初中数学旋转解题几何之令狐文艳创作

合集下载

中学数学全套课件制作实例(几何画板)之令狐文艳创作

中学数学全套课件制作实例(几何画板)之令狐文艳创作

中学数学全套课件制作实例(几何画板)令狐文艳1、《几何画板》:绘制三角形内接矩形的面积函数图像2、《几何画板》:求过两点的直线方程3、《几何画板》:验证两点间距离公式4、《几何画板》:绘制分段函数的图像5、《几何画板》:绘制某区间内的函数图像6、《几何画板》:运用椭圆工具制作圆柱7、《几何画板》:绘制四棱台8、《几何画板》:绘制三棱柱9、《几何画板》:绘制正方体10、《几何画板》:绘制三角形的内切圆11、《几何画板》:通过不在一条直线上的3点绘制圆12、《几何画板》:给定半径和圆心绘制圆13、《几何画板》:绘制棱形14、《几何画板》:绘制平行四边形15、《几何画板》:绘制等腰直角三角形16、《几何画板》:旋转体教学17、《几何画板》:画角度的箭头18、《几何画板》:“派生”关系进行轨迹教学板19、《几何画板》:制作“椭圆”工具20、《几何画板》:显示圆和直线的位置关系21、《几何画板》:研究圆切线的性质22、《几何画板》:“垂径定理”的教学23、《几何画板》:证明三角形的中线交于一点24、《几何画板》:验证分割高线长定理25、《几何画板》:证明三角形外心和重心的距离等于垂心与重心的距离的一半26、《几何画板》:证明三角形内角和等于180度27、《几何画板》:验证三角形面积公式28、《几何画板》:验证勾股定理29、《几何画板》:验证正弦定理30、《几何画板》:验证圆弧的三项比值相等31、《几何画板》:巧用Excel制作函数图像32、《几何画板》:绘制极坐标系中的曲线函数图像33、《几何画板》:绘制带参数的幂函数图像34、《几何画板》:绘制带参数的正弦函数图像35、《几何画板》:绘制带参数的抛物线函数图像36、《几何画板》:绘制带参数的圆函数图像37、《几何画板》绘制带参数直线函数图像《几何画板》:绘制三角形内接矩形的面积函数图像第1步,启动几何画板,依次单击“图表”→“定义坐标系”菜单命令,在操作区建立直角坐标系。

中考数学压轴题之初中数学专题之令狐文艳创作

中考数学压轴题之初中数学专题之令狐文艳创作

中考数学压轴题专题复习令狐文艳1.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为 D.求该抛物线的解析式;(1) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(2) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22)2. (08浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.3. (088AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.(08山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x .(1)用含x 的代数式表示△MNP 的面积S ;(2)当x 为何值时,⊙O 与直线BC 相切?AB C D E R PH Qy O B C A T y(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、(2007浙江金华)如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为;若点A 的横坐标为m ,则点B 的坐标可表示为;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象B图 1 B D 图 2 P图 3限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于43,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结DG、BE,且a=3,b=2,k=12,求22BE DG+的值.8. (2008浙江义乌)如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积;②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.(2008山东烟台)如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ; (2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.(2008山东烟台)如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点.(1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P是抛物线L上的一个动点(P不与点A、B重1合),那么点P关于原点的对称点Q是否在抛物线L上,请说2明理由.11.2008淅江宁波)2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B '处,铺平后得折痕AE ;第二步 将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则:AD AB 的值是,AD AB ,的长分别是,.(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边AB BC CD DA ,,,上,求DG 的长.(4)已知梯形MNPQ 中,MN PQ ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.(2008山东威海)如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并A B C D B C A D E G H F F E B ' 4开2开8开 16图1图2 图3 a保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能,求出正方形MEFN 的面积;若不能,请说明理由.14.(2008山东威海)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y 的图象上. (1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y以点A ,B ,M ,N 试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点为(5,0),点Q 的坐标为(0,3移4个单位,然后再向上平移2则点P 1的坐标为,点Q 1的坐标为. 15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心MC DA B E F NM的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;(2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.16.(2008年浙江省绍兴市)标系中,(00)O ,,(60)A ,,(03)C ,单位长的速度沿OC 向终点C 出发以相等的速度沿AO 向终点时,另一点也停止运动.设点P (1)用含t 的代数式表示OP OQ ,(2)当1t 时,如图1,将△边上的点D 处,求点D 的坐标;(3) 连结AC ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与AC 能否平行?PE 与AC能否垂直?若能,求出相应的t 值;若不能,说明理由.17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线y =-与x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.图1(1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.19.(2008年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M运动多少时间时,MNB △的面积最大,最大面积是多少?20.(2008年成都市)如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠ (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值. 21.(2008年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式(3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CM CN+的值是否为定值,若是,求出定值,若不是,请说明理由22.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)23.(天津市2008年)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标; (Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.L`24.(2008年大庆市)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F在AD 上(以下问题的结果均可用a b,的代数式表示). (1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由..25.(2008年上海市)已知24AB AD ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线BC 上的动点(点E与点B 不重合),M 是线段DE 的中点.(1)设BE x =,ABM △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域;(2)如果以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长;(3)联结BD ,交线段AM 于点N ,如果以A N D ,,为顶点的三角形与BME △相似,求线段BE 的长.26.(2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想D CBAEFGGFE ABCD ① ②ADMAD在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.如图,甲,乙两村坐落在夹角为30的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M 的北偏西30的3km处,点A在点M的正西方向,点D在点M的南偏西60的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道建设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?C C27.(2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ∥BC?(2)设△AQP的面积为y(2cm),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.28.(2008年江苏省南通市)已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线k y x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线k y x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值. (2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.29.(2008年江苏省无锡市)一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?答题要求:请你在解答时,画出必要的示意图,并用必要的计P '图①算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)压轴题答案1.解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b=2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0)设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO S S ∆+=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,BD=2222112BG DG +=+= BE=22223332BO OE +=+=图1 图2 图3 图4yxD EA BFOG==所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOB DBE ∆∆.2.(1)∵A ,B 两点的坐标分别是A(10,0)和B(8,32),∴381032OAB tan =-=∠,∴︒=∠60OAB当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´, ∴△A ´TA 是等边三角形,且A T TP '⊥, ∴)t 10(2360sin )t 10(TP -=︒-=,)t 10(21AT 21AP P A -===', ∴2TPA )t 10(83TP P A 21S S -=⋅'=='∆, 当A ´与B重合时,AT=AB=60sin 32︒所以此时10t 6<≤.(2)当点A ´在线段AB 的延长线,且点P 在线段AB(不与B 重合)上时,纸片重叠部分的图形是四边形(如图(1),其中E 是TA ´与CB 的交点),当点P 与B 重合时,AT=2AB=8,点 又由(1)中求得当A ´与B 重合时,T所以当纸片重叠部分的图形是四边形时,6t 2<<. (3)S 存在最大值 ○1当10t 6<≤时,2)t 10(83S -=, 在对称轴t=10的左边,S 的值随着t 的增大而减小,∴当t=6时,S 的值最大是32.○2当6t 2<≤时,由图○1,重叠部分的面积EB A TP A S S S '∆'∆-= ∵△A ´EB 的高是︒'60sin B A , ∴23)4t 10(21)t 10(83S 22⨯----=当t=2时,S 的值最大是34;○3当2t 0<<,即当点A ´和点P 都在线段AB 的延长线是(如图○2,其中E 是TA ´与CB 的交点,F 是TP 与CB 的交点), ∵ETF FTP EFT ∠=∠=∠,四边形ETAB 是等腰形,∴EF=ET=AB=4,∴3432421OC EF 21S =⨯⨯=⋅=综上所述,S 的最大值是34,此时t 的值是2t 0≤<.3.解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=. 点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=. (2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△, ABT E COP FRQ QCAB BC∴=,10610y x -∴=,即y 关于x 的函数关系式为:365y x =-+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形. 4.解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠∴ △AMN ∽ △ABC . ∴ AM AN ABAC=,即43x AN =.∴ AN =43x . (2)分ABCD ERPH QM 2 1 HQA BCD E R PHQB图 1∴S=2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x<4) ……………3分(2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN .在Rt △ABC 中,BC由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN =.∴ 54MN x =,∴ 58OD x =. (5)分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt△BMQ 与Rt△BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BMQM BCAC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=.∴x =4996.∴ 当x =4996时,⊙O 与直线B C 相切. (7)分(3)随点M 的运动,当P AP ,则O 点为AP 的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM ∴ △AMO ∽ △ABP . ∴12AMAO ABAP ==.AM =MB =2.故以下分两种情况讨论:BD 图 2QBP 图 3① 当0<x ≤2时,2Δ83x S y PMN ==.∴当x=2时,2332.82y =⨯=最大 (8)分② 当2<x <4时,设PM ,PN 分别交BC 于E ,F . ∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x . 又∵MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭.∴()2322PEF S x ∆=-.……………………………………………… 9分 MNP PEFy S S ∆∆=-=()222339266828x x x x --=-+-.……………………10分当2<x <4时,29668y x x =-+-298283x ⎛⎫=--+ ⎪⎝⎭. ∴当83x =时,满足2<x<4,2y =最大. (11)分综上所述,当83x =时,y 值最大,最大值是2. …………………………12分P 图 45.解:(1)(-4,-2);(-m,-k m)(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ 一定是平行四边形 ②可能是矩形,mn=k 即可不可能是正方形,因为Op 不能与OA 垂直.解:(1)作BE ⊥OA , ∴ΔAOB 是等边三角形 ∴BE=OB ·sin60o=∴B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =,的以直线AB 的解析式为(2)由旋转知,AP=AD,∠PAD=60o,∴ΔAPD 是等边三角形,PD=PA==6.解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为43y x =-+ (2)由旋转知,AP=AD,∠PAD=60o, ∴ΔAPD是等边三角形,PD=PA==如图,作BE ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=2,DH=GH+GD=2+2,∴32,OH=OE+HE=OE+BG=37222+=∴,72)(3)设OP=x,则由(2)可得D(,22x x +)若ΔOPD 的面积为:13(2)224x x +=解得:3x -=所以P(3-,0)7.解:(1)①,BG DE BG DE =⊥………………………………………………………………2分②,BG DE BG DE=⊥仍然成立 ……………………………………………………1分在图(2)中证明如下∵四边形ABCD 、四边形ABCD 都是正方形 ∴BC CD =,CG CE =, 090BCD ECG ∠=∠= ∴BCG DCE ∠=∠…………………………………………………………………1分 ∴BCG DCE ∆≅∆(SAS )………………………………………………………1分∴BG DE =CBG CDE ∠=∠又∵BHC DHO ∠=∠090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠=∴090DOH ∠= ∴BG DE ⊥…………………………………………………………………………1分(2)BG DE⊥成立,BG DE=不成立 …………………………………………………2分简要说明如下∵四边形ABCD 、四边形CEFG 都是矩形,且AB a =,BC b =,CG kb =,CE ka =(a b ≠,0k >) ∴BC CG bDC CE a==,090BCD ECG ∠=∠= ∴BCG DCE ∠=∠∴BCG DCE ∆∆………………………………………………………………………1分∴CBG CDE ∠=∠又∵BHC DHO ∠=∠090CBG BHC ∠+∠= ∴090CDE DHO ∠+∠=∴090DOH ∠= ∴BG DE ⊥……………………………………………………………………………1分(3)∵BG DE ⊥∴22222222BE DG OB OE OG OD BD GE +=+++=+ 又∵3a =,2b =,k =12∴222222365231()24BD GE +=+++=………………………………………………1分 ∴22654BE DG +=………………………………………………………………………1分 8.解:(1)①2AB =……………………………………………………………………………2分842OA ==,4OC =,S梯形OABC=12 ……………………………………………2分②当42<<t 时,直角梯形OABC 被直线l 扫过的面积=直角梯形OABC 面积-直角三角开DOE 面积2112(4)2(4)842S t t t t =--⨯-=-+-…………………………………………4分(2)存在……………………………………………………………………………………1分123458(12,4),(4,4),(,4),(4,4),(8,4)3P P P P P ---…(每个点对各得1分)……5分对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:①以点D 为直角顶点,作1PP x ⊥轴Rt ODE ∆在中,2OE OD =∴,设2OD b OE b==,.1Rt ODE Rt PPD ∆≈∆,(图示阴影)4b ∴=,28b =,在上面二图中分别可得到P 点的生标为P (-12,4)、P (-4,4)E 点在0点与A 点之间不可能;② 以点E 为直角顶点同理在②二图中分别可得P 点的生标为P (-83,4)、P (8,4)E 点在0点下方不可能. 以点P 为直角顶点同理在③二图中分别可得P 点的生标为P (-4,4)(与①情形二重合舍去)、P (4,4),E 点在A 点下方不可能.综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).下面提供参考解法二:以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图22P DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b)的中点坐标为b (-,b)2,直线DE 的中垂线方程:1()22by b x -=-+,令4y =得3(8,4)2bP -DE =即=2332640b b -+=解得121883b b P P ==∴=3b,将之代入(-8,4)(4,4)、22(4,4)P -; 第二类如上解法②中所示图22E DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线PE 的方程:122y x b =-+,令4y =得(48,4)P b -.由已知可得PE DE ==22(28)b b =-解之得 ,123443b b P P ==∴=,将之代入(4b-8,4)(8,4)、48(,4)3P - 第三类如上解法③中所示图22D DE y x b ∠=+为直角:设直线:,D 此时(-b,o),E(O,2b),直线PD 的方程:1()2y x b =-+,令4y =得(8,4)P b --.由已知可得PD DE ==12544b b P P ==-∴=,将之代入(-b-8,4)(-12,4)、6(4,4)P -(6(4,4)P -与2P 重合舍去).综上可得P 点的生标共5个解,分别为P (-12,4)、P (-4,4)、P (-83,4)、P (8,4)、P (4,4).事实上,我们可以得到更一般的结论: 如果得出AB a OC b ==、、OA h =、设b ak -=,则P 点的情形如下9. 10.11.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x 千米,由题意得1201023x x +=, ················ 2分解得180x =.A ∴地经杭州湾跨海大桥到宁波港的路程为180千米. ·· 4分(2)1.8180282380⨯+⨯=(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用为380元. ······················ 6分 (3)设这批货物有y 车,由题意得[80020(1)]3808320y y y -⨯-+=, ········· 8分 整理得2604160y y -+=,解得18y =,252y =(不合题意,舍去), ········ 9分∴这批货物有8车. ················ 10分12.解:(1144a a ,,. ·············· 3分(2.5分(无“相等”不扣分有“相等”,比值错给1分(3)设DG x =,在矩形ABCD 中,90B C D ∠=∠=∠=,90HGF ∠=,90DHG CGF DGH ∴∠=∠=-∠,HDG GCF ∴△∽△, 12DG HG CF GF ∴==, 22CF DG x ∴==. ·················· 6分同理BEF CFG ∠=∠.EF FG =,FBE GCF ∴△≌△, 14BF CG a x ∴==-.················· 7分CF BF BC +=,1244x a x a ∴+-=, (8)分解得14x a =.即14DG a =. ·················· 9分(4)2316a , ··················· 10分2278a -. 12分13.解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .……………1分∵AB ∥CD ,∴DG =CH ,DG ∥CH .∴ 四边形DGHC 为矩形,GH =CD =1.∵DG =CH ,AD =BC ,∠AGD =∠BHC =∴△AGD ≌△BHC (HL ).∴AG =BH=2172-=-GH AB =3.………2∵ 在Rt △AGD 中,AG =3,AD =5, ∴DG =4. ∴()174162ABCD S +⨯==梯形.………………………………………………3分(2)∵MN ∥AB ,ME ⊥AB ,NF ⊥AB , ∴ME =NF ,ME ∥NF . ∴ 四边形MEFN 为矩形. ∵AB ∥CD ,AD =BC , ∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°, ∴△MEA ≌△NFB (AAS ).∴AE =BF .……………………4分设AE =x ,则EF =7-2x .……………5分 ∵∠A =∠A ,∠MEA =∠DGA =90°, ∴△MEA ∽△DGA . ∴DGME AGAE =.∴ME =x 34.…………………………………………………………6分∴6494738)2(7342+⎪⎭⎫ ⎝⎛--=-=⋅=x x x EF ME S MEFN矩形. (8)分ABE F G H ABE FG H当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能. ……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF .即 =34x7-2x .解,得1021=x .……………………………………………11分∴EF =21147272105x -=-⨯=<4.∴四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫⎝⎛=MEFNS 正方形.14.解:(1)由题意可知,()(1=+m m m 解,得 m =3∴A (3,4),B (6,2);∴k =4×3=12(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴 上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵四边形AN 1M 1B 为平行四边形,∴ 线段N 1M 1可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 点坐标为(3,4),B 点坐标为(6,2), ∴N 1点坐标为(0,4-2),即N 1(0,2); ………………………………5分M 1点坐标为(6-3,0),即M 1(3,0). ………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321-=k .∴直线M 1N 1的函数表达式为232+-=x y . ……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴ 线段M 2N 2与线段N 1M 1关于原点O 成中心对称. ∴M 2点坐标为(-3,0),N 2点坐标为(0,-2). ………………………9分设直线M 2N 2的函数表达式为22-=x k y ,把x =-3,y =0代入,解得322-=k ,∴直线M 2N 2的函数表达式为232--=x y .所以,直线MN 的函数表达式为232+-=x y 或232--=x y . (11)分(3)选做题:(9,2),(4,5).………………………………………………2分 15.解:(1)解法1:根据题意可得:A (-1,0),B (3,0);则设抛物线的解析式为)3)(1(-+=x x a y (a ≠0)又点D (0,-3)在抛物线上,∴a (0+1)(0-3)=-3,解之得:a =1∴y =x 2-2x -3 ··············· 3分 自变量范围:-1≤x ≤3 ·········· 4分解法2:设抛物线的解析式为c bx ax y ++=2(a ≠0) 根据题意可知,A (-1,0),B (3,0),D (0,-3)三点都在抛物线上∴⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a ,解之得:⎪⎩⎪⎨⎧-=-==321c b a∴y =x 2-2x -3 ········· 3分 自变量范围:-1≤x ≤3 ···· 4分(2)设经过点C “蛋圆”的切线CE 交x 轴于点E ,连结CM ,在Rt △MOC 中,∵OM =1,CM =2,∴∠CMO =60°,OC =3在Rt △MCE 中,∵OC =2,∠CMO =60°,∴ME =4∴点C 、E 的坐标分别为(0,3),(-3,0) ··6分∴切线CE 的解析式为3x3y +=······· 8分(3)为:y =kx -3(k ≠即16.解:(1)6OP t =-,3OQ t =+.(2)当1t =时,过D 点作1DD OA ⊥,交OA 于1D ,如图1, 则53DQ QO ==,43QC =,1CD ∴=,(13)D ∴,. (3)①PQ 能与AC 平行. 若PQ AC ∥,如图2,则OP OAOQ OC=,即66233t t -=+,149t ∴=,而703t ≤≤, 149t ∴=.②PE 不能与AC 垂直.若PE AC ⊥,延长QE 交OA 于F ,如图3, 则23335t QF OQAC OC +==.23QF t⎫∴=+⎪⎭.21)1)3t =+.又Rt Rt EPF OCA △∽△,PE OCEF OA∴=, 63261)3t t -∴=⎛⎫+ ⎪⎝⎭,3.45t ∴≈,而703t ≤≤, 图1t ∴不存在.17.解:(1)直线y =x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(0C ,················· 1分点A C ,都在抛物线上,∴抛物线的解析式为2y x =········· 3分 ∴顶点1F ⎛ ⎝⎭ (4)分(2)存在 ····················· 5分1(0P ······················ 7分2(2P······················ 9分(3)存在 ···················· 10分 理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.············· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =-(30)B ∴,在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,BC =x在Rt BB H'△中,12B H BB''==6BH H'==,3OH∴=,(3B'∴--,········12分设直线B F'的解析式为y kx b=+3k bk b⎧-=-+⎪∴⎨=+⎪⎩解得kb⎧=⎪⎪⎨⎪=⎪⎩62y x∴=-··················13分yy x⎧=-⎪∴⎨=-⎪⎩解得377xy⎧=⎪⎪⎨⎪=-⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛-⎝⎭,.··················14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥90BOC FGH∴∠=∠=,BCO FHG∠=∠同方法一可求得(30)B,.在Rt BOC△中,tan3OBC∠=,30OBC∴∠=,可求得3GH GC==,GF∴为线段CH的垂直平分线,可证得CFH△为等边三角形,AC∴垂直平分FH.x图10即点H 为点F 关于AC的对称点.0H ⎛∴ ⎝⎭····· 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=·················· 13分y y ⎧=⎪∴⎨⎪=⎩解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC上存在点M ,使得MBF △的周长最小,此时377M ⎛- ⎝⎭,. 118.解:(1)点E 在y 轴上 ·············· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴= 1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=点B 在x 轴上,∴点E 在y 轴上. ··········· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ················ 5分由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ················ 6分抛物线2y ax bx c =++经过点E ,由题意,将(A,122D ⎛⎫⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧-+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:28299y x x =--+ ······· 9分(3)存在符合条件的点P ,点Q . ········· 10分 理由如下:矩形ABOC 的面积3ABBO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ················· 11分依题意设点P 的坐标为(2)m , 点P在抛物线28299y x x =--+上 解得,10m =,28m =-1(02)P ∴,,22P ⎛⎫⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P 的坐标为(02),时,点Q的坐标分别为1(Q,2Q ;当点2P的坐标为2⎛⎫ ⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫- ⎪⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ····· 14分(以上答案仅供参考,如有其它做法,可参照给分) 19.解:(1)在2334y x =-+中,令0y =12x ∴=,22x =-(20)A ∴-,,(20)B , (1)又点B 在34y x b =-+上BC ∴的解析式为3342y x =-+ (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ········· 4分914C ⎛⎫∴- ⎪⎝⎭,,(20)B ,4AB ∴=,94CD = ·················· 5分 1994242ABCS ∴=⨯⨯=△ ·················· 6分(3)过点N 作NP MB ⊥于点PBNP BEO ∴△∽△ ··················· 7分 BN NP BE EO∴= ····················· 8分由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭,∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP∴=,65NP t ∴= ················· 9分 2312(04)55S t t t =-+<< (10)分 2312(2)55S t =--+·················· 11分此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.20.解:(1)如图,过点B 作BD ⊥OA 于点D. 在Rt △ABD 中, ∵∣AB ∣=∠∴∣BD ∣=∣AB ∣·sin ∠OAB=又由勾股定理,得∴∣OD ∣=∣OA ∣-∣AD ∣=10-6=4.∵点B 在第一象限,∴点B 的坐标为(4,3).……3分 设经过O(0,0)、C (4,-3)、A(10,0)三点的抛物线的函数表达式为y=ax 2+bx(a ≠0).由1,164381001005.4a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩。

经典竞赛几何题之令狐文艳创作

经典竞赛几何题之令狐文艳创作

绝密★启用前令狐文艳2018年05月17日张朋松的初中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D 不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC 至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM 于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB 的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.26.如图,已知线段AB的同侧有两点C、D满足∠ACB=∠ADB=60°,∠ABD=90°﹣∠DBC.求证:AC=AD.27.如图,正方形ABDE和ACFG是以△ABC的AB、AC为边的正方形,P、Q为它们的中心,M是BC的中点,试判断MP、MQ 在数量和位置是有什么关系?并证明你的结论.28.如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.29.如图,在△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连接AN,CM相交于点P,试求∠APM的度数.30.已知如图,在△ABC中,∠B=60°,AD、CE是△ABC的角平分线,并且它们交于点O,(1)求:∠AOC的度数;(2)求证:AC=AE+CD.31.如图,已知△ABC中AB>AC,P是角平分线AD上任一点,求证:AB﹣AC>PB﹣PC.32.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP ⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.33.如图已知△ABC中,AB=AC,∠ABD=60°,且∠ADB=90°﹣∠BDC,求证:AB=BD+DC.34.如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE度数.35.如图,已知△ABC是等腰直角三角形,∠C=90°,点M、N 分别是边AC和BC的中点,点D在射线BM上,且BD=2BM.点E在射线NA上,且NE=2NA,求证:BD⊥DE.36.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.37.如图,△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD.求证:BD=CD.38.如图所示,在△ABF中,已知BC=CE=EF,∠BAC=∠CAD=∠DAE=45°,求的值.39.如图,已知过△ABC的顶点A,在∠BAC内部任意作一条射线,过B、C分别作此射线的垂线段BD、CE,M为BC边中点.求证:MD=ME.40.已知,如图,在正方形ABCD中,O是对角线的交点,AF 平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E求证:.41.已知:在△ABC中,∠A=90°,AB=AC,D为AC中点,AE ⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.42.如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连接CE、CD,求证:CD=2EC.43.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.求证:DE=CF.44.如图,BE、CF是△ABC的高,它们相交于点O,点P在BE 上,Q在CF的延长线上且BP=AC,CQ=AB,(1)求证:△ABP≌△QCA.(2)AP和AQ的位置关系如何,请给予证明.45.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠BAC交CD于E,交BC于F,EG∥AB交BC于G,说明BG=CF的理由.46.在△ABC中,∠ACB=90°,D是AB上一点,M是CD的中点,若∠AMD=∠BMD,求证:∠CDA=2∠ACD.47.如图,已知:四边形ABCD中,AD=BC,E、F分别是DC、AB的中点,直线EF分别与BC、AD的延长线相交于G、H.求证:∠AHF=∠BGF.48.如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.49.已知△ABC,∠C=90°,AC=BC.M为AC中点,延长BM到D,使MD=BM;N为BC中点,延长NA到E,使AE=NA,连接ED,求证:ED⊥BD.50.如图,在△ABC中,∠BAC=90°,AB=AC,D是△ABC内一点,且∠DAC=∠DCA=15°,求证:BD=BA.2018年05月17日张朋松的初中数学组卷参考答案与试题解析一.解答题(共50小题)1.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.【解答】证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC﹣∠FAE,∠DAC=∠FAD﹣∠FAE,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.2.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图所示).求证:∠DEF=∠HFE.【分析】EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE 分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.【解答】证明:∵E,F分别为AC,AB的中点,∴EF∥BC,根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;同理可证∠CDE=∠B,∴∠DEF=∠B.又∵AH⊥BC,且F为AB的中点,∴HF=BF,∴∠B=∠BHF,∴∠HFE=∠B=∠DEF.即∠HFE=∠DEF.【点评】本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.【分析】(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt △OEM,则OE=OF成立.【解答】证明:(1)∵∠B=60°,AB=BC,∴∠A=∠C=60°,∵AECF分别平分∠A,∠C,∴∠OAC=∠OCA=30°,∴OA=OC,△ACF≌△CAE(ASA),∴AE=CF,∴OE=OF;(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.∵点O在∠A,∠C的平分线上,∴ON=OH,OH=OM,从而OM=ON,∴点O在∠B的平分线上(1分)∴∠OBN=∠OBM=30°,ON=OM (2分)又∠OEM=∠B+∠A=60°+∠A∠OFN=∠A+∠C=(∠A+∠C)+∠A=(180°﹣60°)+∠A=60°+∠A.∴∠OEM=∠OFN.(2分)∴Rt△OFN≌Rt△OEM(AAS),(1分)∴OE=OF.(1分)【点评】本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK与DK有怎样的大小关系?并说明理由.【分析】首先作出EI⊥AB,DH⊥AB,证明△EAI≌△DCF再得出DH=DF进而得出△EKI≌△DKH即可证出.【解答】解:结论:EK=DK.(2分)理由:过点E作EI⊥AB,过点D作DH⊥AB于H,DF⊥BC于F,在△EAI和△DCF中∵,∴△EAI≌△DCF(AAS),(2分)∴EI=DF,(2分)∵BD是∠ABC的平分线,∴DH=DF,(2分)∴DH=EI,在△EKI和△DKH中,∵,∴△EKI≌△DKH(AAS),(2分)∴EK=DK.(2分)【点评】此题主要考查了三角形全等证明方法,根据题意作出EI⊥AB,DH⊥AB,从而利于全等证明是解决问题的关键.5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂直AD于E,求证:BE=AD.【分析】延长AC、BE交于点M,易证得△ACD≌△BCM,可得AD=BM①,可证得△AEM≌△AEB,可得EM=BE,即BM=2BE②,由①②即可得结论.【解答】解:如图,延长AC、BE交于点M,∵∠A的平分线AD,BE垂直AD于E,∴∠MAE=∠BAE,∠AEM=∠AEB=90°,∵AE=AE,∴△AEM≌△AEB(ASA),∴EM=BE,即BM=2BE①;∵∠A的平分线AD,AC=BC,∠C=90°,∴∠CAD=∠DAB=22.5°,∠ABC=45°,∵BE垂直AD于E,∴∠DAB+∠ABC+∠DBE=90°,即∠DBE=22.5°,∴∠CAD=∠DBE,又∵AC=BC,且∠ACB=∠BCM=90°,∴△ACD≌△BCM(ASA),∴AD=BM②;由①②得AD=2BE,即BE=AD.【点评】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、三角形内角和定理等知识点,正确作出辅助线是解题的关键.6.如图,已知AB=AC,∠BAC=60°,∠BDC=120°,求证:AD=BD+CD.【分析】先延长DB,使BE=CD,连接AE,BC,根据已知条件得出A,B,D,C四点共圆,得出∠ACB=∠ADE,再根据等边三角形的性质得出△ABC是等边三角形,在△ABE和△ACD中,根据SAS得出△ABE≌△ACD,得出△ADE是等边三角形,得出AD=DE,再根据DE=BD+BE,即可证出AD=BD+CD.【解答】解:延长DB,使BE=CD,连接AE,BC,∵∠BAC+∠ACD+∠BDC+∠ABD=360°,∠BAC=60°,∠BDC=120°,∴∠ABD+∠ACD=180°,∴A,B,D,C四点共圆,∴∠ACB=∠ADE,∵∠ABD+∠ABE=180°,∴∠ABE=∠ACD,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∴∠ADE=60°,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AE=AD,∴△ADE是等边三角形,∴AD=DE,∵DE=BD+BE,∴AD=BD+CD.【点评】此题考查了全等三角形的判定与性质,用到的知识点是等边三角形的性质,全等三角形的判定与性质和三角形内角和定理,关键是根据题意作出辅助线.7.如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.【分析】由三角形的中位线得,MS∥AE,MS=AE,HS∥CF,HS=CF,由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD.【解答】证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM,∵GHM分别为BD,AC,EF的中点,∴MS∥AE,MS=AE,HS∥CF,HS=CF,∵GT∥CD,HT∥AB,GT=CD,HT=AB,∴GT∥HS,HT∥SM,∴∠SHM=∠TGH,∠SMH=∠THG,∴∠TGH=∠THG,∴GT=TH,∴AB=CD.【点评】本题考查了三角形的中位线定理以及平行线的性质.8.如图,在正方形ABCD中,取AD,CD的边的中点E,F,连接CE,BF交于点G,连接AG,试判断AG与AB是否相等,并说明理由.【分析】延长CE、BA交于P,易证△CDE≌△BCF,可得∠CFB=∠DEC,即可求得CE⊥BF,进而可以求证△PAE∽△PBC,可得PA=AB,根据直角三角形斜边中线等于斜边一半性质即可解题.【解答】解:延长CE、BA交于P,∵在△CDE和△BCF中,,∴△CDE≌△BCF;(SAS)∴∠CFB=∠DEC,∵∠FCG+∠DEC=90°,∴CE⊥BF,∴△PAE∽△PBC,==,∴A是PB的中点,即AB=PB,∵RT△BPG中,AG=PB.∴AG=AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△CDE≌△BCF是解题的关键.9.如图,设点M是等腰Rt△ABC的直角边AC的中点,AD⊥BM于E,AD交BC于D.求证:∠AMB=∠CMD(请用两种不同的方法证明)【分析】法(1)先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD;法(2)先作∠BAC的平分线交BM于N,得出∠ABN=∠CAE,再根据∠BAN=∠C=45°,AB=AC,证出△BAN≌△ACD,得出AN=CD,证出△NAM≌△DCM,即可得出∠AMB=∠CMD.【解答】证明:法(1)如图,延长AD至F,使得CF⊥AC,∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,又∵AB=AC,CF⊥AC,∴△ABM≌△CAF,∴∠BMA=∠F,AM=CF,∵∠BCA=∠BCF=45°,AM=CM=CF,DC=DC,∴△FCD≌△MCD,法(2)AD交BM于E,作∠BAC的平分线交BM于N,∵AE⊥BM,BA⊥AC,∴∠ABN=∠CAE,∵∠BAN=∠C=45°,AB=AC,∴△BAN≌△ACD.∴AN=CD,∵∠NAM=∠C=45°,AM=MC∴△NAM≌△DCM,∴∠AMB=∠CMD.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和相似三角形的判断与性质进行解答即可.10.如图,在四边形ABCD中,AD=BC,E、F分别是DC及AB的中点,射线FE与AD及BC的延长线分别交于点H及G.试猜想∠AHF与∠BGF的关系,并给出证明.提示:若猜想不出∠AHF与∠BGF的关系,可考虑使四边形ABCD为特殊情况.如果给不出证明,可考虑下面作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP.【分析】方法一:连AC,取其中点为M,连EM和FM,根据三角形的中位线平行于第三边并且等于第三边的一半可得EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,再根据两直线平行,内错角相等可得∠AHF=∠MEF,两直线平行,内错角相等可得∠BGF=∠MFE,从而得证;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,根据独角戏互相平分的四边形的平行四边形可得APBC是平行四边形,根据平行四边形对边相等可得AP=BC=AD,连结AP,根据等边对等角可得∠APD=∠ADP,根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥DP根据两直线平行,同位角相等可得∠AHF=∠ADP,根据两边互相平行的两个角相等或互补可得∠BGF=∠APD,然后等量代换即可得证.【解答】答:∠AHF=∠BGF.证明:方法一:连AC,取其中点为M,连EM和FM,∵EM是△ACD的中位线,∴EM∥AD,2EM=AD,同理FM∥BC,2FM=BC,∴EM=FM,∴∠MEF=∠MFE,∵∠AHF=∠MEF,∠BGF=∠MFE,∴∠AHF=∠BGF;方法二:作法,连结AC,以F为中心,将△ABC旋转180°,得到△ABP,∵F是AB的中点,∴APBC是平行四边形,∴AP=BC=AD,连结AP,则∠APD=∠ADP,∵EF是△CDP的中位线,∴EF∥DP,∴∠AHF=∠ADP,∵GF∥DP,GB∥AP,∴∠BGF=∠APD,∴∠AHF=∠BGF.【点评】本题考查了三角形的中位线定理,等腰三角形的判定与性质,难点在于作辅助线构造出三角形的中位线.11.如图,D为△ABC中线AM的中点,过M作AB、AC边的垂线,垂足分别为P、Q,过P、Q分别作DP、DQ的垂线交于点N.(1)求证:PN=QN;(2)求证:MN⊥BC.【分析】(1)要证明PN=QN,只有证明这两条线段所在的三角形全等就可以了,连接DN,利用斜边直角边对应相等的两个三角形全等就可以了.(2)△BPM和△CQM是直角三角形,由条件知道MB=CM,取BM、CM的中点S、T,连接PS、QT可以得到PS=QT,利用角的关系证明∠SPN=∠TQN,再证明△SPN≌△TQN,从而得到NS=NT,利用等腰三角形的三线合一的性质证明MN⊥BC.【解答】证明:(1)方法一:连接DN∵D为△ABC中线AM的中点∴AD=MD,MB=CM∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°∴△APM、△AMQ是直角三角形∴PD=AM,QD=AM∴PD=QD∴Rt△DPN≌Rt△DQN(HL)∴NP=PQ;方法二:∵MP⊥AB,MQ⊥AC∴∠APM=∠AQM=90°,所以∠APM+∠AQM=180°,所以四边形APMQ为圆内接四边形.∵D为AM的中点,∴PD,DQ为以D为圆心的四边形APMQ内接圆的半径.∵PN⊥PD,QN⊥QD,∴PN,NQ为圆的两条切线,∴PN=NQ.(2)取BM、CM的中点S、T,连接SP、SN、TQ、TN∴SP=BM=MC=TQ∴∠SPN=90°﹣∠BPS﹣∠NPM=90°﹣∠B﹣∠DPA=90°﹣∠B﹣∠BAM=90°﹣∠AMC=90°﹣∠DMQ﹣∠QMT=90°﹣∠DQM﹣∠MQT=∠TQN∴△SPN≌△TQN∴SN=TN∵SM=TM∴NM⊥BC【点评】本题考查了全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质.12.在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.【分析】①要证△DEM≌△DFN,由D、M、N分别是AB、AP、BP的中点,所以DM=BP,DN=AP,再有过E、F分别作CA、CB的垂线相交于P,所以EM=AP=DN,FN=BP=DM.又DE=DF所以△DEM≌△DFN.②由①得∠EMD=∠FND,由∠AMD=∠BND=∠APB所以∠AME=∠BNF,那么∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF),即∠PAE=∠PBF.【解答】证明:①如图,在△ABP中,∵D、M、N分别是AB、AP、BP的中点,∴DM=BP,DN=AP,又∵PE⊥AE,BF⊥PF∴EM=AP=DN,FN=BP=DM,∵DE=DF∴△DEM≌△DFN(SSS);②∵由①结论△DEM≌△DFN可知∠EMD=∠FND,∵DM∥BP,DN∥AP,∴∠AMD=∠BND=∠APB,∴∠AME=∠BNF又∵PE⊥AE,BF⊥PF,∴△AEP和△BFP都为直角三角形,又M,N分别为斜边PA与PB的中点,∴AM=EM=AP,BN=NF=BP,∴∠MAE=∠MEA,∠NBF=∠NFB,∴∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF).即∠PAE=∠PBF,【点评】此题考查了线段之间的关系,和全等三角形的判定和性质,同学们应该熟练掌握.13.如图:已知AB∥DC,∠BAD和∠ADC的平分线相交于点E,过点E的直线分别交AB、DC于B、C两点.猜想线段AD、AB、DC之间的数量关系,并证明.【分析】在AD上截取AF=AB,连接EF,根据SAS证△BAE≌△FAE,推出∠B=∠EFA,求出∠C=∠EFD,证△CDE≌△FDE,推出DC=DF,即可得出答案.【解答】答:AD=AB+DC,证明:在AD上截取AF=AB,连接EF,∵AE平分∠BAF,∴∠BAE=∠FAE,∵在△BAE和△FAE中∴△BAE≌△FAE(SAS),∴∠B=∠EFA,∵AB∥DC,∴∠B+∠C=180°,∵∠EFD+∠EFA=180°,∴∠C=∠EFD,∵DE平分∠CDA,∴∠CDE=∠FDE,∵在△CDE和△FDE中∴△CDE≌△FDE(AAS),∴DC=DF,∴AD=AF+DF=AB+DC.【点评】本题考查了全等三角形的性质和判定,平行线的性质,角平分线定义等知识点的应用,关键是能正确作辅助线.14.如图,已知△ABC中,AB=BC=CA,D、E、F分别是AB、BC、CA的中点,G是BC上一点,△DGH是等边三角形.求证:EG=FH.【分析】连接DE、DF,根据三角形中位线定理及等边三角形的性质,可证明△DEG≌△DFH,即可得结论.【解答】证明:连接DE、DF,(如图)∵D、E、F是各边中点,∴DE平行且等于AC,DF平行且等于BC,∵AB=BC=CA,∴∠A=∠B=∠C=60°,∴DE=DF,∠EDF=∠DFA=∠C=60°∵已知等边△DHG,∴DG=DH,∠HDG=60°=∠EDF,∴∠EDF﹣∠FDG=∠HDG﹣∠FDG,即∠1=∠2,∴△DEG≌△DFH(SAS),∴FH=EG.【点评】本题考查了三角形全等的判定及性质,涉及到三角形中位线定理、等边三角形的性质等知识点,熟练掌握三角形全等判定方法是解题的关键.15.已知如图,CD是RT△ABC斜边上的高,∠A的平分线交CD于H,交∠BCD的平分线于G,求证:HF∥BC.【分析】根据角平分线性质作辅助线连接FE,进而证得HCEF是菱形从而证得.【解答】证明:连接FE,∵CD是Rt△ABC斜边上的高,∴∠A=∠DCB,又∵AE平分∠A,CF平分∠BCD,∴∠DCF=∠DAE,又∵∠AHD=∠CHE,∠ADH=90度,∴∠CGE=90度,在三角形ACF中,AE是高,中线,角平分线,∴CF⊥HE,CG=FG,∴CH=FH,CE=EF,∴CF是△CHE的高,中线,角平分线,∴CH=CE,∴CH=HF=EF=CE,∴四边形HCEF是菱形,∴HF∥BC.【点评】本题考查了角平分线性质以及其应用,问题有一定难度.16.已知:如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E是CD的中点,过点E作CD的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)试猜想∠MPB与∠FCM数量关系并证明.【分析】(1)连接MD,根据线段垂直平分线上的点到两端点的距离相等可得MD=MC,然后利用“边边边”证M明△MFC与△MAD全等,根据全等三角形对应角相等可得∠MAD=∠MFC,根据两直线平行,同旁内角互补求出∠BAD,然后求出∠BAM=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明;(2)根据全等三角形对应角相等和轴对称的性质可得∠BMP=∠FMD=∠DMA,然后用∠BMP表示出∠FCM,再根据直角三角形两锐角互余列式整理即可得解.【解答】(1)证明:连接MD,∵点E是CD的中点,ME⊥D,∴MD=MC,在△MFC与△MAD中,,∴△MFC≌△MAD(SSS),∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=180°﹣∠ABC=180°﹣90°=90°,∴∠BAM=∠MAD﹣∠BAD=120°﹣90°=30°,∵∠ABM=90°,∴AM=2MB;(2)解:2∠MPB+∠FCM=180°.理由如下:由(1)可知∠BMP=∠FMD=∠DMA,∵∠FCM=∠ADM=∠DMC=2∠BMP,∴∠BMP=∠FCM,∵∠ABC=90°,∴∠MPB+∠BMP=90°,∴∠MPB+∠FCM=90°,∴2∠MPB+∠FCM=180°.【点评】本题考查了全等三角形的判定与性质,线段垂直平分线上的点到两端点的距离相等的性质,直角三角形两锐角互余,熟记各性质并作辅助线构造出全等三角形是解题的关键.17.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【分析】作∠OBF=∠OAE交AD于F,由已知条件用“ASA”可判定△AOE≌△BOF,所以AE=BF,再有条件AE=BD得BF=BD,所以∠BDF=∠BFD,再利用三角形的外角关系证得∠BOF=∠C,又因为∠BOF=∠BAD+∠ABE=2∠BAD,所以:∠BAD=∠C.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,【点评】本题考查了全等三角形的判断和性质,常用的判断方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.在证明中还要注意图形中隐藏条件的挖掘如:本题中的对顶角∠AOE=∠BOF.18.已知A,C,B在同一条直线上,△ACE,△BCF都是等边三角形,BE交CF于N,AF交CE于M,MG⊥CN,垂足为G.求证:CG=NG.【分析】先证△ACF与△ECB全等,得到∠AFC=∠ABE,再证△FMC≌△BNC 得到MC=MN,有条件MG垂直于NC而得到结论.【解答】证明:∵△ACE,△BCF都是等边三角形,∴AC=EC,FC=BC,∠ACE=∠BCF=60°,∴∠ECN=60°,∠BCE=∠ACF,∴△ACF≌△ECB,∴∠AFC=∠ABE,∵∠FCM=∠BCN=60°,CF=CB,∴△FMC≌△BNC,∴CM=CN,∵∠ECN=60°,∴△CNMN是等边三角形,∴CM=MN,∵MG⊥NC,∴GC=GN.【点评】本题考查了等边三角形的性质,通过两次全等得到MC=MN,通过MG垂直于NC得到结论.19.如图所示,在△ABC中,∠ABC=2∠C,AD为BC边上的高,延长AB到E 点,使BE=BD,过点D、E引直线交AC于点F,请判定AF与FC的数量关系,并证明之.【分析】根据等边对等角可得∠E=∠BDE,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ABC=2∠BDE,从而求出∠C=∠BDE,再求出∠C=∠CDF,然后根据等角对等边求出DF=FC,再根据等角的余角相等求出∠CAD=∠ADF,根据等角对等边求出DF=AF,即可得到AF=FC.【解答】解:AF=FC.理由如下:∵BE=BD,∴∠E=∠BDE,∵∠ABC=∠E+∠BDE=2∠BDE,∠ABC=2∠C,∴∠C=∠BDE,又∵∠BDE=∠CDF,∴∠C=∠CDF,∴DF=FC,∵AD为BC边上的高,∴∠CDF+∠ADF=∠ADC=90°,∠C+∠CAD=180°﹣90°=90°,∴∠CAD=∠ADF,∴DF=AF,∴AF=FC.【点评】本题考查了等腰三角形的判定与性质,等角的余角相等的性质,熟记性质与判定并准确识图是解题的关键.20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.【分析】可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在△BDM和△CDM1中,,∴△BDM≌△CDM1(SAS),得MD=M1D,∠MDB=∠M1DC,∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,∴∠NDM1=60°,在△MDN和△M1DN中,∵,∴△MDN≌△M1DN(SAS),∴MN=NM1,故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.【点评】本题主要考查了全等三角形的判定及性质问题,能够通过线段之间的转化进而求解一些简单的结论.21.已知如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且AE=(AB+AD),求证:∠B与∠D互补.【分析】可在AB上截取AF=AD,可得△ACF≌△ACD,得出∠AFC=∠D,再由线段之间的关系AE=(AB+AD)得出BC=CF,进而通过角之间的转化即可得出结论.【解答】证明:在AB上截取AF=AD,连接CF,∵AC平分∠BAD,∴∠BAC=∠CAD,又AC=AC,∴△ACF≌△ACD(SAS),∴AF=AD,∠AFC=∠D,∵AE=(AB+AD),∴EF=BE,又∵CE⊥AB,∴BC=FC,∴∠CFB=∠B,∴∠B+D=∠CFB+∠AFC=180°,即∠B与∠D互补.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练运用三角形的性质求解一些简单的计算、证明问题.22.如图,已知△ABC中,∠A=90°,AB=AC,∠1=∠2,CE⊥BD于E.求证:BD=2CE.【分析】延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.【解答】证明:如图,延长CE、BA交于F.∵CE⊥BD,∴∠BEF=∠BEC=90°,∴∠1=∠2,在△BEF和△BEC中,∴△BEF≌△BEC(ASA),∴EF=EC,∴CF=2CE,∵∠BAC=90°,∵CE⊥BD,∴∠ACF=∠1,在△ACF和△ABD中,∴△ACF≌△ABD(ASA),∴BD=CF,∴BD=2CE.【点评】本题考查全等三角形的判定与性质.解决本题主要是恰当添加辅助线,构造全等三角形,将所求问题转化为全等三角形内边间的关系来解决.23.AD是△ABC的角平分线,M是BC的中点,FM∥AD交AB的延长线于F,交AC于E.(1)求证:CE=BF;(2)探索线段CE与AB+AC之间的数量关系,并证明.【分析】(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【解答】(1)证明:延长CA交FM的平行线BG于G点,∠G=∠CAD、∠GBA=∠BAD∵AD平分∠BAC,∴AG=AB,∵FM∥AD∴∠F=∠BAD、∠FEA=∠DAC∵∠BAD=∠DAC,∴∠F=∠FEA,∴EA=FA,∴GE=BF,∴M为BC边的中点,∴BM=CM,∵EM∥GB,∴CE=GE,∴CE=BF;(2)AB+AC=2EC.证明:∵EA=FA、CE=BF,∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点评】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.24.如图,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°.判断线段AD与EF数量和位置关系.【分析】猜想:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,易证BD=CD,即可证明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可证明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解题.【解答】解:EF=2AD,EF⊥AD.证明:延长AD到M,使得AD=DM,连接MC,延长DA交EF于N,∴AD=DM,AM=2AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△MCD,(SAS)∴AB=MC,∠BAD=∠M,∵AB=AE,∴AE=MC,∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.在△AEF和△CMA中,,∴△AEF≌△CMA,∴EF=AM,∠CAM=∠F,∴EF=2AD;∵∠CAF=90°,∴∠CAM+∠FAN=90°,∵∠CAM=∠F,∴∠F+∠FAN=90°,∴∠ANF=90°,∴EF⊥AD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△MCD和△AEF≌△CMA是解题的关键.25.如图,四边形ABCD中,BC=DC,对角线AC平分∠BAD,且AB=21,AD=9,BC=DC=10,求AC的长.【分析】作辅助线构建直角三角形,求证△CFD≌△CEB,即可得DF=EB,即可求得DF,根据DF求CF,根据CF、AF求AC.【解答】解:过C作CE⊥AB,CF⊥AD,∴∠CEA=90°,∠CFD=90°,∵AC平分∠BAD,∴CF=CE(角平分线上的点到角的两边的距离相等),又∵BC=DC,∴△CFD≌△CEB(HL),∴DF=EB,同理可得△ACF≌△ACE,∴AF=AE,∴AD+DF=AB﹣BE,即9+DF=21﹣BE,。

沪科版初中数学目录之令狐文艳创作

沪科版初中数学目录之令狐文艳创作

沪科版初中数学目录令狐文艳备注:七年级上册:1-5七年级下册:6-11八年级上册:12-17八年级下册:18-22九年级上册:23-25九年级下册:26-28第1章有理数1.1 正数和负数1.2 数轴1.3 有理数的大小1.4 有理数的加减1.5 有理数的乘除1.6 有理数的乘方1.7 近似数第2章整式加减2.1 用字母表示数2.2 代数式2.3 整式加减第3章一次方程与方程组3.1 一元一次方程及其解法3.2 二元一次方程组3.3 消元解决方程组3.4 用一次方程(组)解决问题第4章直线与角4.1 多彩的几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角的表示与度量4.5 角的大小比较4.6 作线段与角第5章数据处理5.1 数据的收集5.2 数据的整理5.3 统计图的选择5.4 从图表中获取信息第6章实数6.1 平方根立方根6.2 实数第7章一一次不等与不等式组7.1 不等及其基本质7.2 一元次不等式7.3 一元次不等式组第8章整乘除与因分解8.1 幂的算8.2 整式法8.3平方差式与完全方公式8.4 整式法第12章平面直角坐标系12.1 平面上点的坐标12.2 图形在坐标系中的平移第13章一次函数13.1 函数13.2 一次函数-13.3 一次函数与一次方程、一次不等式13.4 二元一次方程组的图象解法第14章三角形中的边角关系14.1 三角形中的边角关系14.2 命题与证明第15章全等三角形15.1 全等三角形15.2 三角形全等的判定第16章轴对称图形与等腰三角形16.1 轴对称图形16.2 线段的垂直平分线16.3 等腰三角形16.4 角的平分线第17章勾股定理17.1 勾股定理17.2 勾股定理的逆定理第18章二次根式18.1 二次根式18.2 二次根式的运算――――()第19章一元二次方程19.1 一元二次方程19.2一元二次方程的解法19.3一元二次方程的根的判别式19.4一元二次方程的根与系数的关系19.5 一元二次方程的应用第20章四边形20.1 多边形内角和20.2平行四边形20.3 矩形菱形正方形20.4 梯形第21章据的集中势21.1 平均21.2 中位与众数21.3从部看总体第22章数据的离程度22.1极差22.2 方差标准差第23章二次函数反比例函数23.1 二次数23.2 二次数y=ax^2图象和性质23.3二次第25章解直角三角形25.1 锐角三角函数25.2 锐角三角函数值25.3 解直角三角形及其应用第26章圆26.1 旋转26.2 圆的对称性26.3 圆的确定26.4 圆周角26.5 直线与圆的位置关系26.6 三角形的内切圆26.7 圆与圆的位置关系26.8 正多边形与圆26.9 弧长与扇形面积第27章投影与视图27.1 投影27.2 三视图第28章概率初步28.1 随机事件28.2 等可能情形下的概率计算28.3 用频数估计概率。

动点问题题型方法归纳之令狐文艳创作

动点问题题型方法归纳之令狐文艳创作

动点问题题型方法归纳令狐文艳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.图 B图 B 图 提2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.DAB=60° 当面积最大时,四边形BCPQ 的面积最小。

中考数学易错之令狐文艳创作

中考数学易错之令狐文艳创作

1.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFCS =△2cm . 2 .5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( ) ③12ADFE S AF DE =四边形; ④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .44 如图,在四边形ABCD 中,动点P 从点A 开始沿C D的路径匀速前进到D 为止。

在这个过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是( )5如图,在正方形纸片ABCD 中,对角线AC 、折叠正方形纸片ABCD ,使AD 落在BD 上,点A 的点F 重合.展开后,折痕DE 分别交AB 、AC GF.下列结论:①∠AGD=112.5°;③S△AGD=S△OGD;④四边形AEFG 是菱形;⑤BE=2OG.其中正确结论的序号是.6 福娃们在一起探讨研究下面的题目:参考 DCE F GBtA . B.C .F 第20题图令狐文艳下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当 0x =时,0y m =>.晶晶:我发现图象的对称轴为12x =.欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.7 正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为( ) A .43B .34C .45D .358 一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①② B .①③ C .②③ D .①②③9.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )10 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A 、20cm B 、24cm C 、10cm π D 、30cm π11 在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )A 、b a c =+B 、b ac =C 、222b a c =+D 、22b a c ==12 古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,令狐文艳根据题意,可列方程( )A .2π(6010)2π(6010)68x +++=B .2π(60)2π6086x +⨯=C .2π(6010)62π(60)8x +⨯=+⨯D .2π(60)82π(60)6x x -⨯=+⨯13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ).A .(45)+cmB .9 cmC .45cmD .62cm14如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )15 如图,边长为a 的正ABC △内有一边长为b 的内接正DEF △,则AEF △的内切圆半径为.16 如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为A .⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫⎝⎛-5954, D .()31,-17 如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点P 依次落在点1232008P P P P ,,,的位置,则点2008P 的横坐标为.18 如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点A B C DOP Bty 045 90 Dt y 045 90 Aty45 90 Cy 045 90 (第12题)xy O1 1BA1P A O yx(第19题)P1o 2o 3o 4o C B D A第(18)题图①(第19令狐文艳是;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个..圆.分成面积相等的两部分,并说明这条直线经过的两个点是.19 课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天B .第4天C .第5天D .第6天20如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有A .2个B .3个C .4个D .5个21.有一个附有进出水管的容器,每单位时间进、出的水量 都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为升.A.15 B.16 C.17 D.1821.如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD=.A.1B.2C.21D.41 22.已知:如图所示,抛物线y=ax 2+bx+c 的对称轴为x=-1,与x 轴交于A 、B 两点,交y 轴于点C ,且OB=OC ,则下列结论正确的个数是.①b=2a ②a-b+c>-1 ③0<b 2-4ac<4 ④ac+1=bA.1个B.2个C.3个D.4个E DA CO23.已知:如图,∠ACB=90º,以AC 为直径的⊙O 交AB 于D 点,过D 作⊙O 的切线交BC 于E 点,EF ⊥AB 于F 点,连OE 交DC 于P ,则下列结论:其中正确的有.①BC=2DE ; ②OE ∥AB; ③DE=2PD ;④AC•DF =DE•CD .A.①②③B.①③④C.①②④D.①②③④24 已知:如图,直线MN 切⊙O 于点C ,AB 为⊙O 的直径,延长BA 交直线MN 于M 点,AE ⊥MN ,BF ⊥MN ,E 、F 分别为垂足,BF 交⊙O 于G ,连结AC 、BC ,过点C 作CD ⊥AB ,D 为垂足,连结OC 、CG. 下列结论:其中正确的有.①CD=CF=CE ; ②EF 2=4AE •BF; ③AD •DB=FG •FB ; ④MC •CF=MA •BF. A.①②③ B.②③④ C.①③④ D.①②③④25 如图,M 为⊙O 上的一点,⊙M 与⊙O 相交于A 、 B 两点,P 为⊙O 上任意一点,直线PA 、PB 分别交 ⊙M 于C 、D 两点,直线CD 交⊙O 于E 、F 两点,连结PE 、PF 、BC ,下列结论:其中正确的有.①PE=PF ; ②PE 2=PA ·PC;③EA ·EB=EC ·ED ;④rRBC PB =(其中R 、r 分别为⊙O 、⊙M 的半径).A.①②③B.①②④C.②④D.①②③④ 1 如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC绕点O 按顺时针方向旋转90,则图中由BB ',B A '',A C ',CB 围成的阴影部分的面积是.1 9 2D 3B 4B 5(1,4,5)6 C 7D 8 C9 C10 C11 A12 A13C14 C 15)a b - 16D17 2008 18 18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).19 C第(18)题图②• M A BF O GC DE N'(第18题)20 D 25 2π3令狐文艳。

中考数学动点问题专题讲解之令狐文艳创作

中考数学动点问题专题讲解之令狐文艳创作

动点及动图形的专题复习教案令狐文艳所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x=,求y关于x的函数解析式,并写出函数=,GP y的定义域(即自变量x的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验,6=x 是原方程的根,且符合题意.②GP=GH 时,2336312=+x ,解得0=x . 经检验,0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y .(1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解H M N G P O A B 图1 x y析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =, ∴11x y =, ∴x y 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式x y 1=成立.如 三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O与⊙A 相切时,A ED C B 图2 A CO 图8 H△AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x .此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x .此时,△AOC 的面积y =21274=-.综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

初中数学经典难题(含答案)之令狐文艳创作

初中数学经典难题(含答案)之令狐文艳创作

经典难题(一)令狐文艳1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1C 2、D 2分别是AA 1、BB 1、CC 1、DD 1求证:四边形A 2B 2C 2D 24、已知:如图,在四边形ABCD 中,ADAB 、CD 的中点,AD 、BC 求证:∠DEN =∠F .经典难题(二)1、已知:△ABC 中,H 外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 的两条直线,交圆于B 、C 及D 、E ,直线AGCEBMN 于P 、Q .求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN DE ,设CD 、EB 分别交MN 于P 、Q 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 侧作正方形ACDE 和正方形CBFG 求证:点P 到边AB 的距离等于经典难1、如图,四边形ABCD 为正方形,CD 相交于F .求证:CE =CF 2、如图,四边形线EC 交DA 延长线于求证:AE =AF 3、设P 是正方形平分∠DCE .求证:PA =PF 4、如图,PC 切圆O 线,AE 、AF 与直线=AD .(初三)经典难题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCDPDA .求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、设P 是边长为1的正△ABC 内任一点,l PC ,求证:3≤L <2.2、已知:P 是边长为1的正方形ABCDPB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB 3a ,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典难题(一)1、2、3、4、经典难题(二)1、2、3、4、E DC BA经典难题(三)1、2、3、 4、 经典难题(四)1、 2、 3、 4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =21S ABCD =S △DFC∴21 AE ﹒DQ = 21DG ﹒FC又∵AE=FC,∴DQ=DG,∴PD为∠APC的角平分线,∴∠DPA=∠DPC经典难题(五)1、2、3、3、4、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转基础练习一令狐文艳一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70° B.80° C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中AB.点,F是BA延长线上一点,AF=12(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?旋转基础练习二一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是() A.在图形上的每一点到旋转中心的距离相等B.图形上每一点转动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BDCE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个 B.2个 C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个 B.2个 C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55° B.125° C.70° D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A B C D E F G H I J K L M N O P Q R S T U V W X Y Z2.如图,在正方形ABCD中,作出关于P 点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.21085旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A .等边三角形B .等腰梯形C .平行四边形D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是()A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是()A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________.三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”)①等腰梯形是旋转对称图形,它有一个旋转角为180°;()②矩形是旋转对称图形,它有一个旋转角为180°;()(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A1B1C1D1沿EF折叠,使B1点落在A1D1边上的B处;沿BG折叠,使D1点落在D处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)连接BB,判断△B1BG的形状,并写出判断过程.3.如图,直线y=2x+2与x轴、y轴分别交于A、B两点,将△AO B绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)设过A、A1、B三点的函数解析式为y=ax2+bx+c,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形2.答案不唯一3.答案不唯一三、1.(1)①假②真(2)①③(3)①例如正五边形正十五边形②例如正十边正二十边形2.(1)证明:∵A1D1∥B1C1,∴∠A1BD=∠C1FB又∵四边形ABEF是由四边形A1B1EF翻折的,∴∠B1FE=∠EFB,同理可得:∠FBG=∠D1BG,∠C1FB,∠FBG=90°-∴∠EFB=90°-1212∠A1BD,∴∠EFB=∠FBG∴EF∥BG,∵EB∥FG∴四边形BEFG是平行四边形.(2)直角三角形,理由:连结BB,∵BD1∥FC1,∴∠BGF=∠D1BG,∴∠FGB=∠FBG同理可得:∠B1BF=∠FB1B.∴∠B1BG=90°,∴△B1BG是直角三角形3.解:(1)如右图所示(2)由题意知A、A1、B1三点的坐标分别是(-1,0),(0,1),(2,0)∴1042a b cca b c=-+⎧⎪=⎨⎪=++⎩解这个方程组得12121abc⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩∴所求五数解析式为y=-12x2+12x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是()A.y=1xB.y=2x+1 C.y=-2x+1 D.以上三种都不可能2.如图,已知矩形ABCD周长为56cm,O是对称线交点,点O到矩形两条邻边的距离之差等于8cm,则矩形边长中较长的一边等于()A.8cm B.22cm C.24cm D.11cm二、填空题1.如果点P(-3,1),那么点P(-3,1)关于原点的对称点P′的坐标是P′_______.2.写出函数y=-3x 与y=3x具有的一个共同性质________(用对称的观点写).三、解答题1.如图,在平面直角坐标系中,AOBACD(-3,1),B(-2,3),C(0,2),画出△ABC关于x轴对称的△A′B′C′,再画出△A′B′C′关于y轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB与x轴、y轴分别相交于A、B两点,且A(0,3),B(3,0),现将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1;(2)求出过线段A1B1中点的反比例函数解析式;(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B二、1.(3,-1) 2.答案不唯一参考答案:关于原点的中心对称图形.三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称.2.(1)如右图所示,连结A 1B 1;(2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=k x ,则y=-2.25x. (3)A 1B 1:设y=k 1x+b 1113033b k =-⎧⎨=-⎩1113k b =⎧⎨=-⎩ ∴y=x+3 ∵与A 1B 1直线平行且与y=2.25x相切的直线是A 1B 1旋转而得到的.∴所求的直线是y=x+3,下面证明y=x+3与y=-2.25x⇒x 2+3x+2.25=0,4×1×2.25=0,∴y=x+3与y=-2.25x相切. 旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是()2.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?。

相关文档
最新文档