南京秦淮区2016-2017学年七年级上期末数学试题含解析
(精选)南京秦淮区七年级上期末数学试题含解析-(苏科版)

第一学期第二阶段学业选题监测试卷七年级数学一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,该算式是( ).A .2(1)-B .(1)--C .21-D .1-【答案】C【解析】2(1)1-=,(1)1--=,11-=,211-=-,选C .2.南京地铁4号线计划于2017年1月通车运营,地铁4号线一期工程全长为33800米,将33800用科学记数法表示为( ). A .333.810⨯B .43.3810⨯C .433.810⨯D .53.3810⨯【答案】B【解析】考察科学计数法的一般形式,433800 3.3810=⨯.3.下列各组单项式中,同类项一组的是( ).A .33x y 与33xyB .22ab 与23a b -C .2a 与2bD .2xy -与3yx【答案】D【解析】所含字母相同,并且相同字母的指数也相同的项叫同类项.4.如图,有一个直径为1个单位长度的圆片,把圆片上的点A 放在原点,并把圆片沿数轴向左滚动1周,点A 到达点A '位置,则点A '表示的数是( ).A .π-B .π2-C .π2D .π【答案】D【解析】从A 到A '经过的路程为:1ππ⨯=,所以点A '表示的数是π.5.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在D '、C '的位置处,若156∠=︒,则D E F ∠的度数是( ).C'F E CB A D'D 1A .56︒B .62︒C .68︒D .124︒【答案】B【解析】由题意得,D EF DEF '∠=∠, ∵1180D EF DEF '∠+∠+∠=︒,156∠=︒, ∴62DEF ∠=︒.6.将一副三角尺按如图方式摆放,1∠与2∠不一定...互补的是( ). A .12B .12C .21D .12【答案】B【解析】对于A ,129090360∠+∠+︒+︒=︒, ∴12180∠+∠=︒,①21对于C 如图②,23∠=∠, ∵13180∠+∠=︒, ∴21180∠+∠=︒.312②对于D ,260∠=︒,19030∠=︒+︒, ∴12180∠+∠=︒.213③7.已知线段AB 、CD ,点M 在线段AB 上,结合图形,下列说法不正确的是( ).A .过点M 画线段CD 的垂线,交CD 于点EB .过点M 画线段AB 的垂线,交CD 于点EC .延长线段AB 、CD ,相交于点F D .反向延长线段BA 、DC ,相交于点FMFEDCBA【答案】A【解析】A 描述的图形应该如下图,EMDCB A8.一个长方形的长和宽分别为3cm 和2cm ,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V 甲、V 乙,侧面积分别记叙S 甲、S 乙,则下列说法正确的是( ).A .V V <甲乙,S S =甲乙B .V V >甲乙,S S =甲乙C .V V 甲乙=,S S =甲乙D .V V >甲乙,S S <甲乙【答案】A【解析】4π312πV =⋅=甲,9π218πV =⋅=乙,4π312πS =⋅=甲,6π212πS =⋅=乙. ∴V V <甲乙,S S =甲乙.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.单项2523x y -的次数是__________.【答案】7【解析】单项式的次数是各个字母的指数和.10.比较大小: 3.13-__________ 3.12-.(填“<”、“”或“>”) 【答案】<【解析】负数比较大小,绝对值大的反而小. 3.13 3.12->-, 3.13 3.12-<-.11.已知关于x 的一元一次方程21x m +=-的解是1x =,则m 的值是__________. 【答案】1-【解析】将1x =代入21x m +=-得:121m +=-,1m =-.12.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话:__________. 【答案】222()2a b ab a b +=++ 【解析】略13.若22a b -=,则648b a +-=__________. 【答案】2- 【解析】648b a +-64(2)a b =--642=-⨯2=-.14.如图,直线a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60︒的点在直线a 上,表示135︒的点在直线b 上,则1∠=__________︒.150°180°120°90°60°30°0°1【答案】75【解析】21356075∠=︒-︒=︒,1∠与2∠是对顶角,1275∠=∠=︒.135°60°2ba115.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的2-和x ,那么x 的值为__________.【答案】6【解析】80(2)x -=--,解得:6x =.16.如图,A 、B 是河l 两侧的两个村庄,现要在河l 上修建一个抽水站,使它到A 、B 两村庄的距离之和最小.数学老师说:连接AB ,则线段AB 与l 的交点C 即为抽水站的位置.其理由是:__________.C Al【答案】两点之间线段最短 【解析】略17.互联网“微商”经营已经成为大众创业新途径,某微信平台上某件商品标价200元,按标价的九折销售,仍可获得20%.这件商品的进价是多少元?若设这件商品的进价是为元,根据题意可列方程__________.【答案】20090%20%x x ⨯-=【解析】“获利20%”列方程,利润=销售额-成本,20090%20%x x ⨯-=.18.如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若50AOC ∠=︒,1BOE BOC n∠=∠,1BOD AOB n∠=∠,则DOE ∠=__________︒(用含n 的代数式表示). E C BAOD【答案】50n【解析】设BOE β∠=,COD α∠=,则BOC n β∠=,AOB n α∠=, 设DOE x ∠=,则BOC COD DOE BOE AOB BOC AOC ∠=∠+∠+∠⎧⎨∠=∠+∠⎩,即50n x n x βαβααβ=++⎧⎨=+++︒⎩,解得50x n ︒=,即50DOE n︒∠=. βαxD OABC E三、解答题(本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤) 19.(8分)计算:(1)348(2)(4)⎡⎤÷---⎣⎦.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭.【答案】(1)12- (2)7-【解析】(1)348(2)(4)⎡⎤÷---⎣⎦48(84)=÷-+1484=-⨯12=-.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭998144=-⨯⨯+7=-.20.(6分)先化简,再求值:2222(23)2(2)x xy y x xy y +--+-,其中1x =,2y =. 【答案】3【解析】2222(23)2(2)x xy y x xy y +--+- 222223224x xy y x xy y =+---+ 22y x =-.1x =,2y =,223y x -=.21.(8分)解方程:(1)5(1)2(1)32x x x ---=+. (2)123122x x+--=. 【答案】(1)2x = (2)34x =【解析】(1)5(1)2(1)32x x x ---=+552232x x x --+=+, 510x =, 2x =.(2)123122 x x +--=1223x x+-=-,43x=,34x=.22.(6分)观察下面的立体图形,把主视图、左视图、俯视图画出.【答案】主视图左视图俯视图【解析】略23.(6分)如图,直线AB、CD相交于点O,90AOE COF∠=∠=︒.F EC BA OD(1)DOE∠的余角是__________(填写所有符合要求的角).(2)若70DOE∠=︒,求BOF∠的度数.【答案】(1)BOD∠、EOF∠、AOC∠(2)110︒【解析】(1)∵90AOE∠=︒,90COF∠=︒,∴90BOE∠=︒,90DOF∠=︒,即90DOE BOD∠+∠=︒,90DOE EOF∠+∠=︒,∵AOC BOD ∠=∠, ∴90DOE AOC ∠+∠=︒,∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠. (2)∵90DOE EOF ∠+∠=︒,70DOE ∠=︒, ∴20EOF ∠=︒,∴9020110BOF BOE EOF ∠=∠+∠=︒+︒=︒.F ECBA O D24.(6分)第十八届“飞向北京——飞向太空”全国青海年航空天模型教育竞赛江苏预赛在南京举行,某校航模不级参赛选手中男生占该校参赛人数的一半,后又增加2名男生,那么男生人数就占该校参赛人数23,该校原有参赛男生多少人? 【答案】该校原有参赛男生2人 【解析】设原有参赛男生x 人,则22(22)3x x +=+,解得:2x =.即该校原有参赛男生2人.25.(7分)如图,已知α∠.α(1)用直尺和圆规作AOB ∠,使AOB α∠=∠(保留作图痕迹,不写作法). (2)用量角器画AOB ∠的平分线OC ;(3)在OC 上任取一点M (点M 不与点C 重合),过点M 分别画直线MP OA ⊥,垂足为P ,画直线MN OA ∥,交射线OB 于点N ,则点M 到射线OA 的距离是线段__________的长度,MN 与MP 的位置关系是__________. 【答案】(1)BO Aα(2)CBO Aα(3)MP、MP MN⊥【解析】略26.(7分)如图,C是线段AB上一点,16cmAB=,6cmBC=.C BA(1)AC=__________cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?【答案】(1)10【解析】(1)10cmAC AB BC=-=.(2)①当05t<≤时,C为线段PQ中点1026t t-=-,解之得4t=.②当1653t<≤时,P为线段CQ中点210163t t-=-,解之得265t=.③当1663t<≤时,Q为线段PC中点6316t t-=-,解之得112t=.④当68t<≤时,C为线段PQ中点2106t t-=-,解之得4t=(舍).综上所述:4t=或265或112.27.10分以下是两张不同类型火车的车票(“D⨯⨯⨯⨯次”表示动车,“G⨯⨯⨯⨯次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是__________向而行(填“相”或“同”). (2)已知该弄动车和高铁的平均速度分别为200km /h 、300km /h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到1h ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点1P 、2P 、3P 、1P 、5P ,且 1122334455AP PP P P P P P P P B =====,动车每个站点都停靠,高铁只停靠2P 、4P 两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻. 【答案】(1)同 (2)1200km【解析】(2)动车:速度为200km/h ,6:00出发,高铁:速度为300km/h ,7:00出发, 高铁比动车晚出发1小时,比动车早到1小时,可知动车比高铁从A 地到B 地多花2个小时, 所以,设AB 之间的距离为km x ,则可列方程:2200300x x-=,解得1200x =. 所以AB 之间的距离为1200km . (3)8点55分A 、B 两地之间依次设有5个距离相同的站点,可知每个相邻站点距离为200km ,已知动车和高铁速度,可知高铁到每一站所花时间为40分钟,动车到每一站所花时间为60分钟. 根据题意,可知动车和高铁到每一站的时刻如图所示:12:2511:2510:209:158:107:056:0012345D 动车9:509:058:257:407:0012345G 高铁可知高铁在2P 站、3P 站之间追上并超过动车, 设高铁经过t 小时之后追上动车,由题意可列方程:11300122001212t t ⎛⎫⎛⎫-⨯=+-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得:2312t =.由题意可知,高铁在7:00出发,经过2312小时后,追上动车.可求得追上的时刻为8:55.。
精品解析:江苏省南京师范大学附属中学2016-2017学年七年级上学期期末考试数学试题(解析版)

2016-2017学年度(上)期末测试卷七年级数学一、选择题1.3-的倒数是()A.3B.13 C.13- D.3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A. B. C.D.【答案】C【解析】【分析】先根据图形结合互余的定义进行一一判断,然后综合即可得出符合题意的选项.【详解】解:A、∠α与∠β不一定互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.【点睛】本题考查的知识点是对顶角、余角和补角.解题关键是熟记“互余的两个角的和等于90°”.3.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【答案】A【解析】试题分析:由绝对值性质可得:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.因为|a﹣1|=a﹣1,所以a﹣1≥0,所以a≥1.选A.考点:绝对值的性质.【此处有视频,请去附件查看】4.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“祝”字一面对面的字是()A.新B.年C.快D.乐【答案】D【解析】试题分析:正方体的平面展开图的特征:相对面展开后间隔一个正方形.由图可得“祝”字对面的字是“快”,故选:D.点睛:本题属于基础应用题,只需学生熟练掌握正方体的平面展开图的特征,即可完成.5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短【答案】A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需()根火柴.A.156B.157C.158D.159【答案】B【解析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n个图案需n(n+3)+3根火柴,再把11代入即可求出答案.解:根据题意可知:第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故选B.“点睛”此题主要考查图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.【此处有视频,请去附件查看】二、填空题7.温度由1℃下降10℃后是________℃.【答案】-9【解析】试题分析:根据温度的关系,利用有理数的加减可得1-10=-9.故答案为:9.8.大家翘首以盼的南京地铁4号线将于2017年春节前开通,它从龙江站到仙林湖站线路长度33.8千米.则数据33.8用科学记数法表示为___________.【答案】3.38×10【解析】试题分析:由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.因此33.8=3.38×10.9.若23m n +=-,则842m n --的值是________.【答案】14【解析】试题分析:根据整体思想,先提公因式,整体代入即可得8-4m-2n=8-2(2m+n)=8-2×(-3)=14.10.如果一个角是2015'︒,那么这个角的余角是___________︒.【答案】69.75【解析】试题分析:根据互余两角的和为90°,可求解余角为90°-20°15′=69°45′=69.75°.故答案为:60.7511.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.【答案】150【解析】设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150,故答案为150.12.如图是一个数值运算的程序,若输出y的值为5,则输入的值为_______.【答案】±4【解析】试题分析:根据运算程序,可知运算的关系式为(x2-1)÷3,代入可得(x2-1)÷3=5,解方程可得x=±4.13.小明想度量图中点C到三角形ABC的边AB的距离,在老师的指导下小明完成了画图,那么____就是点C到直线AB的距离.【答案】线段CD的长度【解析】试题分析:根据点到直线的距离为点到直线的垂线段的长度,可知CD的长度为点C到AB的距离.故答案为:CD的长度互补的角是14.如图,直线AB与CD相交于O,OE与AB、OF与CD分别相交成直角.图中与COE________.【答案】EOD ∠和BOF∠【解析】试题分析:根据对顶角相等可知∠AOC=∠B OD,∠DOF=90°,可根据和为180°的两角互为补角,可知∠COE 的补角为∠EOD 何∠BOF.15.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么2a b c +-=________.【答案】0【解析】试题分析:由题意及数轴上点的位置得:(a+b)÷2=c,即a+b=2c,则2a b c +-==0.故答案为0点睛:此题考查了有理数的混合运算,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推……,线段2015AC 的长为____.【答案】2015112⎛⎫- ⎪⎝⎭【解析】试题分析:根据中点的意义,可知:1 C B =12AB,2C B =121 C B =12×12AB,……由此可知其规律为:n C B =1()2n 1n C B -,因此可知12015C B =20151(2AB,因此可求得2015AC =2015112⎛⎫- ⎪⎝⎭.故答案为:2015112⎛⎫- ⎪⎝⎭.三、解答题17.计算:(1)()()322453⎡⎤-÷⨯--⎣⎦;(2)()157242612⎛⎫+-⨯- ⎪⎝⎭【答案】(1)8(2)18-【解析】试题分析:根据有理数的混合运算,先算乘方,再算乘除,最后算加减,如果有括号先算括号里面的,然后结合乘方运算求解即可.试题解析:(1)()()322453⎡⎤-÷⨯--⎣⎦=-8÷4×[5-9]=-2×(-4)=8(2)()157242612⎛⎫+-⨯- ⎪⎝⎭=157(24)(24)(24)2612⨯-+⨯---=-12-20+14=-1818.解方程:(1)()432x x -=-;(2)223146x x +--=【答案】(1)1x =(2)0x =【解析】试题分析:根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1,解方程即可.试题解析:(1)4-x=3(2-x)4-x=6-3x-x+3x=6-42x=2x=1(2)223146x x +--=3(x+2)-2(2x-3)=123x+6-4x+6=123x+4x=12-6-67x=0x=019.化简求值:()()2222274523a b a b ab a b ab +-+--,其中1a =-,2b =.【答案】228a b ab +,-30【解析】试题分析:根据去括号法则和合并同类项法则化简,然后代入求值即可.试题解析:原式228a b ab =+其中1a =-,2b =,代入得:原式()()2212812=-⨯+⨯-⨯=30-20.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.【答案】(1)作图见解析(2)2【解析】试题分析:(1)根据题目中图形可知:主视图共3列,从左到右,第一列有3个小正方形,第二列有2个小正方形,第三列有1个小正方形,左视图共2列,从左到右,第一列有3个小正方形,第二列有1个小正方形,俯视图共2列,从左到右,第一列有2个小正方形,第二列有1个小正方形,第三列有1个小正方形.(2)可在第二层第一列第一行加一个,第三层第一列加一个,共2个.试题解析:(1)如图;(2)可在第二层第一列第一行加一个,第三层第一列加一个,共2个.考点:几何体的三视图.∠=∠,在射线AE上取一点D,使21.如图,利用直尺和圆规,在三角形ABC的边AC上方作EAC ACBAD BC=,连接CD.观察并回答所画的四边形是什么特殊的四边形?(尺规作图要求保留作图痕迹,不写作法)【答案】作图见解析【解析】试题分析:根据基本作图-做一个角等于一只角,结合题意画图,然后判断即可.试题解析:如下图所画的四边形为:平行四边形22.如图,90AOB ∠=︒,在AOB ∠的内部有一条射线OC .(1)画射线.OD OC ⊥(2)写出此时AOD ∠与BOC ∠的数量关系,并说明理由.【答案】(1)作图见解析(2)(1)AOD BOC ∠=∠或180AOD BOC ∠+∠=︒【解析】试题分析:(1)根据基本作图—做已知直线的垂线即可;(2)通过图形判断即可.试题解析:(1)画图,如下图(2)AOD BOC ∠=∠或180AOD BOC ∠+∠=︒23.已知关于m 的方程12(m -16)=-5的解也是关于x 的方程2(x -3)-n =3的解.(1)求m 、n 的值;(2)已知线段AB =m ,在射线AB 上取一点P ,恰好使AP PB =n ,点Q 为线段PB 的中点,求AQ 的长.【答案】(1)m =6,n =3;(2)AQ =214或152【解析】【分析】(1)先利用解一元一次方程的方法解出12(m -16)=-5中m 的值;因为两个方程同解,代入()233x n --=解出n 的值即可.(2)因为点P 的位置不能确定,故应分点P 在线段AB 上时,先根据比值求出AP ,PB 的长度,再根据中点定义求出PQ 的长度,相加即可求出AQ 的长度;当点P 在线段AB 的延长线上时,根据比值求出BP 的长度,再根据中点定义求出BQ 的长度,相加即可求出AQ 的长度.【详解】解:()()111652m -=-,1610m -=-,6m =,关于m 的方程()12651m -=-的解也是关于x 的方程()233x n --=的解.x m ∴=,将6m =,代入方程()233x n --=得:()2633n --=,解得:3n =,故63m n ==,;()2由()1知:63AP AB PB==,,①当点P 在线段AB 上时,如图所示:63AP AB PB == ,,9322AP BP ∴==,, 点Q 为PB 的中点,1324PQ BQ BP ∴===,9321244AQ AP PQ ∴=+=+=;②当点P 在线段AB 的延长线上时,如图所示:63AP AB PB== ,,3PB ∴=,点Q 为PB 的中点,32PQ BQ ∴==,315622AQ AB BQ ∴=+=+=.故214AQ =或152.24.图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.【答案】(1)34cm;(2)每相邻两节套管间重叠的长度为1cm.【解析】试题分析:(1)根据“第n 节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm ,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×相邻两节套管间的长度”,得出关于x 的一元一次方程,解方程即可得出结论.试题解析:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm ).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm ),设每相邻两节套管间重叠的长度为xcm ,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm .考点:一元一次方程的应用.25.如图(1),点O 为线段AB 上一点,过点D 作射线OC ,使:1:2AOC BOC ∠∠=,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在线段AB 的下方.(1)将图(1)中的直角三角板绕点O 按逆时针方向旋转,使ON 落在射线OB 上(如图(2)),则三角板旋转的角度为____度;(2)继续将图2中的直角三角板绕点O 按逆时针方向旋转,使ON 在AOC ∠的内部(如图3).试求AOM ∠与NOC ∠度数的差;(3)若图1中的直角三角板绕点O 按逆时针方向旋转一周,在此过程中:①当直角边OM 所在直线恰好垂直于OC 时,AOM ∠的度数是________;②设直角三角板绕点O 按每秒15︒的速度旋转,当直角边ON 所在直线恰好平分AOC ∠时,求三角板绕点O 旋转时间t 的值.【答案】(1)90︒(2)30AOM NOC ∠-∠=︒(3)①150AOM ∠=︒或30°②4t =或()16s 【解析】试题分析:(1)根据旋转的性质可知,旋转角是∠MON.(2)如图3,利用角平分线的定义,结合已知条件,求得∠AOC=60°,然后根据直角的性质、图中角与角间的数量关系推出结论;(3)①根据旋转的定义,画图,然后根据周角和已知角求解;②根据速度和角平分线的性质,分逆时针和顺时针计算即可.试题解析:(1)90︒(2)30AOM NOC ∠-∠=︒(3)①150AOM ∠=︒或30︒②4t =或()16s 26.数轴上有A 、B 、C 三点,分别表示有理数26-、10-、20,动点P 从A 出发,以每秒1个单位的速度向右移动,当P 点运动到C 点时运动停止,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 点对应的数:_________;(2)当P 点运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回A 点.①用含t 的代数式表示Q 点在由A 到C 过程中对应的数:_________;②当t =______时,动点P 、Q 到达同一位置(即相遇);③当3PQ =时,求t 的值.【答案】(1)26t -+;(2)①258t -;②32或1243;③3t =,29,35,1213,1273.【解析】【分析】(1)根据题意可得P 点对应的数;(2)①P 因为点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒所以Q 点在由A 到C 过程中对应的数()26216258t t -+-=-为;②分为返回前相遇和返回后相遇两种情况:返回前相遇,P 的路程等于Q 的路程等于Q 的路程减去16;而返回后相遇,则是二者走的总路程是Q 到C 的路程的2倍,分别列式子求解.【详解】(1)P 点所对应的数为:26t-+(2)①258t -②P 点从A 运动到B 点所花的时间为16秒,Q 点从A 运动到C 点所花的时间为23秒当1639t ≤≤时,P :26t -+,Q :()26216258t t -+-=-26258t t -+=-,解之得32t =当3946t ≤≤时,P :26t -+,Q :()20239982t t--=-26982t t -+=-,解之得1243t =③3t =,29,35,1213,1273【点睛】考核知识点:一元一次方程应用.理解定义,列出方程是关键.。
2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.43.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=08.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3=D.﹣3=二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为.11.某校图书室共藏书34500册,数34500用科学记数法表示为.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是.13.56°24′=°.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].16.解方程:﹣=﹣1.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)1.﹣2的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.2.在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A.1 B.2 C.3 D.4【考点】有理数.【分析】先判断每个数是什么数,最后得到整数的个数.【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.4.由四舍五入得到的近似数2.6万,精确到()A.千位B.万位C.个位D.十分位【考点】近似数和有效数字.【分析】近似数2.6万精确到0.1万位.【解答】解:近似数2.6万精确到千位.故选A.5.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据对顶角的定义,邻补角的定义以及互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1+∠2>90°,∠1和∠2不是互为余角,故本选项错误;B、∠1和∠2互为邻补角,故本选项错误;C、∠1和∠2是对顶角,不是互为余角,故本选项错误;D、∠1+∠2=180°﹣90°=90°,∠1和∠2互为余角,故本选项正确.故选D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1 D.3x2﹣y+5xy2是二次三项式【考点】同类项;整式;多项式.【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是二次三项式,故本选项错误.故选C.7.下列方程属于一元一次方程的是()A.﹣1=0 B.6x+1=3y C.3m=2 D.2y2﹣4y+1=0【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程进行分析即可.【解答】解:A、不是一元一次方程,故此选项错误;B、不是一元一次方程,故此选项错误;C、是一元一次方程,故此选项正确;D、不是一元一次方程,故此选项错误;故选:C.8.轮船在河流中来往航行于A、B两码头之间,顺流航行全程需7小时,逆流航行全程需9小时,已知水流速度为每小时3km,求A、B两码头间的距离.若设A、B两码头间距离为x,则所列方程为()A. +3=﹣3 B.﹣3=+3 C. +3= D.﹣3=【考点】由实际问题抽象出一元一次方程.【分析】首先理解题意找出题中存在的等量关系,再列出方程即可.【解答】解:设A、B两码头间距离为x,可得:,故选B二、填空题(本大题共6小题,每小题3分,满分18分)9.实数﹣5,﹣1,0,四个数中,最大的数是.【考点】实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣5<﹣1<0<,∴实数﹣5,﹣1,0,四个数中,最大的数是.故答案为:.10.若有理数a、b满足|a+5|+(b﹣4)2=0,则(a+b)10的值为1.【考点】代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵|a+5|+(b﹣4)2=0,∴a+5=0,b﹣4=0,解得:a=﹣5,b=4,则原式=1,故答案为:111.某校图书室共藏书34500册,数34500用科学记数法表示为 3.45×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:34500用科学记数法表示为3.45×104,故答案为:3.45×104.12.若﹣3x m+2y2017与2x2016y n是同类项,则|m﹣n|的值是3.【考点】同类项;绝对值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣3x m+2y2017与2x2016y n是同类项,∴m+2=2016,n=2017,解得:m=2014,∴|m﹣n|=3.故答案为:3.13.56°24′=56.4°.【考点】度分秒的换算.【分析】把24′化成度,即可得出答案.【解答】解:24÷60=0.4,即56°24′=56.4°,故答案为:56.4.14.某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是两点之间,线段最短.【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:某乡在重修通往县城的公路时,把原来弯曲的路改直,其中蕴含的数学道理是:两点之间,线段最短.故答案为:两点之间,线段最短.三、解答题(本大题共10小题,满分70分)15.计算:﹣12﹣(﹣)÷×[﹣2+(﹣3)2].【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:﹣12﹣(﹣)÷×[﹣2+(﹣3)2]=﹣1﹣(﹣)÷×[﹣2+9]=﹣1+×7=216.解方程:﹣=﹣1.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣2﹣x﹣2=9x﹣3﹣6,移项合并得:﹣8x=﹣5,解得:x=.17.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD 的长度.【考点】比较线段的长短.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.18.规定一种新运算:a*b=a﹣b,当a=5,b=3时,求(a2b)*(3ab+5a2b﹣4ab)的值.【考点】代数式求值;有理数的混合运算.【分析】先根据新运算展开,化简后代入求出即可.【解答】解:(a2b)*(3ab+5a2b﹣4ab)=(a2b)﹣(3ab+5a2b﹣4ab)=a2b﹣3ab﹣5a2b+4ab=﹣4a2b+ab当a=5,b=3时,原式=﹣4×52×3+5×3=﹣285.19.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.【考点】角平分线的定义.【分析】利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.【解答】解:∵OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.20.一张课桌包括1块桌面和4条桌腿,1m3木料可制作50块桌面或200条桌腿.现有5m3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作得的桌面和桌腿刚好配套?【考点】一元一次方程的应用.【分析】设用xm3木料制作桌面,则用(5﹣x)m3木料制作桌腿恰好配套,根据条件的数量关系建立方程求出其解即可.【解答】解:设用xm3木料制作桌面,由题意得4×50x=200(5﹣x),解得x=2.5,5﹣x=2.5m3,答:用2.5m3木料制作桌面,2.5m3木料制作桌腿,能使制作得的桌面和桌腿刚好配套.21.有理数a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣b|+|b+c|﹣|b|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴先判断a+c、a﹣b、b+c、b与0的大小关系,然后即可进行化简【解答】解:由图可知:a+c<0,a﹣b>0,b+c<0,b<0,∴原式=﹣(a+c)﹣(a﹣b)﹣(b+c)+b=﹣a﹣c﹣a+b﹣b﹣c+b=﹣2a+b﹣2c22.已知a、b互为相反数,c、d互为倒数,|e|=5,求e2﹣+(cd)102﹣e 的值.【考点】代数式求值.【分析】根据相反数、绝对值、倒数得出a+b=0,cd=1,e=±5,再代入求出即可.【解答】解:∵a、b互为相反数,c、d互为倒数,|e|=5,∴a+b=0,cd=1,e=±5,当e=5时,原式=52﹣+1102﹣5=21;当e=﹣5时,原式=(﹣5)2﹣+1102﹣(﹣5)=31.23.入冬以来,某家电销售部以150元/台的价格购进一款烤火器,很快售完,又用相同的货款再次购进这款烤火器,因单价提高了30元,进货量比第一次少了10台.(1)家电销售部两次各购进烤火器多少台?(2)若以250元/台的售价卖完这两批烤火器,家电销售部共获利多少元?【考点】一元一次方程的应用.【分析】(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据第二次进货单价比第一次进货单价贵30元即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=销售第一批烤火器的利润+销售第二批烤火器的利润即可求出家电销售部共获利多少元.【解答】解:(1)设第一次购进烤火器x台,则第二次购进烤火器(x﹣10)台,根据题意得:150x=180(x﹣10),解得x=60,x﹣10=50.答:家电销售部第一次购进烤火器60台,第二次购进50台.(2)×60+×50=9500(元).答:以250元/台的售价卖完这两批烤火器,家电销售部共获利9500元.24.观察下列各式:13=12,13+23=32,13+23+33=62,13+23+33+43=102…(1)请叙述等式左边各个幂的底数与右边幂的底数之间有什么关系?(2)利用上述规律,计算:13+23+33+43+ (1003)【考点】规律型:数字的变化类.【分析】(1)通过观察可知:右边幂的底数等于左边各个幂的底数的和;(2)利用规律即可解决问题.【解答】解:(1)右边幂的底数等于左边各个幂的底数的和;(2)13+23+33+43+…+1003=(1+2+3+…+100)2=[×100]2=50502.。
学校16—17学年上学期七年级期末考试数学试题(扫描版)(附答案)

2016---2017学年度第一学期期末考试七年级数学试题参考答案一、选择题(每小题3分,共30分)1、B2、D3、B4、C5、A6、C7、D8、C9、C 10、B二、填空题(每小题4分,共24分)11、-8℃ 12、m=-2 n= 2 13、-2 14、-415、两点确定一条直线 16、(6n+2)三、解答题(共66分)17、解:(1) 原式=()2483917⎛⎫+-⨯-÷- ⎪⎝⎭…………2分 =()748399⎛⎫+-⨯-⨯- ⎪⎝⎭…………3分 =4247-+ …………4分 =13- …………5分(2) 原式=()15718369⎛⎫-+⨯- ⎪⎝⎭…………2分 =()()()157181818369⨯--⨯-+⨯- …………3分 =61514-+- …………4分 =5- …………5分18、解:(1) 222(52)2(3)xy x xy y y xy +-+--=2225226xy x xy y y xy +-+-+ …………2分=22x xy + …………3分 当12,2x y =-=时,原式=()()2122222-+⨯-⨯= …………4分 (2) 22(54)(542)x x x x -+++-+=2254542x x x x -+++-+…………5分=2(21)(45)(54)x x -+++-…………6分=291x x ++…………7分当2x =-时, 原式=2(2)9(2)113-+⨯-+=-…………8分19、(1)3(5)4(1)9x x x --+=+解: 315449x x x ---=+ …………2分349154x x x --=++ …………4分228x -= …………5分14x =- …………6分(2) 5415323412y y y +---=+ 解:()()()454312453y y y +--=+- …………2分 2016332453y y y +-+=+- …………3分2035243163y y y --=--- …………4分122y = …………5分16y = …………6分 20、解:(1)()20x - 360x -甲队整治河道天数 甲队整治河道总长度 …………4分(2)解:设甲队整治河道用时x 天,则乙队整治河道用时()20x -天. ()241620360x x +-= …………6分解方程,得 5x = …………8分 24120x = ()1620240x -= 答:甲队整治河道120米,乙队整治河道240米. …………10分 或 设甲队整治河道x 米,则乙队整治河道()360x -360202416x x -+= …………6分 解方程,得 120x = …………8分 360240x -=答:甲队整治河道120米,乙队整治河道240米. …………10分21、解:因为AD=7,BD=5所以AB=12 …………2分因为 点C 为线段AB 的中点所以 AC=6 …………4分 所以 CD=AD-AC=1 …………6分22、解:(1)因为OD 是∠AOC 的平分线,所以 ∠COD =21∠AOC.因为OE 是∠BOC 的平分线,所以∠COE =21∠BOC. …………2分所以∠DOE=∠COD+∠COE=21(∠AOC +∠BOC )=21∠AOB=90°.…………4分(2) 因为∠COD =65° OD 是∠AOC 的平分线所以 ∠AOD=∠COD=65° …………6分 因为∠DOE =90°所以 ∠AOE=∠AOD+∠DOE=155° …………8分23、解:(1)40000.93600⨯=(元)40000.83003500⨯+=(元)36003500100-=(元)答:小张购买优惠卡后再购物合算,能省100元. …………4分(2)设顾客购买x元的商品时,买卡与不买卡花钱相等.=+…………6分0.90.8300x x解方程,得x=3000答:顾客购买3000元的商品时,买卡与不买卡花钱相等. …………8分(3)设这台冰箱的进价为y元.+=?…………10分y y0.2540000.8y=解方程,得2560答:这台冰箱的进价为2560元. …………12分。
2017学年七年级上数学期末试卷(带答案和解释)

2017学年七年级上数学期末试卷(带答案和解释)篇一:2016—2017学年新人教版七年级上期末考试数学试题含答案2016—2017学年度第一学期七年级期末评价数学试卷(满分100分,时间100分钟)一、选择题:(本大题12个小题,每小题3分,共36分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
1.(-2)×3的结果是 A . - 6B. – 5C. - 1D. l2.如图,这个几何体从上面看到的平面图形是3.将77800用科学记数法表示应为A. 0. 778 xl05B. 7. 78 x l05 C . 7. 78 x104D . 77. 8 x l034.下列各组数中互为相反数的是A.+(+2)与-(-2) B. +(-2)与 -(-2)C.+(+2)与 -(-1) D.+(-2)与一(+2) 25.下列各组中,不是同类项的是A . x3y4 与 x3y4 B, 3x与 - x C. 5ab 与 - 2baD. - 3x2y与6.如果l是关于x方程x+2m-5=0的解,则m的值是A. -4 B .4 C.-2 D. 27.如图所示,点O在直线l上,∠l与∠2互余,∠α= 116°,则∠β的度数是A.144° B.164°C. 154° D.150°8.下列等式变形正确的是A.如果s= 2ab,那么b=12yx 2s1B.如果x=6,那么x=3 2a2 C.如果x-3 =y-3,那么x-y =0D.如果mx= my,那么x=y9.从点O引两条射线OA、OB,在OA、OB上分别截取OM= 1cm,ON= lcm,则M、N两点间的距离一定A.小于l cm B.等于lcm C大于lcm, D 有最大值2cm,10.把方程3x?2x?1x?1?3?去分母正确的是 32+ (2x - l) = 3 - (x +l) +2(2x - l) = 18 -3(x +1)+ (2x - 1) = 18 - (x +1) +2(2x - l) = 3 -3(x +l)1l。
(最新整理)2016-2017学年第一学期江苏省南京市秦淮区期末统考数学试卷

(完整)2016-2017学年第一学期江苏省南京市秦淮区期末统考数学试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016-2017学年第一学期江苏省南京市秦淮区期末统考数学试卷)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016-2017学年第一学期江苏省南京市秦淮区期末统考数学试卷的全部内容。
2016-2017学年度第一学期 六年级数学学科学业质量监测试卷一、计算1.直接写得数(每小题 1 分,共 10 分)2.按要求计算下列各题(每小题 2 分,共 6 分)9585: (化简比) 2.41.6:(求比值) 43:30分钟(化简比)3.分别计算正方体的体积和长方体的表面积(每小题 3 分,共 6 分)=÷2541 =+4131 =⨯4361 =÷1%1 =⨯÷⨯213131214.怎样算简便怎样算(每小题4分,共16分)二、填空(每空1分,共21分) 1.在里填上“957695O ⨯ 766565÷O420毫升O 42立方厘米 O 8787.5%2. 0.63。
大小两个魔方的棱长比是2:3,它们的表面积之比是( ),体积比是( )。
4.新华小学六(1)班今天有38人到校上课,一人病假,一人事假,今天六(1)班的出勤率是( )% 。
5。
五(2)班有女生18人,占全班人数的73,全班有( )人,男生有( )人。
6。
一条连衣裙200元,商场打八折出售,如果买这条连衣裙能便宜( )元。
7。
用35 根1 米长的栅栏靠墙围成一个长方形菜地(如图),长和宽的比是3 : 2 ,这个长方形菜地的面积是( )平方米。
【精编】南京秦淮区七年级上期末数学试题含解析-(苏科版)
第一学期第二阶段学业选题监测试卷七年级数学一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,该算式是( ).A .2(1)-B .(1)--C .21-D .1-【答案】C【解析】2(1)1-=,(1)1--=,11-=,211-=-,选C .2.南京地铁4号线计划于2017年1月通车运营,地铁4号线一期工程全长为33800米,将33800用科学记数法表示为( ). A .333.810⨯B .43.3810⨯C .433.810⨯D .53.3810⨯【答案】B【解析】考察科学计数法的一般形式,433800 3.3810=⨯.3.下列各组单项式中,同类项一组的是( ).A .33x y 与33xyB .22ab 与23a b -C .2a 与2bD .2xy -与3yx【答案】D【解析】所含字母相同,并且相同字母的指数也相同的项叫同类项.4.如图,有一个直径为1个单位长度的圆片,把圆片上的点A 放在原点,并把圆片沿数轴向左滚动1周,点A 到达点A '位置,则点A '表示的数是( ).A .π-B .π2-C .π2D .π【答案】D【解析】从A 到A '经过的路程为:1ππ⨯=,所以点A '表示的数是π.5.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在D '、C '的位置处,若156∠=︒,则D E F ∠的度数是( ).C'F E CB A D'D 1A .56︒B .62︒C .68︒D .124︒【答案】B【解析】由题意得,D EF DEF '∠=∠, ∵1180D EF DEF '∠+∠+∠=︒,156∠=︒, ∴62DEF ∠=︒.6.将一副三角尺按如图方式摆放,1∠与2∠不一定...互补的是( ). A .12B .12C .21D .12【答案】B【解析】对于A ,129090360∠+∠+︒+︒=︒, ∴12180∠+∠=︒,①21对于C 如图②,23∠=∠, ∵13180∠+∠=︒, ∴21180∠+∠=︒.312②对于D ,260∠=︒,19030∠=︒+︒, ∴12180∠+∠=︒.213③7.已知线段AB 、CD ,点M 在线段AB 上,结合图形,下列说法不正确的是( ).A .过点M 画线段CD 的垂线,交CD 于点EB .过点M 画线段AB 的垂线,交CD 于点EC .延长线段AB 、CD ,相交于点F D .反向延长线段BA 、DC ,相交于点FMFEDCBA【答案】A【解析】A 描述的图形应该如下图,EMDCB A8.一个长方形的长和宽分别为3cm 和2cm ,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V 甲、V 乙,侧面积分别记叙S 甲、S 乙,则下列说法正确的是( ).A .V V <甲乙,S S =甲乙B .V V >甲乙,S S =甲乙C .V V 甲乙=,S S =甲乙D .V V >甲乙,S S <甲乙【答案】A【解析】4π312πV =⋅=甲,9π218πV =⋅=乙,4π312πS =⋅=甲,6π212πS =⋅=乙. ∴V V <甲乙,S S =甲乙.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题..卷相应位置.....上) 9.单项2523x y -的次数是__________.【答案】7【解析】单项式的次数是各个字母的指数和.10.比较大小: 3.13-__________ 3.12-.(填“<”、“”或“>”) 【答案】<【解析】负数比较大小,绝对值大的反而小. 3.13 3.12->-, 3.13 3.12-<-.11.已知关于x 的一元一次方程21x m +=-的解是1x =,则m 的值是__________. 【答案】1-【解析】将1x =代入21x m +=-得:121m +=-,1m =-.12.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话:__________. 【答案】222()2a b ab a b +=++ 【解析】略13.若22a b -=,则648b a +-=__________. 【答案】2- 【解析】648b a +-64(2)a b =--642=-⨯2=-.14.如图,直线a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60︒的点在直线a 上,表示135︒的点在直线b 上,则1∠=__________︒.150°180°120°90°60°30°0°1【答案】75【解析】21356075∠=︒-︒=︒,1∠与2∠是对顶角,1275∠=∠=︒.135°60°2ba115.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的2-和x ,那么x 的值为__________.【答案】6【解析】80(2)x -=--,解得:6x =.16.如图,A 、B 是河l 两侧的两个村庄,现要在河l 上修建一个抽水站,使它到A 、B 两村庄的距离之和最小.数学老师说:连接AB ,则线段AB 与l 的交点C 即为抽水站的位置.其理由是:__________.C Al【答案】两点之间线段最短 【解析】略17.互联网“微商”经营已经成为大众创业新途径,某微信平台上某件商品标价200元,按标价的九折销售,仍可获得20%.这件商品的进价是多少元?若设这件商品的进价是为元,根据题意可列方程__________.【答案】20090%20%x x ⨯-=【解析】“获利20%”列方程,利润=销售额-成本,20090%20%x x ⨯-=.18.如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若50AOC ∠=︒,1BOE BOC n∠=∠,1BOD AOB n∠=∠,则DOE ∠=__________︒(用含n 的代数式表示). E C BAOD【答案】50n【解析】设BOE β∠=,COD α∠=,则BOC n β∠=,AOB n α∠=, 设DOE x ∠=,则BOC COD DOE BOE AOB BOC AOC ∠=∠+∠+∠⎧⎨∠=∠+∠⎩,即50n x n x βαβααβ=++⎧⎨=+++︒⎩,解得50x n ︒=,即50DOE n︒∠=. βαxD OABC E三、解答题(本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤) 19.(8分)计算:(1)348(2)(4)⎡⎤÷---⎣⎦.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭.【答案】(1)12- (2)7-【解析】(1)348(2)(4)⎡⎤÷---⎣⎦48(84)=÷-+1484=-⨯12=-.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭998144=-⨯⨯+7=-.20.(6分)先化简,再求值:2222(23)2(2)x xy y x xy y +--+-,其中1x =,2y =. 【答案】3【解析】2222(23)2(2)x xy y x xy y +--+- 222223224x xy y x xy y =+---+ 22y x =-.1x =,2y =,223y x -=.21.(8分)解方程:(1)5(1)2(1)32x x x ---=+. (2)123122x x+--=. 【答案】(1)2x = (2)34x =【解析】(1)5(1)2(1)32x x x ---=+552232x x x --+=+, 510x =, 2x =.(2)123122 x x +--=1223x x+-=-,43x=,34x=.22.(6分)观察下面的立体图形,把主视图、左视图、俯视图画出.【答案】主视图左视图俯视图【解析】略23.(6分)如图,直线AB、CD相交于点O,90AOE COF∠=∠=︒.F EC BA OD(1)DOE∠的余角是__________(填写所有符合要求的角).(2)若70DOE∠=︒,求BOF∠的度数.【答案】(1)BOD∠、EOF∠、AOC∠(2)110︒【解析】(1)∵90AOE∠=︒,90COF∠=︒,∴90BOE∠=︒,90DOF∠=︒,即90DOE BOD∠+∠=︒,90DOE EOF∠+∠=︒,∵AOC BOD ∠=∠, ∴90DOE AOC ∠+∠=︒,∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠. (2)∵90DOE EOF ∠+∠=︒,70DOE ∠=︒, ∴20EOF ∠=︒,∴9020110BOF BOE EOF ∠=∠+∠=︒+︒=︒.F ECBA O D24.(6分)第十八届“飞向北京——飞向太空”全国青海年航空天模型教育竞赛江苏预赛在南京举行,某校航模不级参赛选手中男生占该校参赛人数的一半,后又增加2名男生,那么男生人数就占该校参赛人数23,该校原有参赛男生多少人? 【答案】该校原有参赛男生2人 【解析】设原有参赛男生x 人,则22(22)3x x +=+,解得:2x =.即该校原有参赛男生2人.25.(7分)如图,已知α∠.α(1)用直尺和圆规作AOB ∠,使AOB α∠=∠(保留作图痕迹,不写作法). (2)用量角器画AOB ∠的平分线OC ;(3)在OC 上任取一点M (点M 不与点C 重合),过点M 分别画直线MP OA ⊥,垂足为P ,画直线MN OA ∥,交射线OB 于点N ,则点M 到射线OA 的距离是线段__________的长度,MN 与MP 的位置关系是__________. 【答案】(1)BO Aα(2)CBO Aα(3)MP、MP MN⊥【解析】略26.(7分)如图,C是线段AB上一点,16cmAB=,6cmBC=.C BA(1)AC=__________cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?【答案】(1)10【解析】(1)10cmAC AB BC=-=.(2)①当05t<≤时,C为线段PQ中点1026t t-=-,解之得4t=.②当1653t<≤时,P为线段CQ中点210163t t-=-,解之得265t=.③当1663t<≤时,Q为线段PC中点6316t t-=-,解之得112t=.④当68t<≤时,C为线段PQ中点2106t t-=-,解之得4t=(舍).综上所述:4t=或265或112.27.10分以下是两张不同类型火车的车票(“D⨯⨯⨯⨯次”表示动车,“G⨯⨯⨯⨯次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是__________向而行(填“相”或“同”). (2)已知该弄动车和高铁的平均速度分别为200km /h 、300km /h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到1h ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点1P 、2P 、3P 、1P 、5P ,且 1122334455AP PP P P P P P P P B =====,动车每个站点都停靠,高铁只停靠2P 、4P 两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻. 【答案】(1)同 (2)1200km【解析】(2)动车:速度为200km/h ,6:00出发,高铁:速度为300km/h ,7:00出发, 高铁比动车晚出发1小时,比动车早到1小时,可知动车比高铁从A 地到B 地多花2个小时, 所以,设AB 之间的距离为km x ,则可列方程:2200300x x-=,解得1200x =. 所以AB 之间的距离为1200km . (3)8点55分A 、B 两地之间依次设有5个距离相同的站点,可知每个相邻站点距离为200km ,已知动车和高铁速度,可知高铁到每一站所花时间为40分钟,动车到每一站所花时间为60分钟. 根据题意,可知动车和高铁到每一站的时刻如图所示:12:2511:2510:209:158:107:056:0012345D 动车9:509:058:257:407:0012345G 高铁可知高铁在2P 站、3P 站之间追上并超过动车, 设高铁经过t 小时之后追上动车,由题意可列方程:11300122001212t t ⎛⎫⎛⎫-⨯=+-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得:2312t =.由题意可知,高铁在7:00出发,经过2312小时后,追上动车.可求得追上的时刻为8:55.。
2016-2017学年七年级上期末数学试卷含答案解析
2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣22.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠16.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣510.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+111.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=8713.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是.16.比较大小:﹣﹣(填“<”或“>”)17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=cm.三、解答题(本题共8道题,满分60分)19.(6分)计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).20.(6分)解方程:=.21.(6分)先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.22.(6分)已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D 是AC的中点,求BD的长.23.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.24.如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.25.(10分)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?26.(10分)如图,长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的B′处,得到折痕EC ,将点A 落在直线EF 上的点A′处,得到折痕EN .(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC +∠AEN= °. (2)若∠BEB′=m°,则(1)中∠BEC +∠AEN 的值是否改变?请说明你的理由. (3)将∠ECF 对折,点E 刚好落在F 处,且折痕与B′C 重合,求∠DNA′.2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣2【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:实数﹣2的绝对值是2,故选:A.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】解:A、没有最小的有理数,故A错误;B、没有最小的整数,故B错误;C、0没有倒数,故C错误;D、0是最小的非负数,故D正确;故选:D.【点评】本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负数.3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】两点间的距离;直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【考点】角的概念.【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.6.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣【考点】一元一次方程的解.【分析】把x=﹣2代入方程计算即可求出m的值.【解答】解:把x=﹣2代入方程得:﹣4+2m=5,解得:m=.故选C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣5【考点】代数式求值.【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:﹣8a﹣2b=﹣5,再将x=﹣2代入这个代数式中,最后整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,则8a+2b+1=6,8a+2b=5,∴﹣8a﹣2b=﹣5,则当x=﹣2时,ax3+bx+1=(﹣2)3a﹣2b+1=﹣8a﹣2b+1=﹣5+1=﹣4,故选B.【点评】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【考点】整式的加减.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1,故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°【考点】余角和补角.【分析】根据补角和余角的定义关系式,然后消去∠α即可.【解答】解:∵∠α与∠β互补,∠α与∠γ互余,∴∠α+∠β=180°,∠α+∠γ=90°.∴∠β﹣∠γ=90°.故选:A.【点评】本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠α是解题的关键.12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,根据两种笔共卖出87元,列方程即可.【解答】解:设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选A.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,|a|=﹣a,∴原式=b﹣a+a=b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108【考点】科学记数法—表示较大的数.【分析】首先利用已知求出奖金总数,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:设屠呦呦的奖金是x元,根据题意可得:2.25%•x×20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3×106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是5.【考点】单项式.【分析】根据所有字母的指数和叫做这个单项式的次数,可得答案.【解答】解:7πa2b3的次数是5,故答案为:5.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.比较大小:﹣<﹣(填“<”或“>”)【考点】有理数大小比较.【分析】根据负数的绝对值越大负数越小,可得答案.【解答】解:这是两个负数比较大小,先求他们的绝对值,|﹣|=,|﹣|=,∵>,∴﹣<﹣,故答案为:<.【点评】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【考点】角的计算.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF=∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=6或14cm.【考点】两点间的距离.【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,结合图形计算即可.【解答】解:当点C在线段AB上时,AC=AB﹣BC=6cm,当点C在线段AB的延长线上时,AC=AB+BC=14cm,故答案为:6或14.【点评】本题考查的是两点间的距离的计算,灵活运用数形结合思想、分情况讨论思想是解题的关键.三、解答题(本题共8道题,满分60分)19.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【考点】有理数的加减混合运算.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.20.解方程:=.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4(2x﹣1)=3(x+2),去括号得:8x﹣4=3x+6,移项合并得:5x=10,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a﹣8a+2﹣3+4a=﹣a﹣1,当a=时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D是AC的中点,求BD的长.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D 是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.【考点】整式的加减—化简求值.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)根据题意得:S=2m•2n﹣m(2n﹣0.5n﹣n)=4mn﹣0.5mn=3.5mn;(2)∵(m﹣6)2+|n﹣5|=0,∴m=6,n=5,则S=3.5×6×5=105.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(1)如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.【考点】角平分线的定义.【分析】(1)先由角平分线定义可得∠AOM=∠AOB=(∠BON+∠AON)=×68°=34°,再根据∠MON=∠AOM﹣∠AON,代入数据计算即可;(2)先由角平分线定义可得∠AOM=∠BOM,再根据∠AOM=∠AON+∠MON,∠MON=∠BON﹣∠MON即可解题.【解答】解:(1)∵OM 平分∠AOB ,∴∠AOM=∠AOB=(∠BON +∠AON )=×68°=34°,∴∠MON=∠AOM ﹣∠AON=34°﹣11°=23°;(2)∵OM 平分∠AOB ,∴∠AOM=∠BOM ,∵∠AON +∠MON=∠BON ﹣∠MON ,∴2∠MON=∠BON ﹣∠AON ,∴∠MON=(∠BON ﹣∠AON ),因此这个同学得出的关系式正确.【点评】本题考查了角平分线定义,角的和与差的计算,(2)中求得∠AON +∠MON=∠BON ﹣∠MON 是解题的关键.25.(10分)(2016秋•路北区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?【考点】一元一次方程的应用.【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a ≤12时,②当12<a ≤18时,③当a >18时,求出答案.【解答】解:(1)∵12<16<18,∴2×12+2.5×(16﹣12)=24+10=34(元),答:四月份用水量为16吨,需交水费为34元;(2)设五月份所用水量为x吨,依据题意可得:2×12+6×2.5+(x﹣18)×3=50,解得;x=21,答:五月份所有水量为21吨;(3)①当a≤12时,需交水费2a元;②当12<a≤18时,需交水费,2×12+(a﹣12)×2.5=(2.5a﹣6)元,③当a>18时,需交水费2×12+6×2.5+(a﹣18)×3=(3a﹣15)元.【点评】此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.26.(10分)(2016秋•路北区期末)如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和进行判断;(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC 的度数,最后根据平角的性质和折叠的性质求解.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°。
初中数学南京市秦淮区七年级上学期期末考试数学考试卷含答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:-2的相反数是()A.2 B.-2 C.D.-试题2:2015年南京国际马拉松全程约为42195米,将42195用科学记数法表示为()A.42.195×103 B.4.2195×104 C.42.195×104 D.4.2195×105试题3:下列各组单项式中,同类项一组的是()A.3x2y与3xy2 B.2abc与-3ac C.2xy与2ab D.-2xy与3yx试题4:如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′处,若∠1=56°,则∠DEF的度数是()A.56°B.62°C.68°D.124°试题5: 如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是( ) A .先向上移动1格,再向右移动1格 B .先向上移动3格,再向右移动1格 C .先向上移动1格,再向右移动3格 D .先向上移动3格,再向右移动3格 试题6:我们用有理数的运算研究下面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4cm ,那么3天后的水位变化用算式表示正确的是( ) A .(+4)×(+3) B .(+4)×(-3) C .(-4)×(+3) D .(-4)×(-3) 试题7:有理数a 在数轴上的位置如图所示,下列各数中,可能在0到1之间的是( )A .-aB .│a │C .│a │-1D .a +1 试题8:乙甲如图,一个几何体上半部为正四棱锥,下半部为正方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()试题9:单项式-a2b的系数是.试题10:比较大小:-π-3.14.(填“<”、“=”或“>”)试题11:.若∠1=36°30′,则∠1的余角等于°.试题12:已知关于x的一元一次方程3m-4x=2的解是x=1,则m的值是.试题13:下表是同一时刻4个城市的国际标准时间,那么北京与多伦多的时差为h.城市伦敦北京东京多伦多国际标准时间0 +8 +9 -4试题14:写出一个主视图、左视图和俯视图完全相同的几何体:.2015年12月17日,大报恩寺遗址公园正式向社会开放.经物价部门核准,旅游旺季门票价格上浮40%,上浮后的价格为168元.若设大报恩寺门票价格为x元,则根据题意可列方程.试题16:若2a-b=2,则6-8a+4b=.试题17:已知线段AB=6cm,AB所在直线上有一点C,若AC=2BC,则线段AC的长为cm.试题18:如图,在半径为a的大圆中画四个直径为a 的小圆,则图中阴影部分的面积为(用含a的代数式表示,结果保留π).试题19:(-+)×36;试题20:-32+16÷(-2)×.试题21:先化简,再求值:2(3a2b-ab2)-(-ab2+2a2b),其中a=2、b=-1.试题22:3(x+1)=9;试题23:=1-.读句画图并回答问题:(1)过点A画AD⊥BC,垂足为D.比较AD与AB的大小:AD AB;(2)用直尺和圆规作∠CDE,使∠CDE=∠ABC,且与AC交于点E.此时DE与AB的位置关系是.试题25:一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:▲;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.试题26:下框中是小明对课本P108练一练第4题的解答.题目:某班同学分组参加活动,原来每组8人,后来重新编组,每组6人,这样比原来增加了2组.这个班共有多少名学生?解:设这个班共有x名学生.根据题意,得8x=6(x+2).解这个方程,得x=6.答:这个班共有6名学生.请指出小明解答中的错误,并写出本题正确的解答.试题27:如图,直线AB、CD 相交于点O,OF平分∠AOE ,OF⊥CD,垂足为O.(1)若∠AOE=120°,求∠BOD的度数;(2)写出图中所有与∠AOD互补的角:.试题28:如图,点A、B分别表示的数是6、-12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.(1)当运动3秒时,点M、N、P分别表示的数是、、;(2)求运动多少秒时,点P到点M、N的距离相等?试题29:钟面角是指时钟的时针与分针所成的角.如图,图①、图②、图③三个钟面上的时刻分别记录了某中学的早晨上课时间7:30、中午放学时间11:50、下午放学时间17:00.(1)分别写出图中钟面角的度数:∠1=°、∠2=°、∠3=°;(2)在某个整点,钟面角可能会等于90°,写出可能的一个时刻为;(3)请运用一元一次方程的知识解决问题:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是多少?试题1答案:A试题2答案: B试题3答案: D试题4答案: B试题5答案: B试题6答案: C试题7答案: C试题8答案: D试题9答案: -试题10答案: <试题11答案: .53.5试题12答案: 2试题13答案:.12试题14答案:正方体(答案不唯一)试题15答案:(1+40%) x=168试题16答案:-2试题17答案:4或12试题18答案:πa2-2a2试题19答案:原式=×36-×36+×36 (1)分=18-21+30 (3)分=27. (4)分试题20答案:原式=-9+16×(-)× (2)分=-9-4 (3)分=-13. (4)分试题21答案:解:原式=6a2b-2ab2+ab2-2a2b (2)分=4a2b-ab2. (4)分当a=2、b=-1时,原式=4×22×(-1)-2×(-1)2=-16-2=-18. (6)分试题22答案:3x+3=9. (1)分3x=6. (3)分x=2. (4)分试题23答案:2(2x-1)=6-(2x-1). (1)分4x-2=6-2x+1. (2)分6x=9. (3)分x=. (4)分试题24答案:解:(1)画图正确,AD<AB; (3)分(2)画图正确,DE∥AB. (6)分试题25答案:解:(1)长方体; (2)分(2)2×(3×3+3×4+3×4)=66cm2. (6)分答:这个几何体的表面积是66 cm2.试题26答案:解:小明的错误是“他设中的x和方程中的x表示的意义不同”. (2)分正确的解答:设这个班共有x名学生.根据题意,得-=2. (4)分解这个方程,得x=48. (5)分答:这个班共有48名学生. (6)分试题27答案:解:(1)因为OF平分∠AOE,∠AOE=120°,所以∠AOF=∠AOE=60°.······························· (2)分因为OF⊥CD,所以∠COF=90°. (3)分所以∠AOC=∠COF-∠AOF=30°. (4)分因为∠AOC和∠BOD是对顶角,所以∠BOD=∠AOC=30°. (5)分(2)∠AOC、∠BOD、∠DOE. (8)分试题28答案:解:(1)12、6、3; (3)分(2)设运动t秒后,点P到点M、N的距离相等.①若P是MN的中点,则t-(-12+6t)=6+2t-t,解得t=1. (6)分②若点M、N重合,则-12+6t=6+2t,解得t=. (8)分答:运动1或秒后,点P到点M、N的距离相等.试题29答案:解:(1)45,55,150; (3)分(2)如:3点;(答案不唯一) (4)分(3)设从7:30开始,经过x分钟,钟面角等于90°.根据题意,得6x-0.5x-45=90. (6)分解得. (7)分答:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是7:54. (8)分。
【南京】2016-2017南京树人初一上期末数学(解析)
2016-2017学年度(上)期末测试卷七年级数学注意事项:本试卷共6页,全卷满分100分,考试时间为100分钟.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上........)1.3-的倒数是()A.3B.3-C.13D.13-2.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是()3.若|1|1a a-=-,则a的取值范围是()A.1a≥B.1a≤C.1a<D.1a>4.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“祝”字一面对面的字是()A.新B.年C.快D.乐5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短6.如图,这些图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案所需火柴的数量是A.156B.157C.158D.159二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填在答题卷相应位置上)7.温度由1℃下降10℃后是________℃.8.大家翘首以盼的南京地铁4号线将于2017年春节前开通,它从龙江站到仙林潮站线路长度33.8千米.则数据33.8用科学记数法表示为________.9.若23m n +=-,则842m n --的值是________.10.如果一个角是2015'︒,那么这个角的余角是________.11.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价每件________元. 12.如图是一个数值运算的程序,若输出y 的值为5,则输入的值为________.13.小明想度量图中点C 到三角形ABC 的边AB 的距离,在老师的指导下小明完成了画图,那么________就是点C 到直线AB 的距离.14.如图,直线AB 与CD 相交于O ,OE 与AB 、OF 与CD 分别相交成直角.图中与COE ∠互补的角是________.15.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|2|a b c +-=________.16.线段1AB =,1C 是AB 的中点,2C 是1C B 的中点,3C 是2C B 的中点,4C 是3C B 的中点,依此类推……,线段2015AC 的长为________.三、解答题(本大题共10小题,共68分.请在答题卷指定区域.......内作答,解答时应写出文字说明、说理过程或演算步骤) 17.(8分)计算:(1)32(2)4[5(3)]-+⨯--;(2)()157242612⎛⎫+-⨯- ⎪⎝⎭.18.(8分)解方程:(1)43(2)x x -=-;(2)223146x x +--=19.(6分)化简求值:222227(45)(23)a b a b ab a b ab +-+--.其中1a =-,2b =.20.(5分)如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加________个小正方体.21.(6分)如图,利用直尺和圆规,在三角形ABC 的边AC 上方作EAC ACB =∠∠,在射线AE 上取一点D ,使AD BC =,连接CD ,观察并回答所画的四边形是什么特殊的四边形?(尺规作图要求保留作图痕迹,不写作法)22.(6分)如图,90AOB =︒∠,在AOB ∠的内部有一条射线OC .(1)画射线OD OC ⊥.(2)写出此时AOD ∠与BOC ∠的数量关系,并说明理由.23.(6分)已知关于m 的方程()11652m -=-的解也是关于x 的方程2(3)3x n --=的解. (1)求m 、n 的值;(2)已知线段AB m =,在直线AB 上取一点P ,恰好使APn PB=,点Q 为PB 的中点,求线段AQ 的长.24.(8分)如图是一根可伸缩的鱼竿,鱼竿是用10节粗细不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长庋即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm x . (1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值.25.(7分)如图(1),点O线段AB上一点,过点O作射线OC,使:1:2∠∠,将一直角三角AOC BOC=板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在线段AB的下方.(1)将图(1)中的直角三角板绕点O按逆时针方向旋转,使ON落在射线OB上(如图(2)),则三角板旋转的角度为________度;(2)继续将图(2)中的直角三用板绕点O按逆时针方向旋转,使ON在AOC∠的内部(如图(3)).试求AOM∠度数的差;∠与NOC(3)若图(1)中的直角板绕点O按逆时针方向旋转一周,在此过程中:①当直角边OM所在直线恰好垂直于OC时,AOM∠的度数是________;②设直角三角板绕点O按每秒15︒的速度旋转,当直角边ON所在直线恰好平分AOC∠时,求三角板绕点O旋转时间t的值.26.(8分)数轴上有A、B、C三点,分别表示有理数26-、10-、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止.设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:________;(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:________;②当t=________时,动点P、Q到达同一位置(即相遇);③当3PQ=时,求t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第一学期第二阶段学业选题监测试卷七年级数学一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,该算式是( ).A .2(1)-B .(1)--C .21-D .1-【答案】C【解析】2(1)1-=,(1)1--=,11-=,211-=-,选C .2.南京地铁4号线计划于2017年1月通车运营,地铁4号线一期工程全长为33800米,将33800用科学记数法表示为( ). A .333.810⨯B .43.3810⨯C .433.810⨯D .53.3810⨯【答案】B【解析】考察科学计数法的一般形式,433800 3.3810=⨯.3.下列各组单项式中,同类项一组的是( ).A .33x y 与33xyB .22ab 与23a b -C .2a 与2bD .2xy -与3yx【答案】D【解析】所含字母相同,并且相同字母的指数也相同的项叫同类项.4.如图,有一个直径为1个单位长度的圆片,把圆片上的点A 放在原点,并把圆片沿数轴向左滚动1周,点A 到达点A '位置,则点A '表示的数是( ).A'A-1-21234A .π-B .π2-C .π2D .π【答案】D【解析】从A 到A '经过的路程为:1ππ⨯=,所以点A '表示的数是π. 5.如图,将一张长方形纸片ABCD 沿EF 折叠,点D 、C 分别落在D '、C '的位置处,若156∠=︒,则D E F ∠的度数是( ).C'F E CB A D'D 1A .56︒B .62︒C .68︒D .124︒【答案】B【解析】由题意得,D EF DEF '∠=∠, ∵1180D EF DEF '∠+∠+∠=︒,156∠=︒,∴62DEF ∠=︒.6.将一副三角尺按如图方式摆放,1∠与2∠不一定...互补的是( ). A .12B .12C .21D .12【答案】B【解析】对于A ,129090360∠+∠+︒+︒=︒, ∴12180∠+∠=︒,①21对于C 如图②,23∠=∠, ∵13180∠+∠=︒, ∴21180∠+∠=︒.312②对于D ,260∠=︒,19030∠=︒+︒, ∴12180∠+∠=︒.213③7.已知线段AB 、CD ,点M 在线段AB 上,结合图形,下列说法不正确的是( ).A .过点M 画线段CD 的垂线,交CD 于点EB .过点M 画线段AB 的垂线,交CD 于点EC .延长线段AB 、CD ,相交于点F D .反向延长线段BA 、DC ,相交于点FMFEDCBA【答案】A【解析】A 描述的图形应该如下图,EMDC B A8.一个长方形的长和宽分别为3cm 和2cm ,依次以这个长方形的长和宽所在的直线为旋转轴,把长方形旋转1周形成圆柱体甲和圆柱体乙,两个圆柱体的体积分别记作V 甲、V 乙,侧面积分别记叙S 甲、S 乙,则下列说法正确的是( ).3cm2cmA .V V <甲乙,S S =甲乙B .V V >甲乙,S S =甲乙C .V V 甲乙=,S S =甲乙D .V V >甲乙,S S <甲乙【答案】A【解析】4π312πV =⋅=甲,9π218πV =⋅=乙,4π312πS =⋅=甲,6π212πS =⋅=乙. ∴V V <甲乙,S S =甲乙.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.单项2523x y -的次数是__________.【答案】7【解析】单项式的次数是各个字母的指数和.10.比较大小: 3.13-__________ 3.12-.(填“<”、“=”或“>”) 【答案】<【解析】负数比较大小,绝对值大的反而小. 3.13 3.12->-, 3.13 3.12-<-.11.已知关于x 的一元一次方程21x m +=-的解是1x =,则m 的值是__________. 【答案】1-【解析】将1x =代入21x m +=-得:121m +=-,1m =-.12.“两个数和的平方等于这两个数积的两倍加上这两个数的平方和”,在学过用字母表示数后,请借助符号描述这句话:__________. 【答案】222()2a b ab a b +=++【解析】略13.若22a b -=,则648b a +-=__________. 【答案】2- 【解析】648b a +- 64(2)a b =-- 642=-⨯2=-.14.如图,直线a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60︒的点在直线a 上,表示135︒的点在直线b 上,则1∠=__________︒.150°180°120°90°60°30°0°1【答案】75【解析】21356075∠=︒-︒=︒,1∠与2∠是对顶角,1275∠=∠=︒.135°60°2ba115.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的2-和x ,那么x 的值为__________.-2123456078【答案】6【解析】80(2)x -=--,解得:6x =.16.如图,A 、B 是河l 两侧的两个村庄,现要在河l 上修建一个抽水站,使它到A 、B 两村庄的距离之和最小.数学老师说:连接AB ,则线段AB 与l 的交点C 即为抽水站的位置.其理由是:__________.C BAl【答案】两点之间线段最短【解析】略17.互联网“微商”经营已经成为大众创业新途径,某微信平台上某件商品标价200元,按标价的九折销售,仍可获得20%.这件商品的进价是多少元?若设这件商品的进价是为x 元,根据题意可列方程__________.【答案】20090%20%x x ⨯-=【解析】“获利20%”列方程,利润=销售额-成本,20090%20%x x ⨯-=.18.如图,在AOB ∠的内部有3条射线OC 、OD 、OE ,若50AOC ∠=︒,1BOE BOC n ∠=∠,1BOD AOB n∠=∠,则DOE ∠=__________︒(用含n 的代数式表示).E CBAOD【答案】50n【解析】设BOE β∠=,COD α∠=,则BOC n β∠=,AOB n α∠=, 设DOE x ∠=,则BOC COD DOE BOE AOB BOC AOC ∠=∠+∠+∠⎧⎨∠=∠+∠⎩,即50n x n x βαβααβ=++⎧⎨=+++︒⎩,解得50x n︒=,即50DOE n ︒∠=.βαxD OABC E三、解答题(本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、说理过程或演算步骤) 19.(8分)计算:(1)348(2)(4)⎡⎤÷---⎣⎦.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭.【答案】(1)12- (2)7-【解析】(1)348(2)(4)⎡⎤÷---⎣⎦48(84)=÷-+1484=-⨯12=-.(2)234422(1)93⎛⎫-÷⨯+- ⎪⎝⎭998144=-⨯⨯+7=-.20.(6分)先化简,再求值:2222(23)2(2)x xy y x xy y +--+-,其中1x =,2y =. 【答案】3【解析】2222(23)2(2)x xy y x xy y +--+- 222223224x xy y x xy y =+---+ 22y x =-.1x =,2y =,223y x -=.21.(8分)解方程:(1)5(1)2(1)32x x x---=+.(2)123122x x+--=.【答案】(1)2x=(2)34 x=【解析】(1)5(1)2(1)32x x x---=+ 552232x x x--+=+,510x=,2x=.(2)123122 x x +--=1223x x+-=-,43x=,34x=.22.(6分)观察下面的立体图形,把主视图、左视图、俯视图画出来.从正面看【答案】主视图左视图俯视图【解析】略23.(6分)如图,直线AB、CD相交于点O,90AOE COF∠=∠=︒.F ECBA O D(1)DOE ∠的余角是__________(填写所有符合要求的角). (2)若70DOE ∠=︒,求BOF ∠的度数. 【答案】(1)BOD ∠、EOF ∠、AOC ∠ (2)110︒【解析】(1)∵90AOE ∠=︒,90COF ∠=︒, ∴90BOE ∠=︒,90DOF ∠=︒,即90DOE BOD ∠+∠=︒,90DOE EOF ∠+∠=︒, ∵AOC BOD ∠=∠, ∴90DOE AOC ∠+∠=︒,∴DOE ∠的余角是BOD ∠、EOF ∠、AOC ∠. (2)∵90DOE EOF ∠+∠=︒,70DOE ∠=︒, ∴20EOF ∠=︒,∴9020110BOF BOE EOF ∠=∠+∠=︒+︒=︒.F ECBA O D24.(6分)第十八届“飞向北京——飞向太空”全国青海年航空天模型教育竞赛江苏预赛在南京举行,某校航模不级参赛选手中男生占该校参赛人数的一半,后来又增加2名男生,那么男生人数就占该校参赛人数23,该校原有参赛男生多少人? 【答案】该校原有参赛男生2人【解析】设原有参赛男生x 人,则22(22)3x x +=+,解得:2x =.即该校原有参赛男生2人. 25.(7分)如图,已知α∠.α(1)用直尺和圆规作AOB∠,使AOBα∠=∠(保留作图痕迹,不写作法).(2)用量角器画AOB∠的平分线OC;(3)在OC上任取一点M(点M不与点C重合),过点M分别画直线MP OA⊥,垂足为P,画直线MN OA∥,交射线OB于点N,则点M到射线OA的距离是线段__________的长度,MN与MP的位置关系是__________.【答案】(1)BO Aα(2)CBO Aα(3)MP、MP MN⊥【解析】略26.(7分)如图,C是线段AB上一点,16cmAB=,6cmBC=.C BA(1)AC=__________cm;(2)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B;点Q以1cm/s 的速度沿BA向左运动,终点为A.当一个点到达终点,另一个点也随之停止运动.求运动多少秒时,C、P、Q三点,有一点恰好是以另两点为端点的线段的中点?【答案】(1)10【解析】(1)10cmAC AB BC=-=.(2)①当05t<≤时,C为线段PQ中点1026t t-=-,解之得4t=.②当1653t<≤时,P为线段CQ中点210163t t-=-,解之得265t=.③当1663t<≤时,Q为线段PC中点6316t t-=-,解之得112t=.④当68t<≤时,C为线段PQ中点2106t t-=-,解之得4t=(舍).综上所述:4t =或265或112.27.10分以下是两张不同类型火车的车票(“D ⨯⨯⨯⨯次”表示动车,“G ⨯⨯⨯⨯次”表示高铁):限乘当日当次车二 等 座¥360元03年13号A 地2016 年12月10日6:00开D XXXX 次B 地A 地售售A 地B 地G XXXX 次2016 年12月10日7:00开A 地06年08号¥560元二 等 座限乘当日当次车(1)根据车票中的信息填空:该列动车和高铁是__________向而行(填“相”或“同”). (2)已知该弄动车和高铁的平均速度分别为200km /h 、300km /h ,两列火车的长度不计.①经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到1h ,求A 、B 两地之间的距离.②在①中测算的数据基础上,已知A 、B 两地途中依次设有5个站点1P 、2P 、3P 、1P 、5P ,且 1122334455AP PP P P P P P P P B =====,动车每个站点都停靠,高铁只停靠2P 、4P 两个站点,两列火车在每个停靠站点都停留5min .求该列高铁追上动车的时刻. 【答案】(1)同 (2)1200km【解析】(2)动车:速度为200km/h ,6:00出发,高铁:速度为300km/h ,7:00出发, 高铁比动车晚出发1小时,比动车早到1小时,可知动车比高铁从A 地到B 地多花2个小时, 所以,设AB 之间的距离为km x ,则可列方程:2200300x x-=,解得1200x =. 所以AB 之间的距离为1200km . (3)8点55分A 、B 两地之间依次设有5个距离相同的站点,可知每个相邻站点距离为200km ,已知动车和高铁速度,可知高铁到每一站所花时间为40分钟,动车到每一站所花时间为60分钟. 根据题意,可知动车和高铁到每一站的时刻如图所示:12:2511:2510:209:158:107:056:00P 1P 2P 3P 4P 5AB D 动车9:509:058:257:407:00P 1P 2P 3P 4P 5A BG 高铁可知高铁在2P 站、3P 站之间追上并超过动车, 设高铁经过t 小时之后追上动车,由题意可列方程:11300122001212t t ⎛⎫⎛⎫-⨯=+-⨯⨯ ⎪ ⎪⎝⎭⎝⎭,解得:2312t .由题意可知,高铁在7:00出发,经过2312小时后,追上动车.可求得追上的时刻为8:55.。