沪科版八年级上册数学习题课件:第14章达标测试题
沪科版八年级数学上《第14章全等三角形》达标测试卷(含答案)

第十四章达标测试卷一、选择题(每题3分,共30分)1.在△ABC和△A′B′C′中,∠C=∠C′,且b-a=b′-a′,b+a=b′+a′,则这两个三角形()A.不一定全等B.不全等C.全等,根据“ASA” D.全等,根据“SAS”2.下列结论不正确的是()A.两个锐角对应相等的两个直角三角形全等B.一锐角和斜边对应相等的两个直角三角形全等C.一直角边和一锐角对应相等的两个直角三角形全等D.两条直角边对应相等的两个直角三角形全等3.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠F.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组(第3题) (第4题) (第5题)4.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为() A.20°B.30°C.35°D.40°5.如图,已知∠1=∠2,AC=AD,增加下列条件中的一个:①AB=AE;②BC =ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有() A.4个B.3个C.2个D.1个6.如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等B.互补C.互补或相等D.不相等7.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5 cm,DE=1.7 cm,则BE等于()A.1 cm B.0.8 cm C.4.2 cm D.1.5 cm(第7题)(第8题)(第9题) (第10题)8.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个9.如图,已知AC和BD相交于O点,AD∥BC,AD=BC,过点O任作一条直线分别交AD,BC于点E,F,则下列结论:①OA=OC;②OE=OF;③AE =CF;④OB=OD,其中成立的个数是()A.1 B.2 C.3 D.410.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于N,∠E=∠F=90°,∠EAC=∠F AB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△ACN≌△ABM.其中正确的结论是()A.①③④B.②③④C.①②③D.①②④二、填空题(每题3分,共12分)11.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.(第11题) (第12题) (第13题) (第14题)12.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是____________.(不添加辅助线).13.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.14.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为____________.三、解答题(15,16题每题5分,17~20题每题6分,其余每题8分,共58分) 15.如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.(第15题) 16.如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.(第16题)17.如图,△AB C和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.(第17题)18.如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.(1)求证:△ABE≌△CDA;(2)若∠DAC=40°,求∠EAC的度数.(第18题)19.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.(第19题)20.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.(第20题) 21.如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,有如下三个关系式:①AE∥DF,②AB=CD,③CE=BF.(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果⊗,⊗,那么⊗”);(2)选择(1)中你写出的一个命题,说明它正确的理由.(第21题)22.在平面直角坐标系中,A点的坐标为(0,4),B点的坐标为(3,0),C(a,b)为平面直角坐标系内一点,若∠ABC=90°,且BA=BC,求ab的值.23.(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.(第23题)答案一、1.D2.A点拨:首先要明确各选项提供的已知条件,然后根据直角三角形全等的判定方法逐个验证,与之符合的是正确的,反之,是错误的.3.C 4.B5.B点拨:∵∠1=∠2,∴∠BAC=∠EAD,又已知AC=AD,添加①AB =AE,就可以用SAS判定△ABC≌△AED;添加③∠C=∠D,就可以用ASA判定△ABC≌△AED;添加④∠B=∠E,就可以用AAS判定△ABC≌△AED,故选B.6.C点拨:第一种情况:当两个三角形全等时,是相等关系,第二种情况:如图,在△ABC和△ABC′中,AC=AC′,CD=C′D′,∠ADC=∠AD′C′=90°,在Rt△ACD和Rt△AC′D′中,AC=AC′,CD=C′D′,∴Rt△A CD≌Rt△AC′D′(HL),∴∠CAD=∠C′AD′,此时,∠CAB+∠C′AB=180°,是互补关系.(第6题)7.B点拨:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠CAD+∠ACD=90°.∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠BCE=∠CAD.又∵BC=CA,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD.∵AD=2.5 cm,DE=1.7 cm,∴BE=CD=CE-DE=2.5-1.7=0.8(cm).8.C点拨:根据全等三角形的判定得出点P的位置即可.要使△ABP与△ABC 全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个.9.D点拨:∵AD∥BC,∴∠A=∠C,∠D=∠B.又∵AD=CB,∴△ADO ≌△CBO,∴OA=OC,OD=OB.又∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,AE=CF.10.A 点拨:∵∠EAC =∠F AB ,∴∠EAB =∠F AC .又∵∠E =∠F =90°,AE =AF ,∴△ABE ≌△ACF .∴∠B =∠C ,BE =CF .由△ABE ≌△ACF ,知∠B =∠C ,AC =AB .又∵∠CAB =∠BAC ,∴△ACN ≌△ABM ;由于条件不足,无法证得②CD =DN ;故正确的结论有①③④.故选A.二、11.60°12.DE =DF (答案不唯一)13.3 点拨:如图,由OP 平分∠MON ,PE ⊥OM ,PF ⊥ON ,得∠1=∠2,∠PEO =∠PFO =90°,又OP =OP ,可证得△POE ≌△POF (AAS ). 由OA =OB ,∠1=∠2,OP =OP 证得△AOP ≌△BOP (SAS ),从而得出P A=PB .又∵∠PEA =∠PFB =90°,PE =PF ,∴Rt △P AE ≌Rt △PBF(HL ).∴图中共有3对全等三角形.(第13题)14.5三、15.证明:∵AB ∥DE ,∴∠B =∠DEF .∵BE =CF ,∴BC =EF .∵∠ACB =∠F ,∴△ABC ≌△DEF .16.证明:∵∠1=∠2,∴∠1+∠EBD =∠EBD +∠2,∴∠ABD =∠EBC .在△ABD 和△EBC 中,⎩⎨⎧∠ABD =∠EBC ,∠3=∠4,AD =EC ,∴△ABD ≌△EBC .∴AB =BE .17.证明:∵△ABC 和△ECD 都是等腰直角三角形且∠DCE =∠ACB =90°,∴AC =BC ,CD =CE ,∠DCE -∠ACD =∠ACB -∠ACD ,即∠ECA =∠DCB .在△ACE 与△BCD 中,⎩⎨⎧CE =CD ,∠ECA =∠DCB ,AC =BC ,∴△ACE ≌△BCD .∴BD =AE .18.(1)证明:在梯形ABCD 中,∵AD ∥BC ,AB =CD ,∴∠ABE =∠BAD ,∠BAD =∠CDA ,∴∠ABE =∠CDA.在△ABE 和△CDA 中,⎩⎨⎧AB =CD ,∠ABE =∠CDA ,BE =DA ,∴△ABE ≌△CDA .(2)解:由(1)得:∠AEB =∠CAD ,AE =AC ,∴∠AEB =∠ACE .∵∠DAC =40°,∴∠AEB =∠ACE =40°.∴∠EAC =180°-40°-40°=100°.19.证明:∵AD ⊥BC ,∴∠BDF =∠ADC =90°.在Rt △BDF 和Rt △ADC 中,⎩⎨⎧BF =AC ,FD =CD ,∴Rt △BDF ≌Rt △A DC . ∴∠BFD =∠C .∵∠BFD =∠AFE ,∠C +∠DAC =90°,∴∠AFE +∠DAC =90°.∴∠AEF =90°.∴BE ⊥AC .20.(1) 证明:∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,∴CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎨⎧CB =CF ,∠BCD =∠FCE CD =CE ,,∴△BCD ≌△FCE (SAS ).(2)解:由(1)可知△BCD ≌△FCE ,∴∠BDC =∠E .∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.21.解:(1)命题1:如果①,②,那么③;命题2:如果①,③,那么②.(2)命题1的证明:∵①AE ∥DF ,∴∠A =∠D .∵②AB =CD ,∴AB +BC =CD +BC ,即AC =DB .在△AEC 和△DFB 中,∵∠E =∠F ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (AAS ).∴③CE =BF (全等三角形对应边相等).22.解:当点C 在x 轴上方时,如图①,作CD ⊥x 轴于D .∵A 点的坐标为(0,4),B 点的坐标为(3,0),∴OA =4,OB =3. ∵∠ABC =90°,∴∠ABO +∠CBD =90°.又∵∠ABO +∠BAO =90°,∴∠BAO =∠CBD ,在△ABO 和△BCD 中,⎩⎨⎧∠BAO =∠CBD ,∠AOB =∠BDC ,AB =BC ,∴△ABO ≌△BCD (AAS ),∴BD =OA =4,CD =OB =3,∴C 点的坐标为(7,3),∴ab =7×3=21.当点C 在x 轴下方时,如图②,作CE ⊥x 轴于E ,易证得△ABO≌△BCE,∴BE=OA=4,CE=OB=3,∴OE=4-3=1,∴C点的坐标为(-1,-3),∴ab=(-1)×(-3)=3.(第22题)23.(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(2)解:DE=BD+CE成立.证明∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠EAC=180°-α.∴∠DBA=∠EAC.∵∠BDA=∠AEC=α,AB=CA,∴△ADB≌△CEA.∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)解:△DEF为等边三角形.由(2)知,△ADB≌△CEA, BD=AE,∠DBA=∠CAE.∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF. ∴∠DBF=∠EAF.∵BF=AF,∴△DBF≌△EAF.∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°.∴△DEF为等边三角形.。
沪科版八年级数学上册第14章测试题及答案

沪科版八年级数学上册第14章测试题及答案14.1 全等三角形1. 在下列各组图形是全等的图形是( )2.下列命题:①形状相同的三角形是全等三角形;②面积相等的三角形是全等三角形;③全等三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是全等三角形.其中正确的命题有( ) A.1个 B.2个 C.3个 D.4个3. 如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A.20° B.30° C.35° D.40°4. 如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5 B.4 C.3 D.25. 如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论错误的是( )A.△ABC≌△DEF B.∠DEF=90° C.AC=DF D.EC=CF6. 如图,将△ABC沿BC所在的直线平移得到△A′B′C′,则∠C′的对应角为________,AC的对应边为_________.7. 如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_______.8. 如图,已知△ABE与△ADC全等,∠1=∠2,∠B=∠C,指出全等三角形的中的对应边和另外一组对应角.9. 如图,△ABC≌△DEF,若AB=DE,∠C=70°,∠E=50°,AC=2 cm,求∠D的度数及DF的长.10. 如图,△ABC≌△DEF,∠B=30°,∠A=50°,BF=2,求∠DFE的度数与EC的长.11. 如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数.参考答案1.C2.B3. B4. A5. D6.∠ACB A′C′7.130°8.解:对应边:AB 与AC ,AE 与AD ,BE 与CD ;对应角:∠BAE 与∠CAD.9.解:∵△ABC ≌△DEF ,∴∠B =∠E ,∠A =∠D ,DF =AC =2 cm.∵∠E =50°,∠C =70°,∴∠A =180°-∠B -∠C =60°,∴∠D =∠A =60°. 10.解:∵∠B +∠A +∠ACB =180°,∴∠ACB =180°-∠A -∠B =180°-30°-50°=100°. 又∵△ABC ≌△DEF ,∴∠DFE =∠ACB =100°,∴EF =CB , ∴EF -CF =CB -CF ,即CE =BF =2.11. 解:∵△ABC ≌△ADE ,∴∠B =∠D ,∠BAC =∠DAE .又∠BAD =∠BAC -∠CAD ,∠CAE =∠DAE -∠CAD ,∴∠BAD =∠CAE .∵∠DAC =60°,∠BAE =100°, ∴∠BAD =12(∠BAE -∠DAC )=20°.∵在△ABG 和△FDG 中,∠B =∠D ,∠AGB =∠FGD ,∴∠DFB =∠BAD =20°.14.2 三角形全等的判定1.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完 全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .AASD .ASA2.方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形.如图, 在4×4的方格纸中,有两个格点三角形△ABC ,△DEF ,下列说法成立的是( ) A .∠BCA =∠EDF B .∠BCA =∠EFDC .∠BAC =∠EFDD .这两个三角形中,没有相等的角3.如图,△ABD≌△CDB,下面四个结论不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列判断错误..的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.在△ABC和△A’B’C’中,已知∠A=∠A’,AB=A’B’,在下面判断错误的是( )A.若添加条件AC=A’C’,则△ABC≌△A’B’C’B.若添加条件BC=B’C’,则△ABC≌△A’B’C’C.若添加条件∠B=∠B’,则△ABC≌△A’B’C’D.若添加条件∠C=∠C’,则△ABC≌△A’B’C’8.如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F9.如图,在△ABC中,∠ABC=45°,AC=8 cm,F是高AD和BE的交点,则BF的长是()A.4 cm B.6 cm C.8 cm D.9 cm10.在如图的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1 B.2 C.3 D.411.如图,有一块三角形的镜子,小明不小心弄破裂成1,2两块,现需配成同样大小的一块.为了方便起见,需带上块.其理由是.12.如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD, 还需添加一个条件是__________.(填上你认为适当的一个条件即可)13.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,则添加的条件是.14.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为点A,B.试说明AD+AB=BE.15.如图,E,A,C三点共线,AB∥CD,∠B=∠E,AC=CD.求证:BC=ED.参考答案1.D2.B3.A4.B5.D6.C7.B8.C.9.C. 10.C11.1 利用SAS得出全等三角形,即可配成与原来同样大小的一块12.BC=BD13.AE=AB.14.解:∵∠DCE=90°(已知),∴∠ECB+∠ACD=90°.∵EB⊥AC,∴∠E+∠ECB=90°(直角三角形两锐角互余).∴∠ACD=∠E(同角的余角相等).∵AD⊥AC,BE⊥AC(已知),∴∠A=∠EBC=90°(垂直的定义).在Rt△ACD和Rt△BEC中,,∴Rt△ACD≌Rt△BEC(AAS).∴AD=B C,AC=BE(全等三角形的对应边相等),∴AD+AB=BC+AB=AC.∴AD+AB=BE.15.证明:∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,∠BAC=∠ECD,∠B=∠E,AC=CD.∴△ACB≌△CED(AAS),∴BC=ED.。
2022-2023学年沪科版八年级数学上册《第14章全等三角形》同步基础达标训练(附答案)

2022-2023学年沪科版八年级数学上册《第14章全等三角形》同步基础达标训练(附答案)一.选择题1.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个2.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.3.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,∠B=30°,则BC=()A.7B.8C.9D.10二.填空题5.在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为.6.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.7.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B (0,﹣1),点C在第四象限,则点C的坐标是.8.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为.9.三角形ABC中,AD是中线,且AB=4,AC=6,求AD的取值范围是.10.等腰三角形腰上的高与腰的夹角为47°,则这个三角形的顶角为度.11.如图l1,l2,l3表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有处.12.一个等腰三角形的一个角为100°,则这个等腰三角形的底角的度数是.13.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是.三.解答题14.如图,∠A=∠B=90°,E是线段AB上一点,且AE=BC,∠1=∠2.(1)求证:△ADE≌△BEC;(2)若CD=10,求△DEC的面积.15.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN 于点P.(1)求证:△ABM≌△BCN.(2)求∠APN的度数.16.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.17.如图,AC=DC,AB=DE,CB=CE.求证:∠1=∠2.18.如图,OC平分∠MON,A、B分别为OM、ON上的点,且BO>AO,AC=BC,求证:∠OAC+∠OBC=180°.19.如图,在△ABC中,∠ACB=90°,AE平分∠CAB,CD⊥AB,AE、CD相交于点F.(1)若∠DCB=50°,求∠CEF的度数;(2)求证:∠CEF=∠CFE.20.如图,在方格纸内将△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角尺画图:(1)补全△A′B′C′;(2)画出AC边上的中线BD;(3)求△ABD的面积.21.如图,OC平分∠AOB,CD⊥OA于D,CE⊥OB于E,连接DE,猜想DE与OC的位置关系?并说明理由.22.如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC延长线于G.求证:BF=CG.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.24.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB垂足为E.求证:(1)CD=BE;(2)AB=AC+CD.25.在△ABC中,AD为△ABC的角平分线.(1)如图1,∠C=90°,∠B=45°,点E在边AB上,AE=AC,请直接写出图中所有与BE相等的线段.(2)如图2,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD.26.如图,点M、N分别是正八边形ABCDEFGH(每条边相等,每个角相等)的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN.(2)求∠APN的度数.28.如图,已知AD平分∠BAC,且∠1=∠2.(1)求证:BD=CD(2)判断AD与BC的位置关系,并说明理由.参考答案一.选择题1.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.2.解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、与三角形ABC有两边及其夹角相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.3.解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠F AD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=AD.同理:DF=AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE﹣BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.故选:C.4.解:∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=3,∵∠B=30°,∴BD=2CD=2×3=6,∴BC=BD+CD=6+3=9.故选:C.二.填空题5.解:点D的可能位置如下图所示:,则可得点D的坐标为:(﹣2,﹣3)、(4,3)、(4,﹣3).故答案为:(﹣2,﹣3)、(4,3)、(4,﹣3).6.解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.7.解:过点C作CD⊥y轴于点D,如图所示.∵∠ABC=90°,∠AOB=90°,∴∠OAB+∠OBA=90°,∠OBA+∠DBC=90°,∴∠OAB=∠DBC.在△OAB和△DBC中,,∴△OAB≌△DBC(AAS),∴BD=AO,DC=OB.∵A(3,0),B(0,﹣1),∴BD=AO=3,DC=OB=1,OD=OB+BD=4,∴点C的坐标为(1,﹣4).故答案为:(1,﹣4).8.解:如图,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF,∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),故答案为:(6,6);9.解:延长AD到E,使AD=DE,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,∵,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB﹣BE<AE<AB+BE,∴6﹣4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5.10.解:①此等腰三角形为钝角三角形,∵等腰三角形一腰上的高与另一腰的夹角为47°,∴此三角形的顶角=90°+47°=137°,②此等腰三角形为锐角三角形,∵等腰三角形一腰上的高与另一腰的夹角为47°,∴此三角形的顶角=90°﹣47°=43°.故答案为:43或137.11.解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故答案为:412.解:∵100°为三角形的顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40°.13.解:过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∵S△ADB=AB×DE=×4×2=4,∵△ABC的面积为7,∴△ADC的面积为7﹣4=3,∴AC×DF=3,∴AC×2=3,∴AC=3故答案为:3三.解答题14.(1)证明:∵∠1=∠2,∴DE=CE,而∠A=∠B=90°,AE=BC∴在Rt△ADE和Rt△BEC中,∴Rt△ADE≌Rt△BEC(HL);(2)解:∵Rt△ADE≌Rt△BEC,∴∠AED=∠BCE,∠ADE=∠BEC,又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,∴2(∠AED+∠BEC)=180°,∴∠AED+∠BEC=90°,∴∠DEC=90°,∵DE=EC,∴△DEC是等腰直角三角形,∴DE=CE=CD=5,∴△DEC的面积=×5×5=25.15.证明:(1)∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°.即∠APN的度数为108°16.(1)证明:∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等),在△ADC与△CEB中∴△ADC≌△CEB(AAS);(2)解:由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.17.证明:如图,在△ABC和△DEC中,,∴△ABC≌△DEC(SSS),∴∠A=∠D,∵∠AFE=∠DFC,∴∠1=∠2.18.解:如图,作CE⊥ON于E,CF⊥OM于F.∵OC平分∠MON,CE⊥ON于E,CF⊥OM于F.∴CE=CF,∵AC=BC,∠CEB=∠CF A=90°,∴Rt△CF A≌Rt△CEB(HL),∴∠ACF=∠ECB,∴∠ACB=∠ECF,∵∠ECF+∠MON=360°﹣90°﹣90°=180°,∴∠ACB+∠AOB=180°,∴∠OAC+∠OBC=180°.19.(1)解:∵CD⊥AB,∴∠DCB+∠B=90°,∵∠ACB=90°,∴∠CAB+∠B=90°,∴∠CAB=∠DCB=50°,∵AE平分∠CAB,∴∠CAE=∠CAB=25°,∴∠CEF=90°﹣∠CAE=65°;(2)证明:∵AE平分∠CAB,∴∠BAE=∠CAE,∵∠CAE+∠CEF=90°,∠BAE+∠AFD=90°,∴∠CEF=∠AFD,∵∠CFE=∠AFD,∴∠CEF=∠CFE.20.解:(1)如图所示,△A′B′C′即为所求作三角形.(2)如图所示,BD为AC边上的中线;(3)如图所示,S△ABD=4×6﹣×1×2﹣×4×6﹣×(1+6)×2=24﹣1﹣12﹣7=4,故答案为:4.21.解:OC垂直平分DE,∵OC平分∠AOB,∴∠COD=∠COE,又∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,在△COD和△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,CD=CE,∴OC垂直平分DE.22.解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥ABEG⊥AG,且AE平分∠F AG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.23.(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDF均为直角三角形,∵∴△BDE≌△CDF(HL).∴DE=DF,∵DE⊥AB于E,DF⊥AC于F,∴AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF.在△AED与△AFD中,∵,∴△AED≌△AFD(ASA).∴AE=AF.∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.24.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED(HL),∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.25.解:(1)与BE相等的线段是DE和DC,理由:∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在△AED和△ACD中∴△AED≌△ACD(SAS),∴DE=DC,∠DEA=∠C=90°,∴∠DEB=90°,∵∠B=45°,∴∠B=∠BDE,∴BE=DE,∴BE=DE=DC,即与BE相等的线段是DE和DC;(2)在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠C=∠AED,CD=ED,∵∠C=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB,∴EB=CD,∵AB=AE+EB,∴AB=AC+CD.26.(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)解:∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==135°.即∠APN的度数为135°.28.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),∴BD=CD;(2)解:AD⊥BC,理由如下:由(1)得:△ABD≌△ACD,∴AB=AC,∵AD平分∠BAC,∴AD⊥BC.。
2019秋沪科版八年级数学上册习题课件:第14章综合检测题(共23张PPT)

三、解答题(共 90 分) 15.(8 分)(菏泽中考)如图,AB∥CD,AB=CD,CE=BF.请写出 DF 与 AE 的数量关系 ,并证明你的结论.
解:结论:DF=AE.理由:∵AB∥CD,∴∠C=∠B,∵CE=BF, ∴CF=BE,∵CD=AB,∴△CDF≌△BAE,∴DF=AE.
16.(8 分)如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE =90°,D 为 AB 边上一点.求证:BD=AE.
=∠B.又∵∠HAE=∠B+∠AEB,∠CEF=∠AEF+∠AEB,∴∠HAE=
∠CEF.∵CF 平分∠DCE,∴∠ECF=12∠DCE=45°=∠H.在△HAE 和△
CEF 中,∵∠HAH==C∠EECF ∠HAE=∠CEF
,∴△HAE≌△CEF(ASA),∴AE=EF.
21.(12 分)(蚌埠中考)一次数学课上,老师在黑板上画了如图图形,并写下 了四个等式:①BD=CA,②AB=DC.③∠B=∠C,④∠BAE=∠CDE.要 求同学从这四个等式中选出两个作为条件,推出 AE=DE,请你试着完成老 师提出的要求,并说明理由.
18.(8 分)(连云港中考)两块完全相同的三角形纸板 ABC 和 DEF,按如图所 示的方式叠放,阴影部分为重叠部分,点 O 为边 AC 和 DF 的交点,不重叠 的两部分△AOF 与△DOC 是否全等?为什么?
解:不重叠的两部分△AOF 与△DOC 全等.理由如下:因为三角形纸板 ABC 和 DEF 完全相同,所以 AB=DB,BC=BF,∠A=∠D.所以 AB-BF =DB-BC 即 AF=DC.又因为∠AOF=∠DOC,所以∠AFO=∠DCO.在△
所以△CDF≌△CBE(AAS).所以 CF=CE.在 Rt△ACF 和 Rt△ACE 中,因 AC=AC
秋沪科版八年级上册数学习题课件:第14章达标测试题(共29张PPT)

•
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 3:51:00 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/192021/9/192021/9/192021/9/199/19/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月19日星期日2021/9/192021/9/192021/9/19 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/192021/9/192021/9/199/19/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/192021/9/19September 19, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/192021/9/192021/9/192021/9/19
2022八年级数学上册 第14章 全等三角形综合检测习题课件(新版)沪科版

9、 人的价值,在招收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。09:26:1209:26:1209:265/6/2022 9:26:12 AM
11、人总是珍惜为得到。22.5.609:26:1209:26May-226-May-22 12、人乱于心,不宽余请。09:26:1209:26:1209:26Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.609:26:1209:26:12May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午9时 26分12秒09:26:1222.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时26分22.5.609:26May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时26分 12秒09:26:126 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时26分12秒 上午9时26分09:26:1222.5.6
谢谢收看
9、 人的价值,在招收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。09:26:1209:26:1209:265/6/2022 9:26:12 AM
11、人总是珍惜为得到。22.5.609:26:1209:26May-226-May-22 12、人乱于心,不宽余请。09:26:1209:26:1209:26Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.609:26:1209:26:12May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午9时 26分12秒09:26:1222.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时26分22.5.609:26May 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时26分 12秒09:26:126 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时26分12秒 上午9时26分09:26:1222.5.6
秋八年级数学沪科版课件:第14章检测卷.pptx (共33张PPT)

•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/192021/9/19Sunday, September 19, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/192021/9/192021/9/199/19/2021 1:22:26 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/192021/9/192021/9/19Sep-2119-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/192021/9/192021/9/19Sunday, September 19, 2021