三角形,可寻求中间比代换,过D作DM∥BE,交AC于M,如图则出现A型相似,△ADM∽△ABC;X型相似,△CEF∽△MDF,∴有AB/BC=AD/DM,EF/DF=CE/DM,而AD=CE,∴AB/BC=EF/DF,即AB×DF=BC×EF.另,过E点作EM∥AB,交AC的延长线于M,如图同学们自己证一下.技巧三,三点定型法3.如图,在△ABC中,∠BAC=90°,M是BC的中点,MD⊥BC,交AB于E,交CA的延长线于D,求证AM²=DM×EM.【分析】由AM²=DM×EM,化为AM/DM=EM/AM,锁定两个三角形ADM与△EAM,看是否相似,∵∠BAC=90°,M是BC的中点,∴BM=AM,∴∠B=∠BAM,而∠D,与∠B都是∠C的补角,∠B=∠D=∠EAM,∵∠AEM=∠D+∠DAE,∠DAM=∠EAM+∠DAE,∴∠AEM=∠DAM,又∠AME=∠DMA,∴△AME∽△DMA,∴AM/DM=EM/AM,即AM²=DM×EM.技巧四.等积过渡法4.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D,求证CE²=DE×PE.【分析】从结论分析,成比例的线段不在三角形中,那么就要找等量代换,由BG⊥AP,DE⊥AB,∴∠AEP=∠BED=∠AGB=90°,∵∠P与∠ABG都是∠PAB的余角,∴∠P=∠ABG,∴△AEP∽△DEB,∴AE/DE=PE/BE,即AE×BE=DE×PE,又CE⊥AB,∠ACB=90°,易证△AEC∽△CEB,∴AE/CE=CE/BE,即AE×BE=CE²,∴CE²=DE×PE.技巧五.等比代换法5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,E是AC的中点,连接ED并延长,交AB的延长线于点F,求证AB/AC=DF/AF【分析】由于AD⊥BC,∠BAC=90°,∴∠ADB=∠ADC=90°,又E是AC的中点,∴DE=EC=AC/2,∴∠C=∠CDE,又∠CDE=∠FDB,∵∠BAD+∠DAC=90°,∠C+∠DAC=90°,∴∠BAD=∠C=∠FDB,又∵∠F=∠F,∴△FDB∽△FAD,∴DB/AD=DF/AF,∵∠ADB=∠ADC,∠BAD=∠C,∴△ABD∽△CAD,∴BD/AD=AB/AC,∴AB/AC=DF/AF.技巧六.等线段代换法6.在△ABC中,AB=AC,AD是BC边上的中线,CF∥AB,BF交AD于点P,交AC于点E,求证PB²=PE×PF.【分析】由结论看,PB,PE,PF三线段在同一条线上,无法找到相似三角形,考虑代换,连接PC,而AB=AC,AD是BC边上的中线,则AD垂直平分BC,∴PB=PC,∴∠PBC=∠PCB,而∠ABC=∠ACB,∴∠ABP=∠ACP,又∵CF∥AB,∴∠F=∠ABP,∴∠F=∠ACP,又∠EPC=∠FPC,∴△PEC∽△PCF,∴PC/PF=PE/PC,∴PC²=PE×PF,∵PB²=PE×PF.如图【总结】几何证明题,多种多样,证等积式等比例式,究竟用什么方法,因题而异,考虑题中的条件,灵活代换,可以是等线段代换.等比代换,等积代换等。

北师大版九年级数学上专训2 证比例式或等积式的技巧

北师大版九年级数学上专训2 证比例式或等积式的技巧

初中数学试卷专训2 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE 交AC于点F,求证:AB·DF=BC·EF.(第2题)三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F.求证:BF BE =AB BC.(第8题)9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证: (1)△AMB ∽△AND ; (2)AM AB =MN AC.(第9题)等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F. 求证:AE AF =AC AB.(第10题)等线段代换法11.如图,在等腰三角形ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.(第11题)12.如图,已知AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P. 求证:PD2=PB·PC.(第12题)答案1.证明:如图,过点C作CM∥AB交DF于点M.∵CM∥AB,∴∠FCM=∠B,∠FMC=∠FDB.∴△CMF∽△BDF.∴BF CF =BD CM. 又∵CM ∥AD ,∴∠A =∠ECM ,∠ADE =∠CME.∴△ADE ∽△CME.∴AE EC =AD CM. ∵D 为AB 的中点,∴BD =AD.∴BD CM =AD CM .∴BF CF =AE EC. 即AE ·CF =BF ·EC.(第1题)2.证明:过点D 作DG ∥BC ,交AC 于点G ,易知△DGF ∽△ECF ,△ADG ∽△ABC.∴EF DF =CE DG ,AB BC =AD DG. ∵AD =CE ,∴CE DG =AD DG .∴AB BC =EF DF. 即AB ·DF =BC ·EF.点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴AE ∥DC ,∠A =∠C.∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CF AD. 4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°. ∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM.∴∠B=∠BAM.∴∠BAM=∠D.即∠EAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.即AM2=MD·ME.(第5题)5.证明:如图,连接PM,PN.∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°,∴∠5=∠7.∴△BPM∽△CNP.∴BPCN=BMCP.即BP·CP=BM·CN.6.证明:(1)∵AB =AC ,∴∠ABC =∠ACB.∵DE ∥BC ,∴∠ABC +∠EDB =180°,∠ACB +∠FED =180°.∴∠FED =∠EDB.又∵∠EDF =∠DBE ,∴△DEF ∽△BDE.(2)由△DEF ∽△BDE 得DE BD =EF DE.即DE 2=DB ·EF.又由△DEF ∽△BDE ,得∠GED =∠EFD.∵∠GDE =∠EDF ,∴△GDE ∽△EDF.∴DG DE =DE DF.即DE 2=DG ·DF. ∴DG ·DF =DB ·EF.7.证明:∵BG ⊥AP ,PE ⊥AB ,∴∠AEP =∠DEB =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠ABG =90°.∴∠P =∠ABG.∴△AEP ∽△DEB.∴AE DE =PE BE.即AE ·BE =PE ·DE. 又∵∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE.∴△AEC ∽△CEB.∴AE CE =CE BE.即CE 2=AE ·BE. ∴CE 2=DE ·PE.8.证明:由题意得∠BDF =∠BAE =90°.∵BE 平分∠ABC ,∴∠DBF =∠ABE.∴△BDF ∽△BAE.∴BD AB =BF BE. ∵∠BAC =∠BDA =90°,∠ABC =∠DBA.∴△ABC ∽△DBA.∴AB BC =BD AB. ∴BF BE =AB BC. 9.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD,∠BAM =∠DAN. 又AD =BC ,∴AM AN =AB BC. ∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN.∴△AMN ∽△BAC.∴AM AB =MN AC. 10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ABD ∽△ADE.∴AD AB =AE AD.即AD 2=AE ·AB. 同理可得AD 2=AF ·AC.∴AE ·AB =AF ·AC.∴AE AF =AC AB. 11.证明:连接PC ,如图所示.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB.∴BP =CP.∴∠1=∠2.∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F.∴∠4=∠F.又∵∠CPF =∠CPE ,∴△CPF ∽△EPC.∴CP PE =PF CP,即CP 2=PF ·PE. ∵BP =CP ,∴BP 2=PE ·PF.(第11题)(第12题)12.证明:如图,连接PA,∵EP是AD的垂直平分线,∴PA=PD.∴∠PDA=∠PAD.∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC ∽△PBA.∴PA PB =PC PA. 即PA 2=PB ·PC.∵PA =PD ,∴PD 2=PB ·PC.。

JJ冀教版 初三九年级数学 上册第一学期(期末考试专题复习)5.解题技巧专题:比例式、等积式的常见证明方法

JJ冀教版 初三九年级数学 上册第一学期(期末考试专题复习)5.解题技巧专题:比例式、等积式的常见证明方法

解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一找线段对应的三角形,利用相似证明1.如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且∠BAC=∠BDC=∠DAE.求证:ABAC=AE AD.◆类型二利用等线段代换2.如图,已知AD是△ABC的角平分线,EF垂直平分AD,交BC的延长线于E,交AD于F.求证:DE2=BE·CE.◆类型三 找中间比利用等积式代换3.如图,在△ABC 中,点D 为BC 的中点,AE ∥BC ,ED 交AB 于P ,交AC 的延长线于Q .求证:PD ·EQ =PE ·DQ.4.(滨州中考)如图,已知B 、C 、E 三点在同一条直线上,△ABC 与△DCE 都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F .求证:(1)△ACE ≌△BCD ;(2)AG GC =AF FE.解题技巧专题:比例式、等积式的常见证明方法1.证明:证法一:∵∠BAC =∠DAE ,∴∠BAC -∠CAE =∠DAE -∠CAE ,即∠BAE =∠CAD .又∵∠BAC =∠BDC ,∠BF A =∠CFD ,∴180°-∠BAC -∠BF A =180°-∠BDC -∠CFD ,即∠ABE =∠ACD ,∴△ABE ∽△ACD ,∴AB AC =AE AD. 证法二:∵∠BAC =∠DAE ,∴∠BAC -∠CAE =∠DAE -∠CAE ,即∠BAE =∠CAD .又∵∠BEA =∠DAE +∠ADE ,∠ADC =∠BDC +∠ADE ,∠DAE =∠BDC ,∴∠AEB =∠ADC ,∴△ABE ∽△ACD ,∴AB AC =AE AD.2.证明:连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA =∠AEC ,∴△BEA ∽△AEC ,∴AE CE =BE AE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE . 3.证明:∵AE ∥DC ,∴∠QDC =∠E ,∠QCD =∠QAE ,∴△QCD ∽△QAE ,∴DQ EQ=CD AE .∵AE ∥BD ,∴∠B =∠P AE ,∠BDP =∠AEP ,∴△BDP ∽△AEP ,∴PD PE =BD AE.∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQ EQ,即PD ·EQ =PE ·DQ . 4.证明:(1)∵△ABC 与△DCE 都是等边三角形,∴AC =BC ,CE =CD ,∠ACB =∠DCE =60°,∴∠ACB +∠ACD =∠DCE +∠ACD ,即∠BCD =∠ACE ,∴△ACE ≌△BCD (SAS);(2)∵△ABC 与△DCE 都是等边三角形,∴AB =AC ,CD =ED ,∠ABC =∠DCE =60°,∴AB CD =AC ED ,AB ∥DC ,∴∠ABG =∠GDC ,∠BAG =∠GCD, ∴△ABG ∽△CDG ,∴AG GC =AB CD ,同理可得AF FE =AC ED .∴AG GC =AF FE.。

初中数学相似热门题型解题技巧整理

初中数学相似热门题型解题技巧整理

相似热门题型解题技巧整理类型1证比例式或等积式的技巧方法指导:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.题型1 构造平行线法1.如图,在△ABC中,D为A中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,试证明:AB·DF=BC·EF.题型2 三点找三角形相似法1.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.2.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.题型3 构造相似三角形法1.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.题型4 等比过渡法1.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.2.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.题型5 两次相似法1.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC 于E,交AD于F.求证:BFBE=ABBC.2.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.题型6 等积代换法1.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.题型7 等线段代换法1.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.2.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.类型2巧用“基本图形”探索相似条件方法指导:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.母子型型.4.旋转型.题型1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE ·BC =BD ·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.题型2 相交线型1.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.题型3 母子型1.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F .求证:AB AC =DFAF .题型4 旋转型4.如图,已知∠DAB=∠EAC,∠ADE=∠ABC. 求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.类型3利用相似三角形巧证线段的数量和位置关系方法指导:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.题型1 证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC 边交于点M,与DE交于点N.求证:BM=MC.2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE:CE=BF:CF.求证:AD=DB.类型2:证明两线段的倍分关系1.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12BC.4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM 的延长线于E.求证:AC=2CE.题型2 证明两线段的位置关系类型1:证明两线段平行1.如图,已知点D为等腰直角三角形ABC的斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.2.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.类型2:证明两线垂直1.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.2.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF .类型4 相似三角形与函数的综合应用方法指导:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.题型1 相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.题型2 相似三角形与二次函数1.如图,直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx +c经过A,B,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标.2.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y 轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M 的坐标;若不存在,请说明理由.题型3 相似三角形与反比例函数1.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB对应的函数解析式.类型5 全章达标综合检测方法指导:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.题型1 3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是()A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是____m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.题型2 2个性质平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC 交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.题型3 1个判定——相似三角形的判定7.如图,△ACB 为等腰直角三角形,点D 为斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接AE ,过C 作CO ⊥AB 于O .求证:△ACE ∽△OCD .8.如图,在⊙O 的内接△ABC 中,∠ACB =90°,AC =2BC ,过点C 作AB 的垂线l 交⊙O 于另一点D ,垂足为点E .设P 是AC ︵上异于点A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,AP ︵=BP ︵,求PD 的长.题型4 2个应用应用1:测高的应用9.如图,在离某建筑物CE4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.题型5 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.题型6 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC 的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.。

初三九年级数学学沪科 第22章 训练习题课件专题技能训练(三) 3.证明比例式或等积式的技巧

初三九年级数学学沪科 第22章  训练习题课件专题技能训练(三)  3.证明比例式或等积式的技巧

专题技能训练
证明:过点 C 作 CM∥AB 交 DF 于点 M. ∵CM∥AB,∴△CMF∽△BDF. ∴BCFF=CBMD. ∵CM∥AD,∴△AED∽△CEM. ∴ACEE=CAMD. ∵D 为 AB 的中点,∴CBMD=CAMD. ∴BCFF=ACEE,即 AE·CF=BF·CE.
专题技能训练
Байду номын сангаас题技能训练
证明:∵∠A=35°,∠C=85°, ∴∠B=180°-∠A-∠C=180°-35°-85°=60°. ∵∠AED=60°,∴∠AED=∠B. 又∵∠A=∠A,∴△ADE∽△ACB. ∴AADC=AAEB,即 AD·AB=AE·AC.
专题技能训练
4.如图,已知 CE 是 Rt△ABC 斜边上的高,在 EC 的延长线上 任取一点 P,连接 AP,作 BG⊥AP 于点 G,交 CE 于点 D. 求证:CE2=DE·PE. 证明:∵BG⊥AP,PE⊥AB, ∴∠AEP=∠BED=∠AGB=90°. ∴∠P+∠PAB=90°,∠PAB+∠ABG=90°. ∴∠P=∠ABG. ∴△AEP∽△DEB.
2.如图,在等边三角形 ABC 中,点 P 是 BC 边上任意一点,AP 的垂直平分线分别交 AB,AC 于点 M,N. 求证:BP·CP=BM·CN. 证明:如图,连接 PM,PN. ∵MN 是 AP 的垂直平分线,∴MA=MP,NA=NP. ∴∠1=∠2,∠3=∠4. 又∵△ABC 是等边三角形,∴∠B=∠C=∠1+∠3=60°.
专题技能训练
∴DAEE=BPEE,即 AE·BE=DE·PE. ∵∠CAB+∠ACE=90°,∠CAB+∠CBE=90°, ∴∠ACE=∠CBE.又∠CEA=∠BEC=90°,∴△AEC∽△CEB. ∴ACEE=CBEE,即 CE2=AE·BE. ∴CE2=DE·PE.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年
专训2 证比例式或等积式的技巧
名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.
构造平行线法
1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,
求证:AE·CF=BF·EC.
(第1题)
2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,
求证:AB·DF=BC·EF.
(第2题)
三点定型法
3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.
求证:=.
(第3题)
4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB 于E.
求证:AM2=MD·ME.
(第4题)。

相关文档
最新文档