《材料科学与工程基础》.
《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案第二章2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。
2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。
2-3.试计算N壳层内的最大电子数。
若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少?2-4.计算O壳层内的最大电子数。
并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。
2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。
2-6.按照杂化轨道理论,说明下列的键合形式:(1)CO2的分子键合(2)甲烷CH4的分子键合(3)乙烯C2H4的分子键合(4)水H2O的分子键合(5)苯环的分子键合(6)羰基中C、O间的原子键合2-7.影响离子化合物和共价化合物配位数的因素有那些?2-8.试解释表2-3-1中,原子键型与物性的关系?2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象?2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比?2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少?2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子?2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?2-15.铁的单位晶胞为立方体,晶格常数a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。
《材料科学与工程基础》课后习题答案

材料科学与工程基础课后习题答案习题1题目:什么是材料的物理性质?举例说明。
解答:材料的物理性质是指材料在没有发生化学变化的情况下所表现出的性质。
这些性质可以通过物理测试来测量和确定。
举例来说,导电性和热导性就是材料的物理性质之一。
例如,金属材料具有良好的导电性和热导性,能够传递电流和热量。
而绝缘材料则具有较低的导电性和热导性,不易传递电流和热量。
习题2题目:简述晶体结构和晶体缺陷的区别。
解答:晶体结构是指材料中原子或离子的排列方式和规律。
晶体结构可以分为晶格、晶胞和晶体点阵等几个层次。
晶格是指晶体内部原子或离子排列的周期性重复性。
晶胞是晶格的一个最小重复单元,由晶体中少数几个原子或离子构成。
晶体点阵是指晶格的三维空间排列方式。
晶体缺陷是指晶体结构中存在的瑕疵或缺陷。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷。
点缺陷是指晶体结构中原子或离子的位置发生了失序或替代,造成了空位、间隙原子、杂质原子等。
线缺陷是指晶体结构中存在了位错或脆性裂纹等缺陷。
面缺陷是指晶体结构中存在了晶界或孪晶等缺陷。
习题3题目:为什么变形会引起材料性能的改变?解答:变形是指材料在外力作用下发生的形状和大小的改变。
变形可以导致材料性能的改变主要有以下几个原因:1.晶体结构改变:变形会导致晶体结构中原子或离子的位置发生移动和重排,从而改变了晶体的结构和性质。
2.结晶颗粒的尺寸和形状改变:变形会导致晶体中晶界的移动和晶体颗粒的形状改变,这会影响材料的力学性能和导电性能等。
3.动态再结晶:变形过程中,材料中原来存在的缺陷和结构不完善的区域可能会发生动态再结晶,从而改善了材料的性能。
4.内应力的释放:变形会导致材料内部产生应力,这些应力可能会引起材料的开裂、断裂和强度变化等。
综上所述,变形会引起材料性能的改变是由于晶体结构、结晶颗粒、动态再结晶和内应力等因素的综合作用所导致的。
习题4题目:什么是材料的力学性能?举例说明。
解答:材料的力学性能是指材料在力学加载下所表现出的性能。
《材料科学与工程基础》题集

《材料科学与工程基础》题集大题一:选择题1.下列哪一项是材料的基本属性?A. 密度B. 颜色C. 形状D. 体积2.材料的力学性能主要包括哪一项?A. 导电性B. 耐腐蚀性C. 强度D. 透明度3.下列哪一项不是金属材料的常见类型?A. 钢铁B. 铝合金C. 陶瓷D. 铜合金4.材料的硬度是指其抵抗什么的能力?A. 拉伸B. 压缩C. 弯曲D. 刻划5.下列哪一项是热塑性材料的特性?A. 在加热后不能变形B. 在加热后可以永久变形C. 在冷却后可以恢复原形D. 在任何温度下都不易变形6.材料的韧性是指其在受力时什么的能力?A. 易碎B. 易弯曲C. 吸收能量而不破裂D. 迅速恢复原形7.下列哪一项是陶瓷材料的主要成分?A. 金属B. 塑料C. 无机非金属D. 有机物8.复合材料是由哪两种或多种材料组合而成的?A. 同一种材料的不同形态B. 不同性质的材料C. 相同性质的材料D. 任意两种材料9.下列哪一项不是高分子材料的特性?A. 高强度B. 高韧性C. 低密度D. 低耐温性10.材料的疲劳是指其在什么条件下性能逐渐降低的现象?A. 持续受力B. 持续加热C. 持续冷却D. 持续暴露在潮湿环境中大题二:填空题1.材料的密度是指单位体积内材料的______。
2.材料的导电性是指材料传导______的能力。
3.金属材料的晶体结构常见的有______、体心立方和面心立方。
4.陶瓷材料因其______、高硬度和高耐温性而被广泛应用于高温和腐蚀环境。
5.复合材料的优点包括高强度、高刚性和良好的______。
6.高分子材料的分子结构特点是具有长链状的______结构。
7.材料的疲劳强度是指材料在______作用下抵抗破坏的能力。
大题三:判断题1.材料的力学性能只包括强度和硬度。
()2.金属材料都是良好的导体。
()3.陶瓷材料的主要成分是金属。
()4.复合材料的性能总是优于其单一组分的性能。
()5.高分子材料的耐温性一般较低。
《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。
它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。
材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。
随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。
工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。
2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。
材料的结构包括原子、晶体和晶界等方面的组成和排列方式。
而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。
材料的结构直接决定了材料的性能。
例如,金属的结晶结构决定了金属的塑性和导电性。
硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。
因此,通过对材料的结构进行了解,可以预测和改变材料的性能。
3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。
不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。
例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。
聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。
陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。
因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。
4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。
它包括了物理、化学、力学、热学、电学等方面的特性。
测量材料的特性需要使用特定的实验方法和设备。
例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。
材料的强度可以通过拉伸试验或压缩试验来测量。
材料的导电性可以通过四探针法或霍尔效应进行测量。
通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。
材料科学与工程基础第二版考试必备宝典

材料科学与⼯程基础第⼆版考试必备宝典第1章绪论1.材料科学与⼯程的四个基本要素解:制备与加⼯、组成与结构、性能与应⽤、材料的设计与应⽤2.⾦属﹑⽆机⾮⾦属材料﹑⾼分⼦材料的基本特性解:①⾦属材料的基本特性:a、⾦属键;b、常温下固体,熔点较⾼;c、⾦属不透明,具有光泽;d、纯⾦属范性⼤、展性、延性⼤;e、强度较⾼;f、导热性、导电性好;g、多数⾦属在空⽓中易氧化。
②⽆机⾮⾦属材料的基本性能:a、离⼦键、共价键及其混合键;b、硬⽽脆;c、熔点⾼、耐⾼温,抗氧化;d、导热性与导电性差;e、耐化学腐蚀性好;f、耐磨损;g、成型⽅式:粉末制坯、烧结成型。
③⾼分⼦材料的基本特性:a、共价键,部分范德华键;b、分⼦量⼤,⽆明显熔点,有玻璃化转变温度(Tg)与粘流温度(Tf);c、⼒学状态有三态:玻璃态、⾼弹态与粘流态;d、质量轻,⽐重⼩;e、绝缘性好;f、优越的化学稳定性;g、成型⽅法较多。
第2章物质结构基础1. 在多电⼦的原⼦中,核外电⼦的排布应遵循哪些原则?解:泡利不相容原理、能量最低原理、洪特规则2.电离能及其影响电离能的因素解:电离能:从孤⽴原⼦中,去除束缚最弱的电⼦所需外加的能量。
影响因素:①同⼀周期,核电荷增⼤,原⼦半径减⼩,电离能增⼤;②同⼀族,原⼦半径增⼤,电离能减⼩;③电⼦构型的影响,惰性⽓体;⾮⾦属;过渡⾦属;碱⾦属;3.混合键合实例解:⽯墨:同⼀层碳原⼦之间以共价键结合,层与层之间以范德华⼒结合; ⾼分⼦:同⼀条链原⼦之间以共价键结合,链与链之间以范德华⼒结合。
4、将离⼦键,共价键,⾦属键按有⽆⽅向性进⾏分类,简单说明理由有⽅向性:共价键⽆⽅向性:离⼦键,⾦属键③⾦属键: 正离⼦排列成有序晶格,每个原⼦尽可能同更多的原⼦相结合, 形成低能量的密堆结构,正离⼦之间相对位置的改变不破坏电⼦与正离⼦间的结合⼒,⽆饱与性⼜⽆⽅向性。
②共价键:共⽤电⼦云最⼤重叠,有⽅向性③离⼦键:正负离⼦相间排列,构成三维晶体结构,⽆⽅向性与饱与性5、简述离⼦键,共价键,⾦属键的区别6、为什么共价键材料密度通常要⼩于离⼦键或⾦属键材料⾦属密度⾼的两个原因:第⼀,⾦属有较⾼的相对原⼦质量。
本科课程《材料科学与工程基础》教学大纲 (1)

四川大学本科课程《材料科学与工程基础》教学大纲一、课程基本信息课程名称(中、英文):《材料科学与工程基础》(FUNDAMENTALS OF MATERIALS SCIENCE AND ENGINEERING)课程号(代码):30014530课程类别:专业基础课学时/学分:48 /3先修课程:大学化学、大学物理、物理化学适用专业:高分子材料与工程等二级学科材料类专业开课时间:大学二年级下期二、课程的目的及任务材料科学与工程是二十世纪六十年代初期创立的研究材料共性规律的一门学科,其研究内容涉及金属、无机非金属和有机高分子等材料的成分、结构、加工同材料性能及材料应用之间的相互关系。
材料科学、材料工业和高新技术的发展要求高分子材料与工程等二级学科材料类专业的学生必须同时具备“大材料”基础和“中材料”专业的宽厚知识结构。
本课程是材料类专业的学科基础课程,是联系基础课与专业课的桥梁。
本课程从材料科学与工程的“四要素”出发,采用“集成化”的模式,详细讲授金属材料、无机非金属材料、高分子材料、复合材料等各种材料的共性规律及个性特征。
使学生建立材料制备/加工——组成/结构——性能---应用关系的“大材料”整体概念,从原理上认识高分子材料等各种材料的基本属性,及其在材料领域中的地位和作用。
为以后二级学科“中材料”专业课程的学习、材料设计、以及材料的应用等奠定良好基础。
本课程采用中文教材与英文原版教材相结合,实施“双语”教学。
使学生通过本课程的学习,熟悉材料科学与工程领域的主要英文专业词汇,提高对英文教材的阅读理解能力。
三、课程的教学内容、要点及学时分配(以红字方式注明重点难点)第一章绪论(1学时)本章概要:简要介绍材料的定义及分类,材料科学与工程的基本内容。
使学生了解本课程的学习内容和学习方法。
讲授要点:材料的定义、分类材料科学与工程的定义、性质、重要性(举例)课程学习的目的、方法、要求第二章材料结构基础(15学时)本章概要:按照从微观到宏观、从内部到表面、从静态到动态、从单组分到多组分的顺序,阐述原子电子结构、原子间相互作用和结合方式,固体内部和表面原子的空间排列状态、聚集态结构的有序性、无序性和转变规律及相互关系。
顾宜《材料科学与工程基础》课后题答案

顾宜《材料科学与工程基础》课后题答案第一章:引言1.1 材料科学与工程基础的重要性材料科学与工程基础是现代工程领域不可或缺的一门基础课程。
它包括了材料科学与工程学科的基本原理和方法,为后续学习和研究提供了必要的基础知识。
材料是任何工程的基础,它在各个领域中都扮演着重要角色,如机械工程、电子工程、航空航天工程等。
因此,熟悉材料的结构、性质和应用对于工程师来说至关重要。
1.2 材料科学与工程基础的学习目标材料科学与工程基础的学习目标如下: - 理解材料的基本概念和分类方法; - 掌握材料制备、表征和性能分析的基本技术; - 理解不同材料的特性和应用; - 开发解决材料工程问题的能力。
第二章:晶体结构与晶体缺陷2.1 晶体的结构晶体是由原子、离子或分子按照一定的排列方式组成的长程有序固体结构。
晶体的结构可以通过晶体的晶胞来描述,晶胞是最小的重复单元。
2.2 晶体的缺陷晶体的缺陷指的是在晶体结构中存在的不完整或不规则的区域。
晶体的缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。
点缺陷包括空位、插入原子和替代原子等。
线缺陷包括位错和脚位错。
面缺陷包括晶界和层错。
第三章:物理性能与力学性能3.1 物理性能物理性能是指材料的一些基本物理特性,如密度、热导率、电导率等。
物理性能的好坏对材料的应用和工程设计具有重要影响。
3.2 力学性能力学性能是指材料在力学作用下的表现。
常见的力学性能包括强度、硬度、韧性、可塑性等。
力学性能的好坏决定了材料在工程中的使用范围和耐久性。
第四章:金属材料4.1 金属的结构与特性金属是指电子云密度较大、以金属键连接的材料。
金属的结构特点是具有密堆结构和离域电子特性。
4.2 金属的物理性能与力学性能金属材料具有良好的导电性、导热性和延展性,对磨损和腐蚀有较好的抵抗能力。
金属材料的力学性能受材料的组织和处理方式的影响。
第五章:陶瓷材料与玻璃材料5.1 陶瓷材料的分类与特性陶瓷材料是以非金属元素为主要成分的材料,分为晶体陶瓷和非晶态陶瓷两大类。
材料科学与工程基础学习心得[5篇范例]
![材料科学与工程基础学习心得[5篇范例]](https://img.taocdn.com/s3/m/952d1310cdbff121dd36a32d7375a417866fc191.png)
材料科学与工程基础学习心得[5篇范例]第一篇:材料科学与工程基础学习心得《材料科学与工程基础》课程研修体会《材料科学与工程基础》是材料专业首要的专业基础课,是学生全面进入专业领域、从基础课到专业课的过渡课程。
它概念多、学科知识面宽、应用基础理论广,既包括基本原理,又涉及工程实践应用,无论是学生学起来,还是教师教起来都相当有难度。
通过学习顾宜教授及其教学团队讲授的《材料科学与工程基础》课程,使我更加深入的了解本课程的教课规律,熟悉了本课程的重点难点知识,对《材料科学与工程基础》油了更深入的了解。
要在有限的学时内使学生能够掌握基本内容,讲授内容要有详有略,有舍有取,对基本概念应讲透,基本原理和方法应精讲,做到重点突出,详略得体。
在本课程中,根据材料成型及控制工程(铸造专业)的教学计划和《材料科学与工程基础》教学大纲,重点讲授晶体学基础、晶体缺陷、相图、扩散及相变等基本知识,对其它内容,例如凝固、固体材料的结构、材料的表面与界面、金属材料的变形与再结晶、材料的变形、高分子材料的结构、固体材料的电子结构与物理性能、材料概论等知识,采用引导自学或简单介绍的方法,让学生在很短的时间内了解相关知识。
部分内容在材料物理专业的其它课程中会做详细讲解。
由于学时不断减少,不能面面俱到,要做到重点突出,兼顾各知识点。
《材料科学基础》各部分内容之间是紧密联系的,因此在上课之初一定要把该门课程的各部分内容让学生有一个整体认识,并说明各部分内容之间的相互关联。
在教学过程中,从一个教学内容转到下一个教学内容时,一定要做好两部分内容之间的衔接工作,因为它起到贯通内容完整性的重要作用。
例如在讲解晶体缺陷时,一定要求学生对晶体结构知识全面掌握,而在讲解扩散与相变时,要求学生对晶体缺陷知识熟练掌握。
在授课进度安排上,一定要保证前一部分内容已经熟练掌握,才能安排后续相关内容的学习。
为了解决这个《材料科学与工程基础》课程内容多,概念多,理论性强的问题,除了授课时要突出重点,讲清难点,课外多做习题外,更新教学手段,采取有效的教学方法,促进学生理解与记忆,帮助学生学习,将是重要的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料科学与工程基础》
课程讲授要点
3-5 复合材料组成与结构(45分钟,1学时)
3-5-1 复合材料的定义及分类
定义:组成、结构、制备、性能四方面特征
分类:重点介绍现代复合材料体系
3-5-2 复合材料的组成及特性
组成:基体、增强体(或功能体)、界面相
PMC、MMC、CMC、C/C及无机胶凝复合材料的基本组成
特性:一般特性和性能特点
3-5-3 复合材料的结构
常见结构、典型结构、“连通性”概念
3-5-4 复合材料的界面
界面的形成过程:三个阶段、界面的相互置换
界面结构及性能特点:相当体积分数的界面相、“梯度”性能、界面缺陷、残余应力界面相的功用:力的传递、力的分配、破坏过程中应力的再分配组合力学性能和复合
效应产生的根源所在。
界面破坏机制:5种基本破坏形式、组合破坏机制
界面理论:5种基本界面理论、界面设计与控制的概念
界面处理:玻纤、碳纤、有机纤维的一般表面处理方法、偶联剂处理的作用机理
4-1 复合材料的性能(90分钟、2学时)
4-7-1 复合材料性质的复合效应
1. 复合材料各组元(相)不同功用:基体、增强体、功能体、界面相
2. 复合效应
混合效应(组分效应):适合于材料固有性质,对材料界面、缺陷、结构局部挠动
等不敏感,表现为各种形式的混合律。
混合律公式:材料性能取决于材料组成(体积分数或重量
分数)
协同效应:包括界面效应、尺寸效应、量子尺寸效应、乘积效应、系统效应、混杂效应、诱导效应等。
适合于材料的传递性质(力、声、光、电、磁)不
仅取决于材料的组成,更取决于材料的结构、界面性质、缺陷局部挠动、
工艺因素等,复合材料的本质特征
重点:几何尺寸效应:临界长度Ic、临界长径比Ic/d公式的推导、概念及含义界面效应:二次复合律公式的推导、相互作用参数K的含义
4-7-2 复合材料的力学性能(90分钟、2学时)
1. 单向板的力学性能
纵向模量公式及推导
横向模量公式及推导
剪切模量公式及推导
泊松比公式及推导
Halpin-Tsai公式的内涵
纵向拉伸强度计算式、纵向拉伸破坏的三种模式
纵向压缩破坏的四种模式
横向拉伸破坏的三种模式
2. 冲击韧性
冲击强度、断裂韧性(GC)、冲击后压缩强度(CAI)
3. 疲劳性能
S-N曲线的含义
4. 纳米复合材料
纳米复合材料与常规复合材料的区别和特点
分子复合材料、无机超分子复合材料、原位复合等几个基本概念
4-8 纳米材料及效应(45分钟、1学时)
纳米材料的概念:同时具有纳米尺寸和纳米效应
纳米材料的三个层次:纳米效应、纳米固体、纳米组装体系
纳米结构单元:团簇、纳米微粒、人造原子、纳米管(棒、丝)
纳米材料的基本物理效应:①小尺寸效应②表面效应③量子尺寸效应
④宏观量子隧道效应
纳米材料奇特的物理化学性能
纳米材料的应用
第5章材料的制备与成型加工
5-1 材料的制备(90分钟,2学时)
5-1-1 金属材料的制备
铁的制备原理及制备方法
钢的制备原理及制备方法
铜的制备原理及制备方法
铅的制备原理及制备方法
5-1-2 无机非金属材料的制备
陶瓷的制备原理及制备方法
玻璃的制备原理及制备方法
水泥的制备原理及制备方法
耐火材料的制备原理及制备方法
5-1-3 高分子材料的制备
聚合物的合成:聚合机理及分类、聚合物合成工业实施方法及比较
聚合物的分离(单体及溶剂的回收)
聚合物的后处理(洗涤、干燥、造粒等)
5-2 材料的成型加工性(90分钟,2学时)
金属材料的铸造性:流动性
金属材料的可锻性:变形性
金属材料的可焊性:可焊性概念、可焊性评价
金属材料的切削加工性:综合力学性能指标
金属材料的粉末冶金加工工艺
聚合物的熔熵特性:聚集态转变
聚合物的流动特性:粘弹性流体
聚合物加工过程中的结构变化:结晶、取向、降解、交联
聚合物加工的基本工艺过程:配料、初混、混炼、造粒等
热塑性聚合物的成型方法:挤压成型、注射成型、压制成型、中空吹塑成型、压延成
型、热成型、熔融纺丝
热固性聚合物的成型方法:高分子溶液加工成型、溶液纺丝、溶液流延成膜。