江苏省南京市2019-2020学年七年级下学期期末数学试题
江苏省南通市田家炳中学2019-2020学年度七年级下册期末数学试卷(PDF版)

1
A.
5
1
B.
6
1
C.
7
1
D.
8
10.定义:【 x 】表示不大于 x 的最大整数,例如:【 2.3 】=2,【 1 】=1.以下结论:
①【-1.2 】=-2;②【 a-1 】=【 a 】-1;③当-1< x <1 时,【 1+x 】+【 1
-x 】的值是 1; ④2a <【 2a 】+1;⑤x=-1.75 是方程 4x-2【 x 】+3=0 的唯一解. 其
A. 23.409 = 153
B. 241 的算术平方根比 15.5 小 C. 根据表中数据的 变化趋势,可以推断出 16.12将比 256 增大 3.17
D. 只有 3 个正整数 n 满足 15.7 < n < 15.8
9.现有如图(1)的小长方形纸片若干块,已知小长方形的长为 a,宽为 b.用 3 个如图(2) 的全等图形和 8 个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为 30cm,则图(3)中阴影部分面积与整个图形的面积之比为( ▲ )
25. (本题共 12 分)如图,△ABC 的角平分线 AE,BF 交于 O 点. (1)若∠ACB=70°,则∠BOA = ▲ °; (2)求证:点 O在∠ACB的角平分线上. (3) 若 OE=OF,求∠ACB 的度数.
初一数学 第 5 页 共 6 页
26.(本题共 13 分)在△ABC 中,若存在一个内角角度是另外一个内角角度的 n 倍(n 为大 于 1 的正整数),则称△ABC 为 n 倍角三角形.例如,在△ABC 中,∠A=80°,∠B=75°, ∠C=25°,可知 ∠B =3∠C ,所以△ABC 为 3 倍角三角形. (1)在△ABC 中,∠A=80°,∠B=60°,则△ABC 为 ▲ _倍角三角形; (2)若锐角三角形 MNP 是 3 倍角三角形,且最小内角为 α,请直接写出 α 的取值范围为 ▲ . (3)如图,直线 MN 与直线 PQ 垂直相交于点 O,点 A 在射线 OP 上运动(点 A 不与点 O 重 合),点 B 在射线 OM 上运动(点 B 不与点 O 重合).延长 BA 至 G,已知∠BAO、∠OAG 的角平分线与∠BOQ 的角平分线所在的直线分别相交于 E、F ,若△AEF 为 4 倍角三角形, 求∠ABO 的度数.
江苏省南京市联合体2019-2020学年第二学期七年级期末考试数学试卷 解析版

2019-2020学年江苏省南京市联合体七年级(下)期末数学试卷一.选择题(共8小题)1.计算a6÷a2的结果是()A.a2B.a3C.a4D.a52.某红外线遥控器发出的红外线波长为0.0000009米,用科学记数法表示这个数是()A.9×10﹣7B.9×10﹣8C.0.9×10﹣7D.0.9×10﹣83.已知a>b,则下列不等关系中正确的是()A.ac>bc B.a+c>b+c C.a﹣1>b+1D.ac2>bc24.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数是()A.35°B.45°C.50°D.65°5.如图,已知CB∥DF,则下列结论成立的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠2=180°6.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.平面内,垂直于同一条直线的两条直线平行7.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.8.关于x的不等式x﹣a≥1.若x=1是不等式的解,x=﹣1不是不等式的解,则a的范围为()A.﹣2≤a≤0B.﹣2<a<0C.﹣2≤a<0D.﹣2<a≤0二.填空题(共10小题)9.计算:20=,()﹣3=.10.若三角形有两边长分别为2和5,第三边为a,则a的取值范围是.11.命题:“两直线平行,则同旁内角互补”的逆命题为.12.分解因式:a3﹣a=.13.已知是方程2x﹣ay=3的一个解,则a的值是.14.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=.15.已知2a=3,4b=5,则2a+2b的值是.16.若a﹣b=3,ab=1,则a2+b2=.17.已知不等式组有3个整数解,则n的取值范围是.18.如图,C是线段AB上一点,∠DAC=∠D,∠EBC=∠E,AO平分∠DAC,BO平分∠EBC.若∠DCE=40°,则∠O=°.三.解答题19.计算:(1)(﹣t)5÷(﹣t)3•(﹣t)2;(2)(2a﹣b)(a﹣2b).20.分解因式:(1)m3﹣4m2+4m;(2)a(a﹣1)+a﹣1.21.先化简,再求值:(2a﹣b)2﹣(2a﹣3b)(2a+3b),其中,a=,b=1.22.解方程组:.23.(1)解不等式﹣≤1,并把解集在数轴上表示出来.(2)解不等式组并写出它的所有整数解.24.如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE的度数.25.如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,EF交AD于点O,求证∠E=∠F.26.新冠肺炎疫情期间,某口罩厂为了满足疫情防控需求,决定拨款456万元购进A、B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A、B两种型号的口罩机各多少台;(2)现有200万只口罩的生产任务,计划安排口罩机共15台同时进行生产.若工人每天工作8h,若要在5天内完成任务,则至少安排A种型号的口罩机多少台?27.【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC=°;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含m、n 的代数式表示)2019-2020学年江苏省南京市联合体七年级(下)期末数学试卷参考答案与试题解析一.选择题(共8小题)1.计算a6÷a2的结果是()A.a2B.a3C.a4D.a5【分析】根据同底数幂的除法法则:底数不变,指数相减进行计算,然后即可作出判断.【解答】解:a6÷a2=a4,故选:C.2.某红外线遥控器发出的红外线波长为0.0000009米,用科学记数法表示这个数是()A.9×10﹣7B.9×10﹣8C.0.9×10﹣7D.0.9×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000009=9.4×10﹣7;故选:A.3.已知a>b,则下列不等关系中正确的是()A.ac>bc B.a+c>b+c C.a﹣1>b+1D.ac2>bc2【分析】根据不等式的基本性质对各选项分析判断后利用排除法求解.【解答】解:A、不等式两边都乘以c,当c<0时,不等号的方向改变,原变形错误,故此选项不符合题意;B、不等式两边都加上c,不等号的方向不变,原变形正确,故此选项符合题意;C、不等式的两边一边加1一边减1,不等号的方向不确定,原变形错误,故此选项不符合题意;D、不等式的两边都乘以c2,当c=0时,变为等式,原变形错误,故此选项不符合题意.故选:B.4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数是()A.35°B.45°C.50°D.65°【分析】根据a∥b,可得∠3=∠1=40°,再根据AB⊥BC,可得∠ABC=90°,进而可得∠2的度数.【解答】解:如图,∵a∥b,∴∠3=∠1=40°,∵AB⊥BC,∴∠ABC=90°,∴∠2+∠3=180°﹣90°=90°,∴∠2=90°﹣∠3=50°.故选:C.5.如图,已知CB∥DF,则下列结论成立的是()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠2=180°【分析】根据两条直线平行,同位角相等,即可判断.【解答】解:∵CB∥DF,∴∠2=∠3(两条直线平行,同位角相等).故选:B.6.下列命题是真命题的是()A.如果a2=b2,那么a=bB.如果两个角是同位角,那么这两个角相等C.相等的两个角是对项角D.平面内,垂直于同一条直线的两条直线平行【分析】利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.【解答】解:A、如果a2=b2,那么a=±b,故错误,是假命题;B、两直线平行,同位角才想到,故错误,是假命题;C、相等的两个角不一定是对项角,故错误,是假命题;D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,故选:D.7.《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为()A.B.C.D.【分析】设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,分别利用已知“今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子”分别得出等量关系求出答案.【解答】解:设上等稻子每捆打x斗谷子,下等稻子每捆打y斗谷子,根据题意可列方程组为:.故选:C.8.关于x的不等式x﹣a≥1.若x=1是不等式的解,x=﹣1不是不等式的解,则a的范围为()A.﹣2≤a≤0B.﹣2<a<0C.﹣2≤a<0D.﹣2<a≤0【分析】根据x=1是不等式x﹣a≥1的解,且x=﹣1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=1是不等式x﹣a≥1的解,∴1﹣a≥1,解得:a≤0,∵x=﹣1不是这个不等式的解,∴﹣1﹣a<1,解得:a>﹣2,∴﹣2<a≤0,故选:D.二.填空题(共10小题)9.计算:20=1,()﹣3=8.【分析】利用零指数幂的运算法则和负整数指数幂的运算法则解答即可.【解答】解:20=1,=8,故答案为:1,8.10.若三角形有两边长分别为2和5,第三边为a,则a的取值范围是3<a<7.【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和.【解答】解:5﹣2<a<5+2,∴3<a<7.故答案为:3<a<7.11.命题:“两直线平行,则同旁内角互补”的逆命题为同旁内角互补,两直线平行.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“两直线平行,同旁内角互补”的题设是“两直线平行”,结论是“同旁内角互补”,故其逆命题是“同旁内角互补,两直线平行”.故应填:同旁内角互补,两直线平行.12.分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).13.已知是方程2x﹣ay=3的一个解,则a的值是.【分析】把方程的解代入方程可得到关于a的方程,解方程即可求得a的值.【解答】解:∵是方程2x﹣ay=3的一个解,∴2×1﹣(﹣2)×a=3,解得a=,故答案为:.14.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=300°.【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故答案为:300°.15.已知2a=3,4b=5,则2a+2b的值是15.【分析】根据幂的乘方运算法则以及同底数幂的乘法法则计算即可.【解答】解:∵2a=3,4b=5,∴2a+2b=2a•22b=2a•4b=3×5=15.故答案为:15.16.若a﹣b=3,ab=1,则a2+b2=11.【分析】根据题意,把a﹣b=3两边同时平方可得,a2﹣2ab+b2=9,结合题意,将a2+b2看成整体,求解即可.【解答】解:∵a﹣b=3,ab=1,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2ab=9+2=11.故应填:11.17.已知不等式组有3个整数解,则n的取值范围是﹣3≤n<﹣2.【分析】表示出不等式组的解集,由解集中3个整数解确定出n的范围即可.【解答】解:,解得:n<x<1,由不等式组有3个整数解,得到整数解为﹣2,﹣1,0,则n的取值范围是﹣3≤n<﹣2.故答案为:﹣3≤n<﹣218.如图,C是线段AB上一点,∠DAC=∠D,∠EBC=∠E,AO平分∠DAC,BO平分∠EBC.若∠DCE=40°,则∠O=125°.【分析】利用平角的定义可得∠ACD+∠BCE=180°﹣∠DCE=180°﹣40°=140°,由角平分线的性质易得==55°,由三角形的内角和定理可得结果.【解答】解:∵∠DCE=40°,∴∠ACD+∠BCE=180°﹣∠DCE=180°﹣40°=140°,∵∠DAC=∠D,∠EBC=∠E,∴2∠DAC+2∠CBE=180°×2﹣140°=220°,∴∠DAC+∠CBE=110°,∵AO平分∠DAC,BO平分∠EBC,∴==55°,∴∠O=180°﹣(∠OAB+∠OBA)=180°﹣55°=125°,故答案为:125.三.解答题19.计算:(1)(﹣t)5÷(﹣t)3•(﹣t)2;(2)(2a﹣b)(a﹣2b).【考点】46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法;4B:多项式乘多项式.【专题】512:整式;66:运算能力.【分析】(1)直接利用同底数幂的乘除运算法则计算得出答案;(2)直接利用多项式乘多项式进而计算得出答案.【解答】解:(1)原式=(﹣t)5﹣3+2=(﹣t)4=t4;(2)原式=2a2﹣4ab﹣ab+2b2=2a2﹣5ab+2b2.20.分解因式:(1)m3﹣4m2+4m;(2)a(a﹣1)+a﹣1.【考点】55:提公因式法与公式法的综合运用.【专题】44:因式分解;66:运算能力.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式整理后,利用平方差公式分解即可.【解答】解:(1)原式=m(m2﹣4m+4)=m(m﹣2)2;(2)原式=a2﹣a+a﹣1=a2﹣1=(a+1)(a﹣1).21.先化简,再求值:(2a﹣b)2﹣(2a﹣3b)(2a+3b),其中,a=,b=1.【考点】4J:整式的混合运算—化简求值.【专题】512:整式;66:运算能力.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a 与b的值代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣4a2+9b2=﹣4ab+10b2,当a=,b=1时,原式=﹣4××1+10×12=﹣2+10=8.22.解方程组:.【考点】98:解二元一次方程组.【分析】利用代入消元法将二元一次方程组转化为一元一次方程,进而解方程组求出答案.【解答】解:,由①得:x=﹣1﹣3y③,把③代入②得:3(﹣1﹣3y)﹣2y=8,解得:y=﹣1,则x=﹣1﹣3×(﹣1)=2,故二元一次方程组的解为:.23.(1)解不等式﹣≤1,并把解集在数轴上表示出来.(2)解不等式组并写出它的所有整数解.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式;CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【专题】524:一元一次不等式(组)及应用;66:运算能力.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:2(3x+1)﹣(5x﹣1)≤4,去括号,得:6x+2﹣5x+1≤4,移项、合并,得:x≤1,将不等式的解集表示在数轴上如下:(2)由3﹣x>0得:x<3,由+1≥x得:x≥﹣1,不等式组的解集是﹣1≤x<3,∴所有整数解是﹣1.0,1,2.24.如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE的度数.【考点】JA:平行线的性质;K7:三角形内角和定理.【专题】551:线段、角、相交线与平行线;67:推理能力.【分析】利用平行线的性质定理可得∠ABC=∠ADE=48°,由三角形的内角和定理可得∠EBC的度数,可得∠ABE.【解答】解:∵DE∥BC,∠ADE=48°,∴∠ABC=∠ADE=48°,∵BE是AC边上的高,∴∠BEC=90°,∵∠C=62°,∴∠EBC=90﹣∠C=28°,∴∠ABE=∠ABC﹣∠EBC=48°﹣28°=20°.25.如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,EF交AD于点O,求证∠E=∠F.【考点】JA:平行线的性质.【专题】14:证明题;551:线段、角、相交线与平行线;67:推理能力.【分析】根据AB∥CD可得∠BAD=∠ADC,再根据AE平分∠BAD,DF平分∠ADC可得∠EAD=∠F AD,所以得AE∥FD,进而得证∠E=∠F.【解答】证明:∵AB∥CD,∴∠BAD=∠ADC,∵AE平分∠BAD,DF平分∠ADC,∴∠EAD=∠BAD,∠F AD=∠ADC,∴∠EAD=∠F AD,∴AE∥FD,∴∠E=∠F.26.新冠肺炎疫情期间,某口罩厂为了满足疫情防控需求,决定拨款456万元购进A、B两种型号的口罩机共30台.两种型号口罩机的单价和工作效率如表:单价/万元工作效率/(只/h)A种型号164000B种型号14.83000(1)求购进A、B两种型号的口罩机各多少台;(2)现有200万只口罩的生产任务,计划安排口罩机共15台同时进行生产.若工人每天工作8h,若要在5天内完成任务,则至少安排A种型号的口罩机多少台?【考点】8A:一元一次方程的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【专题】524:一元一次不等式(组)及应用;69:应用意识.【分析】(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台,利用拨款456万元购进A、B两种型号的口罩机共30台,分别得出等式求出答案;(2)根据现有200万只口罩的生产任务,得出不等关系进而得出答案.【解答】解:(1)设购进A种型号的口罩生产线x台,B种型号的口罩生产线y台.根据题意,得:,解得:.答:购进A种型号的口罩生产线10台,B种型号的口罩生产线20台.(2)设租用A种型号的口罩机m台,则租用B种型号的口罩机(15﹣m)台,根据题意,得:5×8×[4 000m+3 000(15﹣m)]≥2 000 000,解得:m≥5,答:至少购进A种型号的口罩机5台.27.【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”.【问题解决】(1)如图②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分线BD交AC于点D,则∠BDC=85或100°;(2)如图③,在△ABC中,BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP,求∠A的度数;【延伸推广】(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.若∠A=m°,∠B=n°,直接写出∠BPC的度数.(用含m、n 的代数式表示)【考点】K8:三角形的外角性质.【专题】2B:探究型;32:分类讨论;64:几何直观;66:运算能力;67:推理能力.【分析】(1)根据题意可得∠B的三分线BD有两种情况,画图根据三角形的外角性质即可得∠BDC的度数;(2)根据BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,且BP⊥CP可得∠ABC+∠ACB=135°,进而可求∠A的度数;(3)根据∠B的三分线所在的直线与∠ACD的三分线所在的直线交于点P.分四种情况画图:情况一:如图①,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时;情况二:如图②,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时;情况三:如图③,当BP和CP分别是“邻BC三分线”、“邻AC三分线”时;情况四:如图④,当BP和CP分别是“邻AB三分线”、“邻CD三分线”时,再根据∠A=m°,∠B=n°,即可求出∠BPC的度数.【解答】解:(1)如图,当BD是“邻AB三分线”时,∠BD′C=70°+15°=85°;当BD是“邻BC三分线”时,∠BD″C=70°+30°=100°;故答案为:85或100;(2)∵BP⊥CP,∴∠BPC=90°,∴∠PBC+∠PCB=90°,又∵BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=90°,∴∠ABC+∠ACB=135°,在△ABC中,∠A+∠ABC+∠ACB=180°∴∠A=180°﹣(∠ABC+∠ACB)=45°.(3)分4种情况进行画图计算:情况一:如图①,当BP和CP分别是“邻AB三分线”、“邻AC三分线”时,∴∠BPC=∠A=m;情况二:如图②,当BP和CP分别是“邻BC三分线”、“邻CD三分线”时,∴∠BPC=∠A=m;情况三:如图③,当BP和CP分别是“邻BC三分线”、“邻AC三分线”时,∴∠BPC=∠A+∠ABC=m+n;情况四:如图④,当BP和CP分别是“邻AB三分线”、“邻CD三分线”时,①当m>n时,∠BPC=∠A﹣∠ABC=m﹣n;②当m<n时,∠P=∠ABC﹣∠A=n﹣m.。
2023-2024学年江苏省南京市鼓楼区七年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市鼓楼区七年级(下)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)甲骨文是我国古代的一种文字,是汉字的早期形式,下列甲骨文中,能大致用平移来分析其形成过程的是()A.B.C.D.2.(2分)计算2﹣1的值为()A.2B.C.﹣2D.﹣13.(2分)下列运算正确的是()A.a2•a3=a6B.a3÷a=a3C.(﹣a2)3=a5D.(a2b)3=a6b34.(2分)不等式3x+1>0的最小整数解是()A.﹣1B.0C.1D.25.(2分)“抖空竹”是国家级非物质文化遗产,也是大家钟爱的运动之一.在公园里,小聪看到小女孩在抖空竹(图1),抽象得到图2,在同一平面内,已知AB∥CD,∠A=70°,∠ECD=110°,则∠E的度数为()A.20°B.30°C.40°D.50°6.(2分)在矩形ABCD中将边长分别为a和b的两张正方形纸片(a>b)按图1和图2两种方式放置(两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1、图2中阴影部分的面积分别为S1,S2.当时,的值为()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)用不等式表示“a的一半与b的和不小于0”是.8.(2分)我国某品牌手机以其创新的5nm工艺领先世界,其中5nm=0.000000005m,用科学记数法表示0.000000005是.9.(2分)已知是方程2mx﹣y=﹣1(m为常数)的解,则m的值为.10.(2分)已知实数a,b,c在数轴上的位置如图所示,则ac bc.(填“>”“<”或“=”)11.(2分)如图,在同一平面内,∠1+∠2=180°,∠3=70°,则∠4=°.12.(2分)若整式4x2+kx+1可以写成一个多项式的平方,则常数k的值为.13.(2分)若某一多边形的所有外角都为60°,则该多边形的内角和为°.14.(2分)“方程”二字最早见于我国数学经典著作《九章算术》,该书的第八章名为“方程”.如从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,即可表示方程x+4y=23,则将中两个方程联立成方程组可表示为_______ 15.(2分)有一个两位数,它的个位上的数为a,十位上的数为b,如果交换它个位和十位上的数,使得到的两位数比原来的两位数大18,那么a,b的数量关系为.16.(2分)如图,点D,E,F分别在△ABC的各边上,DE∥AC,DF∥AB.将△ABC沿DE翻折,使得点B落在B′处,沿DF翻折,使得点C落在C′处.若∠B′DC′=40°,则∠A=°.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(1)(2a2)3﹣a8÷a2;(2)(a+b﹣1)(a﹣b﹣1).18.(6分)分解因式:(1)2a2﹣8ab+8b2;(2)a2(x﹣y)+b2(y﹣x).19.(8分)解二元一次方程组:(1);(2).20.(5分)解不等式组并在数轴上表示该不等式组的解集.21.(5分)如图,在△ABC中,点D,E分别在边AB,AC上,∠B=∠C,∠A=40°.(1)求∠B的度数;(2)若∠ADE=∠AED,求证DE∥BC.22.(6分)如图,点C在∠AOB的边OB上,过C作DE∥OA,CF平分∠BCD,CG⊥CF于C.(1)若∠BCG=55°,求∠DCF;(2)过O作OH∥CF,交DE于点H,求证:OH平分∠AOB.23.(7分)某超市准备购进A,B两种商品,进3件A,4件B需要270元;进5件A,2件B需要310元;该超市将A种商品每件的售价定为80元,B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A,B两种商品共40件,其中A种商品的数量不低于B种商品数量的一半,该商店有几种进货方案?24.(7分)一个正方形边长为a+4(a为常数,a>0),记它的面积为S1.将这个正方形的一组邻边长分别增加2和减少2,得到一个长方形,记该长方形的面积为S2.(1)求S2(用含a的代数式表示).(2)小丽说无论a为何值,S1与S2的差都不变,你同意她的观点吗?为什么?(3)将原正方形一组邻边分别增加4和减少3,得到一个长方形,记该长方形的面积为S3,比较S2与S3的大小.25.(9分)如图1,正方形甲、乙、丙的边长分别为a,b,c,且a+b<c.(1)如图2,将正方形甲、乙拼接在一起,沿着外边框可以画出一个大正方形,用两种不同的方法表示这个大正方形的面积为或,从而可以得到一个乘法公式为;(2)如图3,将正方形甲、乙、丙拼接在一起,沿着外边框可以画出一个大正方形,类比(1)的思路进行思考,直接写出所得到的等式;(3)用正方形甲、乙、丙构造恰当的图形,说明(p﹣m﹣n)2<p2﹣m2﹣n2.26.(9分)在几何软件中,将△ABC和△DEF按图1所示的方式摆放,其中∠ACB=∠DFE=90°,∠D =45°,∠ABC=30°,点D,A,F,B在同一条直线上,E在B的正上方,且EB<ED.(1)如图1,将△DEF绕点F顺时针旋转,当BC第一次与DE平行时,∠DFA=°;(2)将图1中的△DEF绕点E逆时针旋转一定角度使点D落在边BC上,过E作EG∥BC,直线DM 平分∠FDB,直线EN平分∠GED交直线DM于点N.在图2中按以上叙述补全图形(无需尺规作图),并直接写出∠END的度数.(3)如图3,将图1中的△ABC绕点B逆时针旋转.①当BC∥DE时,连接AF,BF,则∠DFA﹣∠FAB=°;②若∠E与∠ABC的角平分线所在直线相交于点Q,∠EQB=27°,直接写出∠DBA的度数.2023-2024学年江苏省南京市鼓楼区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】根据图形平移的性质解答即可.【解答】解:由图可知A,B,D不是平移得到,C是利用图形的平移得到.故选:C.【点评】本题考查了生活中的平移现象,熟知图形平移不变性的性质是解答此题的关键.2.【分析】直接利用负整数指数幂的性质,负整数指数幂:a﹣p=(a≠0,p为正整数),计算得出答案.【解答】解:2﹣1=.故选:B.【点评】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键.3.【分析】分别进行同底数幂的乘除法、积的乘方和幂的乘方等运算,然后选择正确答案.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、a3÷a=a2,原式计算错误,故本选项错误;C、(﹣a2)3=﹣a6,原式计算错误,故本选项错误;D、(a2b)3=a6b3,原式计算正确,故本选项正确;故选:D.【点评】本题考查了同底数幂的乘除法、积的乘方和幂的乘方等知识,掌握运算法则是解答本题的关键.4.【分析】根据一元一次不等式组的解法求出x的范围,然后再找出最小整数解.【解答】解:3x+1>0,3x>﹣1,x>﹣,x的最小整数解为x=0,故选:B.【点评】本题考查一元一次不等式的整数解,解题的关键是熟练运用一元一次不等式组的解法,本题属于基础题型.5.【分析】延长DC交AE于M,由平行线的性质推出∠CME=∠A=70°,由三角形外角的性质得到∠E=∠DCE﹣∠CME=40°.【解答】解:延长DC交AE于M,∵AB∥CD,∴∠CME=∠A=70°,∵∠ECD=110°,∴∠E=∠DCE﹣∠CME=40°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,关键是由平行线的性质推出∠CME=∠A=70°,由三角形外角的性质求出∠E的度数.6.【分析】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【解答】解:由图可得,S1=AD•AB﹣a2﹣b(AD﹣a),S2=AD•AB﹣a2﹣b(AB﹣a),S2﹣S1=[AD•AB﹣a2﹣b(AB﹣a)]﹣[AD•AB﹣a2﹣b(AD﹣a)]=AD•AB﹣a2﹣b(AB﹣a)﹣AD•AB+a2+b(AD﹣a)=﹣b•AB+ab+b•AD﹣ab=b(AD﹣AB),∵AD=AB,∴S2﹣S1=b(AD﹣AB)=b•AB,∴==.故选:B.【点评】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看作整体的代数式通常要用括号括起来.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.【分析】首先表示出a的一半为a,与b的和表示为:a+b,再根据不小于0可列出不等式.【解答】解:由题意得:a+b≥0.故答案为:a+b≥0.【点评】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8.【分析】先把5nm转化为用米作单位,再用科学记数法表示即可.【解答】解:∵1nm=0.000000001m,∴5nm=5×0.000000001m=0.000000005m=5×10﹣9m,故答案为:5×10﹣9.【点评】本题考查了用科学记数法表示绝对值小于1的数;关键是确定n与a的值,1≤|a|<10,n等于原数中左起第一个非零数前零的个数.9.【分析】把是代入方程2mx﹣y=﹣1得关于m的方程,解方程即可.【解答】解:把知是代入方程2m+3=﹣1得:2m=﹣4,m=﹣2,故答案为:﹣2.【点评】本题主要考查了二元一次方程的解,解题关键是熟练掌握二元一次方程的解是使方程左右两边相等的未知数的值.10.【分析】直接利用数轴判断得出:a<0,b<0,c>0,a>b即可求解.【解答】解:如图所示:a<0,b<0,a>b,c>0,∴ac>bc,故答案为:>.【点评】本题考查的是实数大小比较,实数与数轴,解题的关键是先判断出各数的符号.11.【分析】根据平行线的判定与性质、邻补角定义求解即可.【解答】解:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠5=70°,∵∠4+∠5=180°,∴∠4=110°,故答案为:110.【点评】此题考查了平行线的判定与性质、邻补角定义,熟记平行线的判定定理与性质定理是解题的关键.12.【分析】先根据完全平方式得出kx=±2×2x×1,再求出答案即可.【解答】解:4x2+kx+1=(2x)2+kx+12,∵整式4x2+kx+1可以写成一个多项式的平方,∴kx=±2×2x×1,∴k=±4.故答案为:±4.【点评】本题考查了完全平方式,能熟记完全平方式(完全平方式有a2+2ab+b2和a2﹣2ab+b2两个)是解此题的关键.13.【分析】根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,据内角和定理即可求得内角和.【解答】解:多边形的边数是:360÷60=6,则多边形的内角和是:(6﹣2)×180=720°.即这个多边形内角和是720°.故答案为:720.【点评】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便.14.【分析】一个竖线表示一个,一条横线表示一十,仿照图写出答案.【解答】解:根据题知:从左到右列出的算筹数分别表示方程中未知数x,y的系数与相应的常数项,一个竖线表示一个,一条横线表示一十,左边:x+2y=22;右边:2x+2y=33,联立成方程组得:,故答案为:.【点评】本题考查根据图意列方程,解题的关键是读懂题意,依据等量关系列出方程.15.【分析】根据题意,可得出原两位数为:10b+a,新两位数为:10a+b,得到的两位数比原来的两位数大18,可得:10a+b﹣(10b+a)=18,即可知:a=b+2.【解答】解:根据题意可知,原两位数为:10b+a,交换个位和十位上的数,得出新两位数为:10a+b,∵得到的两位数比原来的两位数大18,∴10a+b﹣(10b+a)=18,∴9a﹣9b=18,∴a=b+2,故答案为:a=b+2.【点评】本题考查的是列代数式,根据题意正确列出代数式是解题的关键.16.【分析】设∠EDB=x°,根据折叠可知∠B′DE=∠EDB=x°,因此∠EDC′=x°﹣40°,从而得到∠CDC′=180°﹣∠BDE﹣∠EDC′=220°﹣2x°,由折叠可得∠CDF=∠CDC′=110°﹣x °,再根据DE∥AC,可得∠C=∠EDB=x°,在△DFC中,∠DFC=180°﹣∠C﹣∠CDF=70°,根据DF∥AB,得到∠A=∠DFC=70°.【解答】解:设∠EDB=x°,∵△ABC沿DE翻折,点B落在B′处,∴∠B′DE=∠EDB=x°,∵∠B′DC′=40°,∴∠EDC′=x°﹣40°,∴∠CDC′=180°﹣∠B′DE﹣∠EDC′=220°﹣2x°,∵△ABC沿DF翻折,点C落在C′处,∴∠CDF=∠CDC′=110°﹣x°,∵DE∥AC,∴∠C=∠EDB=x°,在△DFC中,∠DFC=180°﹣∠C﹣∠CDF=70°,∵DF∥AB,∴∠A=∠DFC=70°.故答案为:70°.【点评】本题考查平行线的性质、折叠的性质、三角形的内角和定理等知识.三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.【分析】(1)先算积的乘方和同底数幂的除法,再合并同类项即可;(2)先变形,然后根据平方公式计算,再根据完全平方公式计算.【解答】解:(1)(2a2)3﹣a8÷a2=8a6﹣a6=7a6;(2)(a+b﹣1)(a﹣b﹣1)=[(a﹣1)+b][(a﹣1)﹣b]=(a﹣1)2﹣b2=a2﹣2a+1﹣b2.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键,注意完全平方公式和平方差公式的应用.18.【分析】(1)先提取公因式,再应用完全平方公式进行因式分解即可得出答案;(2)先给(y﹣x)提取“﹣”号,可得a2(x﹣y)+b2(x﹣y),再提取公因式(x﹣y)即可得出答案.【解答】解:(1)原式=2(a2﹣4ab+4b2)=2(a﹣2b)2;(2)原式=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).【点评】本题主要考查了因式分解,熟练应用因式分解的方法合理进行运算是解决本题的关键.19.【分析】(1)(2)用加减消元法解方程组即可.【解答】(1);②×2,得:2x﹣4y=8③①﹣③,得7y=﹣7,y=﹣1,将y=﹣1代入③得:2x﹣4×(﹣1)=8,解此一元一次方程得,x=2,故原方程组的解为:;(2),①×3,得:3x﹣y﹣2=3,3x﹣y=5③,③﹣②,得x=4,将x=4代入③,得12﹣y=5,y=7.故原方程组的解为.【点评】本题考查二元一次方程组的解法,解题的关键是熟练掌握加减消元法、代入消元法解方程组,属于中考常考题型.20.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x<2,∴不等式组的解集为:﹣2≤x<2.所以该不等式组在数轴上表示的解集为:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.21.【分析】(1)由三角形内角和定理得到∠B=(180°﹣40°)=70°;(2)由三角形内角和定理推出∠B=∠ADE,即可证明DE∥BC.【解答】(1)解:∵∠B=∠C,∠A=40°,∴∠B=(180°﹣40°)=70°;(2)证明:∵∠A+∠ADE+∠AED=180°,∠ADE=∠AED,∴∠A+2∠ADE=180°,∵∠A+∠B+∠C=180°,∠B=∠C,∴∠A+2∠B=180°,∴∠B=∠ADE,∴DE∥BC.【点评】本题考查平行线的判定,三角形内角和定理,关键是由三角形内角和定理求出∠B的度数,推出∠B=∠ADE.22.【分析】(1)根据平行线的性质和角平分线的性质,可以求得∠DCF;(2)根据平行线的性质和角平分线的定义可以求得∠AOH和∠BOH的关系,从而可以证明结论成立.【解答】(1)解:∵CG⊥CF,∴∠FCG=90°,∴∠BCF=∠FCG﹣∠BCG=90°﹣55°=35°,∵CF平分∠BCD,∴∠DCF=∠BCF=35°;(2)证明:∵CF平分∠BCD,∴∠BCF=∠BCD,∵DE∥OA,∴∠AOB=∠BCD∵OH∥CF,∴∠BCF=∠BOH,∴∠BOH=∠AOB,∴∠AOH=∠BOH,∴OH平分∠AOB.【点评】本题考查平行线的性质、垂线的定义等知识,解答本题的关键是熟记平行线的性质定理.23.【分析】(1)设A种商品每件的进价为x元,则B种商品每件的进价是(x﹣20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A种商品m件,则购进B种商品(40﹣m)件,由题意得关于a的不等式组,解得m的取值范围,再取整数解,则方案数可得.【解答】解:(1)设A种商品每件进价为x元,B种商品每件进价为y元.由题得,解得:,∴A种商品每件进价50元,B种商品每件进价30元.(2)设购进A种商品m件,则购进B种商品(40﹣m)件.白题每,解得,∵m为正整数,∴m取14,15,16,17∴共有四种进货方案.【点评】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.24.【分析】(1)根据题意列式,再运用多项式乘多项式的运算方法进行求解;(2)通过计算S1﹣S2的结果进行辨别;(3)先根据题意列式表示出S3,再通过作差法对S2与S3的大小进行讨论、比较.【解答】解:(1)由题意得,;(2)同意.∵S1﹣S2=(a+4)2﹣(a2+8a+12)=a2+8a+16﹣a2﹣8a﹣12=4,∴同意小丽的观点,无论a为何值,S1与S2的差都不变;(3)由题意得,S3=(a+4+4)(a+4﹣3)=(a+8)(a+1)=a2+9a+8,∴S3﹣S2=(a2+9a+8)﹣(a2+8a+12)=a﹣4,当a>4时,S3>S2当a=4时,S3=S2;当0<a<4时,S3<S2.【点评】此题考查了整式混合运算的应用能力,关键是能准确根据题意列式,并运用整式运算方法进行正确地计算、比较.25.【分析】(1)根据拼图的方法,从“整体”和“部分”两个方面分别用代数式表示其面积即可;(2)由(1)的方法可得答案;(3)画出图形,结合面积的计算方法即可得出结论.【解答】解:(1)图2从“整体”上看是边长为a+b的正方形,因此面积为(a+b)2,拼成图2的四个部分的面积和为a2+2ab+b2,因此有(a+b)2=a2+b2+2ab,故答案为:(a+b)2,a2+b2+2ab,(a+b)2=a2+b2+2ab;(2)图3从“整体”上看是边长为a+b+c的正方形,因此面积为(a+b+c)2,拼成图3的九个部分的面积和为a2+b2+c2+2ab+2bc+2ac,因此有(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)如图,正方形A的面积为(p﹣m﹣n)2,阴影部分面积为p2﹣m2﹣n2,由图形面积之间关系可说明(p﹣m﹣n)2<p2﹣m2﹣n2.【点评】本题考查完全平方公式、平方差公式的几何背景,掌握完全平方公式、平方差公式的结构特征是正确解答的关键.26.【分析】(1)∠BFM=180°﹣135°﹣30°=15°,∠DFA=∠BFM=15°;(2)2(α+β)=45°+2β,解得:α=22.5°,得出∠END=α=22.5°;(3)①先画出图形,计算可得∠DFA﹣∠FAB=15°或165°;②当Q在两条角平分线左下侧时,当△ABC绕点B逆时针旋转会有两种情况,当Q在两条角平分线右上侧时,当△ABC绕点B逆时针旋转会有两种情况,分类讨论即可.【解答】解:(1)将△DEF绕点F顺时针旋转至第一次BC∥DE,延长DF交BC于点M,∵BC∥DE,∠D=45°,∴∠BMF=180°﹣45°=135°,∵∠ABC=30°,∴∠BFM=180°﹣135°﹣30°=15°,∴∠DFA=∠BFM=15°,故答案为:15;(2)补全图形如下:过点N作NQ∥BC,设∠END=α,∠DNQ=β,则∠ENQ=α+β,∵EG∥BC,∴EG∥BC∥NQ,∴∠GEN=∠ENQ=α+β,∠MDB=∠DNQ=β,∵EN为∠GED的平分线,DM为∠FDB的平分线,∴∠GED=2∠GEN=2(α+β),∠FDB=2∠MDB=2β,∵∠EDF=45°,∴∠EDB=∠EDF+∠FDB=45°+2β,∵EG∥BC,∴∠GED=∠EDB,∴2(α+β)=45°+2β,解得:α=22.5°,∴∠END=α=22.5°;(3)①当△ABC绕点B逆时针旋转第一次BC∥DE时,由题意可得D,F,B同一条直线上,如图,∵ED∥BC,∠D=45°,∴∠CBD=45°,∵∠ABC=30°,∴∠ABF=15°,根据三角形外角等于与它不相邻的两个内角之和,∴∠DFA﹣∠FAB=∠ABF=15°,当△ABC绕点B逆时针旋转第二次BC∥DE时,如图所示,由题意可得D,F,B同一条直线上,∵ED∥BC,∠D=45°,∴∠CBD=180°﹣45°=135°,∵∠ABC=30°,∴∠ABF=135°+30°=165°,根据三角形外角等于与它不相邻的两个内角之和,∴∠DFA﹣∠FAB=∠ABF=165°,故答案为15或165;②当Q在两条角平分线左下侧时,当△ABC绕点B逆时针旋转会有两种情况,如图所示,∵∠ACB=∠DFE=90°,∠D=45°,∴∠DEF=45°,∵QE是∠DEF的角平分线,∴,∴∠DMQ=45°+22.5°=67.5°,又∵∠EQB=27°,∴∠MBQ=∠DMQ﹣∠EQB=67.5°﹣27°=40.5°,∵QB是∠ABC的角平分线,∠ABC=30°,∴,∴∠DBA=∠MBQ﹣∠ABQ=40.5°﹣15°=25.5°,同理可得∠DBA'=154.5°,当Q在两条角平分线右上侧时,当△ABC绕点B逆时针旋转会有两种情况,如图所示,∵∠ACB=∠DFE=90°,∠D=45°,∴∠DEF=45°,∵QE是∠DEF的角平分线,∴,∴∠DMQ=45°+22.5°=67.5°,又∵∠EQB=27°,∴∠MBQ=180°﹣∠DMQ﹣∠EQB=180°﹣67.5°﹣27°=85.5°,∵QB是∠ABC的角平分线,∠ABC=30°,∴,∴∠DBA=∠MBQ+∠ABQ=85.5°+15°=100.5°,同理可得∠DBA'=79.5°,综上可得∠DBA的度数为79.5°或100.5°或25.5°或154.5°.【点评】此题主要考查了图形的旋转及性质,平行线的性质,角平分线的定义,三角形内角和及外角的应用,解答此题关键是准确识图,熟练掌握图形的旋转变换,理解两直线平行的性质。
2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷(解析版)

2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .203.(2分)下列计算正确的是( ) A .22321a a -= B .22423m m m += C .2222ab a b a b -+=D .22234m m m -=-4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 ;3-的倒数是 .10.(2分)单项式22ab -的系数是 ,次数是 .11.(2分)比较大小:3- 2.5-(填“>”、“ <”或“=” ). 12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 C ︒.星期 星期一 星期二 星期三 星期四 星期五 星期六 星期日 气温/C ︒0~62~7-1~6-2~5-4~3-5~3-2~913.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 .14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 . 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 . 16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 .17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 .18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 .三、解答题(本大题共8小题,共64分) 19.(16分)计算:(1)42-+= ;42--= ;42-⨯= ;42-÷= . (2)3(4)8(2)⨯--÷-; (3)1511()()361224-+÷-(4)422(13)12(4)---⨯÷-. 20.(9分)计算: (1)3257x y x y -++-; (2)222(5)(23)x x x x ---+.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元); 星期一 星期二 星期三 星期四 星期五 星期六星期日 本周合计 27-70-2001383-m120n(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = . (2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费. (1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <, (1)原点O 的位置在 ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A与点B 之间,且靠近点B (2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” ) ②化简:|1||1|a b -++.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离. 【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况: 情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索 【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.2019-2020学年江苏省南京市栖霞区、雨花区、江宁区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)如下表,检测4个排球,其中超过标准的克数记为正数,不足的克数记为负数.最接近标准的是( )A .甲B .乙C .丙D .丁【分析】由已知和要求,只要求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.【解答】解:通过求4个排球的绝对值得: | 1.5| 1.5-=,|0.5|0.5-=,|0.6|0.6-=, 0.5-的绝对值最小.所以乙球是最接近标准的球. 故选:B .【点评】此题考查学生对正负数及绝对值的意义掌握,解答此题首先要求出四个球标准的克数和低于标准的克数的绝对值进行比较. 2.(2分)计算186()2-÷-的结果是( )A .4-B .5C .13D .20【分析】直接利用有理数的混合运算法则计算得出答案. 【解答】解:原式812=+ 20=.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键. 3.(2分)下列计算正确的是( ) A .22321a a -=B .22423m m m +=C .2222ab a b a b -+=D .22234m m m -=-【分析】根据合并同类项的法则即可求出答案. 【解答】解:22232a a a -=,故选项A 不合题意; 22223m m m +=,故选项B 不合题意;2ab -与22a b 不是同类项,所以不能合并,故选项C 不合题意; 22234m m m -=-,正确,故选项D 符合题意.故选:D .【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.(2分)在 3.14-、0、|2|--、π、0.3030030003⋯、227中,无理数有( ) A .1 个B .2 个C .3 个D .4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解: 3.14-是有限小数,属于有理数;0是整数,属于有理数;|2|2--=-,是整数,属于有理数;227是分数,属于有理数. ∴无理数有π、0.3030030003⋯共2个.故选:B .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数. 5.(2分)下列说法中,正确的是( ) A .任意两个有理数的和必是有理数 B .任意有理数的绝对值必是正有理数 C .任意两个无理数的和必是无理数 D .任意有理数的平方必定大于或等于它本身【分析】直接利用有理数的性质以及无理数的性质分别分析得出答案. 【解答】解:A 、任意两个有理数的和必是有理数,正确;B 、任意有理数的绝对值必是正有理数,错误,利用0的绝对值等于0;C 、任意两个无理数的和必是无理数,错误,利用0=;D 、任意有理数的平方必定大于或等于它本身,错误,例如2(0.1)0.010.1=<.故选:A .【点评】此题主要考查了实数运算,正确掌握相关性质是解题关键.6.(2分)下列说法:①a -一定是非正数;②||a --一定是负数;③相反数等于它本身的数是0;④绝对值大于它本身的数是负数.其中所有正确的序号为( ) A .①②B .②③C .①③D .③④【分析】根据绝对值的性质,有理数的分类对各小题分析判断即可得解. 【解答】解:①a -不一定是非正数;故不符合题意; ②||a --一定是0或负数;故不符合题意; ③相反数等于它本身的数是0;故符合题意; ④绝对值大于它本身的数是负数.故符合题意; 故选:D .【点评】本题考查了正数和负数,以及绝对值的性质,解题时应熟练掌握有理数的分类,此题难度不大,易于掌握.7.(2分)若||1a …,则21a -是( ) A .正数B .负数C .非正数D .非负数【分析】根据绝对值的意义解答即可. 【解答】解:因为||1a …, 所以11a -剟, 所以210a -…, 即21a -是非正数. 故选:C .【点评】此题考查绝对值的意义,非负数的性质,以及有理数的分类,解题的关键是掌握绝对值的意义.8.(2分)如果0a b +>,且0b <,那么a 、b 、a -、b -的大小关系为( ) A .a b a b <-<-<B .b a a b -<<-<C .a b b a <<-<-D .a b b a -<<-<【分析】根据有理数的加法法则得出0a >,||||a b >,再比较即可. 【解答】解:0a b +>Q ,0b <,0a ∴>,||||a b >,a b b a ∴-<<-<,故选:D .【点评】本题考查了有理数的大小比较和有理数的加法,能根据有理数的加法法则得出0a >和||||a b >是解此题的关键.二、填空题(每小题2分,共20分)9.(2分)3-的相反数是 3 ;3-的倒数是 . 【分析】根据倒数以及相反数的定义即可求解.【解答】解:3-的相反数是3;3-的倒数是13-.故答案是:3,13-.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(2分)单项式22ab -的系数是 4- ,次数是 .【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式22ab -的系数是224-=-,次数是2. 故答案为:4-,2.【点评】考查了单项式的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.(2分)比较大小:3- < 2.5-(填“>”、“ <”或“=” ). 【分析】根据两个负数比较大小,其绝对值大的反而小比较即可. 【解答】解:|3|3-=,| 2.5| 2.5-=, 3 2.5>Q , 3 2.5∴-<-,故答案为:<.【点评】本题考查了有理数的大小,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.(2分)某市未来一周的天气预报如下表,未来一周中一天温差最大为 9C ︒.【分析】先求出每天的温差,再比较即可.【解答】解:606-=,7(2)9--=,6(1)7--=,5(2)7--=,3(4)7--=,3(5)8--=,927-=,所以未来一周中一天温差最大为9C ︒, 故答案为:9.【点评】本题考查了有理数的大小比较和有理数的减法,能求出每天的温差是解此题的关键. 13.(2分)拒绝“餐桌浪费”,意义重大,据统计全国每年浪费的粮食总量约为50000000000千克,50000000000千克用科学记数法表示为 10510⨯千克 .【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将50 000 000 000千克用科学记数法表示为:10510⨯千克. 故答案为:10510⨯千克.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(2分)“除以一个不为0的数,等于乘这个数的倒数”用字母可以表示为 1(0)a b a b b÷=⨯≠ .【分析】根据题意直接用字母表示出来即可. 【解答】解:根据题意得: 1(0)a b a b b÷=⨯≠;故答案为:1(0)a b a b b÷=⨯≠.【点评】此题考查了列代数式,解题的关键是读懂题意,用字母表示出来. 15.(2分)若62m x y -与16n x y +的和为0,那么n m +的值为 8 . 【分析】根据合并同类项的法则即可求出答案. 【解答】解:62m x y -Q 与16n x y +的和为0,16n ∴+=,26m =,解得3m =,5n =, 538n m ∴+=+=.故答案为:8.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.16.(2分)如果5x y -=,2m n +=,则()()y m x n +--的值是 3- . 【分析】直接去括号进而把已知代入求出答案. 【解答】解:5x y -=Q ,2m n +=, ()()y m x n ∴+-- ()y x m n =-++ 52=-+3=-.故答案为:3-.【点评】此题主要考查了整式的加减运算,正确将原式变形是解题关键.17.(2分)已知数轴上有A 、B 两点,点A 表示的数是1-,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 2或4- . 【分析】根据数轴上两个点之间的距离即可求解.【解答】解:因为点A 表示的数是1-,A 、B 两点之间的距离为3, 所以点B 表示的数是2或4-.【点评】本题考查了数轴,解决本题的关键是距离点A 三个单位长度的点有两个. 18.(2分)如图所示的运算程序中,若第1次输入的x 的值为3-,则第100次输出的结果为 3 .【分析】由图示知,当输入的数大于5时,输出12x ;当输入的数小于4时,输出3x +,按此规律计算即可.【解答】解:把3x =-代入程序中,得330-+=,把0x =代入程序中,得033+=,把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, 把3x =代入程序中,得336+=,把6x =代入程序中,得1632⨯=, ⋯我们发现,从第3次开始,结果以6,3循环,(1002)249-÷=,则第100次输出的结果为3.故答案为:3.【点评】本题考查了代数式求值,根据图示程序正确代入求值是解题的关键.三、解答题(本大题共8小题,共64分)19.(16分)计算:(1)42-+= 2- ;42--= ;42-⨯= ;42-÷= .(2)3(4)8(2)⨯--÷-;(3)1511()()361224-+÷- (4)422(13)12(4)---⨯÷-.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用有理数的混合运算法则计算得出答案;(3)直接利用乘法分配律计算得出答案;(4)直接利用有理数的混合运算法则计算得出答案.【解答】解:(1)422-+=-;426--=-;428-⨯=-;422-÷=-;故答案为:2-;6-;8-;2-;(2)原式124=-+8=-;(3)原式151(24)(24)(24)3612=⨯--⨯-+⨯- 8202=-+-10=;(4)原式162416=-+÷292=-. 【点评】此题主要考查了有理数的混合运算,正确掌握相关计算法则是解题关键.20.(9分)计算:(1)3257x y x y -++-;(2)222(5)(23)x x x x ---+.【分析】(1)直接合并同类项进而计算得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)3257x y x y -++-(35)(27)x y =-++-25x y =-;(2)222(5)(23)x x x x ---+2221023x x x x =--+-283x x =--.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.21.(6分)先化简,再求值:2222232(23)3(23)ab a b ab a b ab --+-,其中2a =-,12b =. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式222222346692ab a b ab a b ab a b =-++-=,将2a =-,12b =代入得:原式12442=⨯⨯=. 【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.(6分)某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元);(1)若星期六的盈亏数m 为300,则本周合计盈亏数n = 658 .(2)请用含本周合计盈亏数n 的代数式表示星期六的盈亏数m .【分析】(1)根据题意列出代数式,把300m =代入解答即可;(2)根据题意列出代数式解答即可.【解答】解:(1)把300m =代入2770200138312027702001383300120658n m =--++-++=--++-++=;故答案为:658;(2)根据题意可得:20013812032770m n =---+++,即358m n =-【点评】此题考查列代数式,关键是根据题意列出代数式解答即可.23.(6分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4x =时,阴影部分的面积.(π取3.14)【分析】图中阴影部分的面积=正方形的面积-半圆面积2⨯.【解答】解:阴影部分的面积224x x π=-当4x =时,2224 3.144 3.444x x π-=-⨯=.【点评】要能从图中找到阴影部分的面积是有哪些规则图形的差或者和组成的,分别找到其面积进行和差运算.此题中的关系主要是图中阴影部分的面积=正方形的面积-半圆面积2⨯.24.(5分)为鼓励居民节约用水,某市对居民用水收费实行“阶梯水价”,按每年用水量统计,不超过200立方米的部分按每立方米3元收费;超过200立方米不超过300立方米的部分按每立方米5元收费;超过300立方米的部分按每立方米6元收费.(1)设每年用水量为x 立方米,请用含x 的代数式表示全年应缴水费;(2)小明家预计2019年全年用水量为320立方米,那么按“阶梯水价”收费,他家全年应缴水费多少元?【分析】(1)分别利用:①当0200x <… 时,②当200300x <… 时,③当300x > 时,分别得出关系式即可;(2)直接把320x =代入函数关系式求出答案.【解答】解:(1)①当0200x <… 时,用水量3x =②当200300x <… 时,用水量6005(200)5400x x =+-=-③当300x > 时,用水量6005006(300)6700x x =++-=-;(2)由题意可得:670063207001220x -=⨯-= (元).【点评】此题主要考查了列代数式,正确分类讨论是解题关键.25.(6分)如图,数轴上的A 、B 两点所表示的数分别为a 、b ,0a b +<,0ab <,(1)原点O 的位置在 C ;A .点A 的右边B .点B 的左边C .点A 与点B 之间,且靠近点AD .点A 与点B 之间,且靠近点B(2)若2a b -=,①利用数轴比较大小:a 1,b 1-;(填“>”、“ <”或“=” )②化简:|1||1|a b -++.【分析】(1)由0ab <,0a b +<,可知a ,b 异号,故原点O 的位置在点A 与点B 之间;(2)①由2a b -=结合(1)的结论,可知1a <,1b >-;②根据绝对值的定义化简即可.【解答】解:(1)0ab <Q ,0a b +<,∴原点O 的位置在点A 与点B 之间,且靠近点A .故答案为:C(2)①2a b -=Q ,原点O 的位置在点A 与点B 之间,且靠近点A ,1a ∴<,1b <-,故答案为:<、<;②1a <Q ,1b <-,10a ∴-<,10b +<,|1||1|11a b a b a b ∴-++=-+--=--.【点评】本题主要考查数轴和绝对值,熟练掌握绝对值的定义是解题的关键.26.(10分)已知a b >,a 与b 两个数在数轴上对应的点分别为点A 、点B ,求A 、B 两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a b >,则有以下情况:情况一、若0a >,0b …,如图,A 、B 两点之间的距离:||||AB a b a b =-=-;⋯⋯(1)补全小明的探索【应用】(2)若点C 对应的数c ,数轴上点C 到A 、B 两点的距离相等,求c .(用含a 、b 的代数式表示)(3)若点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍,请探索n 的取值范围与点D 个数的关系,并直接写出a 、b 、d 、n 的关系.【分析】(1)分三种情况讨论求解;(2)根据两点间的距离公式即可求解;(3)根据两点间的距离公式即可求解.【解答】解:(1)情况二:若0a …,0b < 时,A 、B 两点之间的距离:||AB a b a b =+=-; 情况三:若0a <,0b < 时,A 、B 两点之间的距离:||||AB b a a b =-=-;(2)Q 点C 对应的数c ,点C 到A 、B 两点的距离相等,a c cb ∴-=-,2c a b ∴=+,即1()2c a b =+; (3)Q 点D 对应的数d ,数轴上点D 到A 的距离是点D 到B 的距离的(0)n n >倍, ()a d n d b ∴-=-,(1)a nb d n ∴+=+.【点评】本题考查了数轴,绝对值,数轴上两点间的距离的表示,准确列出等式是解题的关键.。
2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷解析版

2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号写在括号内)1.(2分)﹣7的相反数是()A.﹣7B.﹣C.7D.12.(2分)下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1B.﹣3(x﹣1)=﹣3x+1C.﹣3(x﹣1)=﹣3x﹣3D.﹣3(x﹣1)=﹣3x+33.(2分)某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元4.(2分)下列说法:①正整数、负整数和零统称为整数;②面积为2的正方形的边长a可以用数轴上的点表示;③绝对值相等的两个非零有理数的商为1,其中正确的是()A.①②B.①③C.②③D.①②③5.(2分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.46.(2分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在空格内)7.(2分)写出一个负有理数.8.(2分)﹣ab2的系数是,次数是.9.(2分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为.10.(2分)比较大小:﹣0.6﹣.11.(2分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是.12.(2分)若4a2b2n+1与﹣a m b3是同类项,则m+n=.13.(2分)数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为.14.(2分)把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.(2分)在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),使计算所得数最小,则这个最小数是.16.(2分)如图,圆桌周围有20个箱子,按顺时针方向编号1~20,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2020圈,求4号箱内有颗红球.三、解答题(本大题共10小题,共68分.)17.(12分)计算:(1)12﹣7﹣15;(2)(﹣4)﹣(﹣5)﹣5.5﹣3(3)(﹣3)××(﹣)×(4)(﹣12)÷(﹣4)×18.(6分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2)﹣12+[(﹣4)2﹣(1﹣32)×2]19.(6分)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.20.(6分)某文具店在一周的销售中,盈亏情况如表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.(6分)已知a>0,b<0,且a+b<0,请利用数轴比较a,b,﹣a,﹣b的大小,并用“<”号连接.22.(6分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④;⑤1+3+5+7+9=52;…(2)请写出第n个等式;(3)利用(2)中的等式,计算21+23+25+ (99)23.(6分)父亲看到嘉悦在做一道数学题:“化简:(ax2+6x+8)﹣(6x+5x2+2)”.(1)父亲说:“如果这个问题的标准答案是常数,你能得到a的值么?”(2)父亲又说:“若代入x=﹣1,则这个式子的值是﹣2,你能求出a的值么?”请帮助嘉悦完成这两个任务,并说明理由.24.(6分)如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是,第n个正方形内圆的个数是.(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积.(结果保留π)②若a=10,请直接写出第2014个正方形中阴影部分的面积.(结果保留π)25.(6分)根据“算法”的约定:在数值转换机中,输入或输出的值写在“平行四边形”框内,计算程序(或步骤)写在“长方形”框内,菱形框则用于对结果作出是否符合要求的判定.因此画数值转换机必须注意框图的选择.(1)如图,当输入数字为1时,数值转换机输出的结果为;(2)嘉悦的爸爸存入1年期的定期储蓄10000元(假定1年期定期储蓄的年利率为4%)到期后本息和(本金和利息的和)自动转存1年期的定期储蓄.请画出数值转换机,并求出转存几次就能使本息和超过11000元?26.(8分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.2019-2020学年江苏省南京市鼓楼区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号写在括号内)1.(2分)﹣7的相反数是()A.﹣7B.﹣C.7D.1【分析】根据相反数的概念解答即可.【解答】解:﹣7的相反数为7,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2分)下列运算正确的是()A.﹣3(x﹣1)=﹣3x﹣1B.﹣3(x﹣1)=﹣3x+1C.﹣3(x﹣1)=﹣3x﹣3D.﹣3(x﹣1)=﹣3x+3【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选:D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.3.(2分)某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打8折B.原价打8折后再减去10元C.原价减去10元后再打2折D.原价打2折后再减去10元【分析】首先根据“折”的含义,可得x变成x,是把原价打8折后,然后再用它减去10元,即是x﹣10元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣10)元出售,是把原价打8折后再减去10元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.4.(2分)下列说法:①正整数、负整数和零统称为整数;②面积为2的正方形的边长a可以用数轴上的点表示;③绝对值相等的两个非零有理数的商为1,其中正确的是()A.①②B.①③C.②③D.①②③【分析】①根据整数的定义即可得结论;②面积为2的正方形的边长为,数轴上的点与实数一一对应即可得结论;③根据绝对值的意义即可得结论.【解答】解:①正确.正整数、负整数和零统称为整数.②正确.面积为2的正方形的边长为,可以用数轴上的点表示.③错误.绝对值相等的两个非零有理数的商为±1.故选:A.【点评】本题考查了有理数的分类、绝对值、有理数的除法,解决本题的关键是熟练运用以上知识.5.(2分)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1B.2C.3D.4【分析】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点评】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.6.(2分)数线上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述何者正确?()A.在A的左边B.介于A、C之间C.介于C、O之间D.介于O、B之间【分析】根据O、A、B、C四点在数轴上的位置和绝对值的定义即可得到结论.【解答】解:∵c<0,b=5,|c|<5,|d﹣5|=|d﹣c|,∴BD=CD,∴D点介于O、B之间,故选:D.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在空格内)7.(2分)写出一个负有理数﹣1.【分析】有理数包括正有理数、负有理数和0,所以所写的数只要小于0即可.【解答】解:所写的数只要小于0即可.例如﹣1.答案不唯一.【点评】本题主要考查负数的定义,为开放题,答案不唯一.8.(2分)﹣ab2的系数是﹣,次数是3.【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【解答】解:单项式﹣ab2的系数是﹣,次数是3,故答案为:﹣,3.【点评】此题主要考查了单项式,关键是掌握单项式的相关定义.9.(2分)2019年5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为7.8×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据7800000用科学记数法表示为7.8×106.故答案为:7.8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)比较大小:﹣0.6>﹣.【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:|﹣0.6|=0.6,|﹣|=,∵0.6<,∴﹣0.6>﹣.【点评】本题考查了绝对值和有理数的大小比较等知识点,能熟记有理数的大小比较的法则的内容是解此题的关键,注意:两个负数比较大小,其绝对值大的反而小.11.(2分)如果a﹣b﹣2=0,那么代数式1+2a﹣2b的值是5.【分析】将所求式子化简后再将已知条件中a﹣b=2整体代入即可求值;【解答】解:∵a﹣b﹣2=0,∴a﹣b=2,∴1+2a﹣2b=1+2(a﹣b)=1+4=5;故答案为5.【点评】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键.12.(2分)若4a2b2n+1与﹣a m b3是同类项,则m+n=3.【分析】根据同类项的定义求出m、n,再代入求出即可.【解答】解:∵4a2b2n+1与﹣a m b3是同类项,∴m=2,2n+1=3,∴n=1,∴m+n=2+1=3,故答案为:3.【点评】本题考查了同类项的定义,能熟记同类项定义的内容是解此题的关键,所含字母相同,并且相同字母的指数也相同的项,叫同类项.13.(2分)数学是一种重视归纳、抽象表述的学科,例如:“符号不同,绝对值相同的两个数互为相反数;0的相反数是0”可以用数学符号语言表述为:a+b=0,那么有理数的减法运算法则可以用数学符号语言表述为a﹣b =a+(﹣b).【分析】根据有理数的减法法则解答即可.【解答】解:有理数的减法运算法则:减去一个数,等于加上这个数的相反数.∴有理数的减法运算法则可以用数学符号语言表述为:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b)【点评】本题主要考查了有理数的解法,熟记运算法则是解答本题的关键.14.(2分)把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为1000m+n.【分析】根据题意两位数乘以1000加上后三位数即可列出代数式.【解答】解:∵五位数是两位数m乘以1000,后边的三位数是n,∴组成的五位数为1000m+n.例如:23456=23×1000+456.故答案为1000m+n.【点评】本题考查了列代数式,解决本题的关键是理解题意准确列出代数式.15.(2分)在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),使计算所得数最小,则这个最小数是﹣107.【分析】把运算符号添加好,计算即可求出值.【解答】解:1﹣2×6×9=1﹣108=﹣107,故答案为:﹣107【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.(2分)如图,圆桌周围有20个箱子,按顺时针方向编号1~20,小明先在1号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.他沿着圆周走了2020圈,求4号箱内有674颗红球.【分析】根据图形的变化规律即可求解.【解答】解:根据题意,可知第1圈红球在1、4、7、10、13、16、19号箱内,第2圈红球在2、5、8、11、14、17、20号箱内,第3圈红球在3、6、9、12、15、18号箱内,第4圈红球在1、4、7、10、13、16、19号箱内,…且第1、4、7、10…2020圈会在4号箱内丢一颗红球,所以1+3(n﹣1)=2020(n为正整数)解得n=674.故答案为674.【点评】本题考查了图形的变化规律问题,解决本题的关键是寻找规律式.三、解答题(本大题共10小题,共68分.)17.(12分)计算:(1)12﹣7﹣15;(2)(﹣4)﹣(﹣5)﹣5.5﹣3(3)(﹣3)××(﹣)×(4)(﹣12)÷(﹣4)×【分析】(1)原式利用减法法则计算即可求出值;(2)原式利用减法法则变形,计算即可求出值;(3)原式利用乘法法则计算即可求出值;(4)原式从左到右依次计算即可求出值.【解答】解:(1)原式=12﹣22=﹣10;(2)原式=﹣4﹣3+5﹣5.5=﹣8;(3)原式=﹣3×××=﹣;(4)原式=12××=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)计算:(1)2×(﹣3)3﹣4×(﹣3)+15(2)﹣12+[(﹣4)2﹣(1﹣32)×2]【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=2×(﹣27)+12+15=﹣54+27=﹣27;(2)原式=﹣1+16+16=31.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(6分)先化简,再求值:5x2+4﹣3x2﹣5x﹣2x2﹣5+6x,其中x=﹣3.【分析】原式合并同类项,得到最简结果,将x的值代入计算,即可求出值.【解答】解:原式=(5﹣3﹣2)x2+(﹣5+6)x+(4﹣5)=x﹣1,当x=﹣3时,原式=﹣3﹣1=﹣4.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.20.(6分)某文具店在一周的销售中,盈亏情况如表(盈余为正,单位:元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?【分析】利用加减法法则,先计算星期六的盈亏钱数,再怕门店星期六的盈亏..【解答】解:458﹣188+27.8+70.3﹣200﹣138.1+8=38因为38>0,所以星期六盈利了,盈余38元.【点评】本题考查了有理数的加减及正负数的意义,利用加减法计算出星期六的钱数是解决本题的关键.21.(6分)已知a>0,b<0,且a+b<0,请利用数轴比较a,b,﹣a,﹣b的大小,并用“<”号连接.【分析】根据已知条件吧a、b、﹣a、﹣b在数轴上表示出来,再比较即可.【解答】解:∵a>0,b<0,且a+b<0,∴|b|>|a|,在数轴上表示为:b<﹣a<a<﹣b.【点评】本题考查了数轴、有理数的加法法则和有理数的大小比较等知识点,能正确在数轴上表示出各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.22.(6分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④1+3+5+7=42;⑤1+3+5+7+9=52;…(2)请写出第n个等式;(3)利用(2)中的等式,计算21+23+25+ (99)【分析】(1)由1+3+5+7=16,16=42,即可得出结论;(2)由部分点阵图对应的等式,可得出第n个点阵图对应的等式;(3)由(2)的结论结合21+23+25+…+99=(1+3+…+99)﹣(1+3+…+19),即可求出结论.【解答】解:(1)1+3+5+7=16=42.故答案为:1+3+5+7=42.(2)∵1=12,1+3=22,1+3+5=32,1+3+5+7=42,1+3+5+7+9=52,…,∴1+3+…+(2n﹣1)=n2.(3)21+23+25+…+99=(1+3+…+99)﹣(1+3+…+19)=502﹣102=2400.【点评】本题考查了规律型:图形的变化类以及有理数的混合运动,根据各等式的变化,找出变化规律是解题的关键.23.(6分)父亲看到嘉悦在做一道数学题:“化简:(ax2+6x+8)﹣(6x+5x2+2)”.(1)父亲说:“如果这个问题的标准答案是常数,你能得到a的值么?”(2)父亲又说:“若代入x=﹣1,则这个式子的值是﹣2,你能求出a的值么?”请帮助嘉悦完成这两个任务,并说明理由.【分析】(1)原式去括号合并后,由结果是常数确定出a的值即可;(2)原式去括号合并后,把x=﹣1代入使其值为﹣2求出a的值即可.【解答】解:原式=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,(1)由标准答案是常数,得到a﹣5=0,解得:a=5;(2)把x=﹣1代入得:a﹣5+6=﹣2,解得:a=﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(6分)如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是16,第n个正方形内圆的个数是n2.(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积.(结果保留π)②若a=10,请直接写出第2014个正方形中阴影部分的面积100﹣25π.(结果保留π)【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④个图形圆的个数是42=16,…;可知第n个正方形中圆的个数为n2个;(2)阴影部分的面积等于正方形的面积减去圆的面积,由此列式后即可得到答案;从而推广运用得到结论.【解答】解:(1)图形①圆的个数是1,图形②圆的个数是4,图形③圆的个数是9,图形④圆的个数是16,…;第n个正方形中圆的个数为n2个;(2)①第一个S阴影=a2﹣π•()2=a2;第二个S阴影=a2﹣4•π•()2=a2;第三个S阴影=a2﹣9•π•()2=a2;②从以上计算看出三个图形中阴影部分的面积均相等,与圆的个数无关.第n图形中阴影部分的面积是S阴影=a2﹣n2•π•()2=a2;当a=10,第2014个阴影部分的面积为×102=100﹣25π.【点评】此题考查了规律型:图形的变化,认真观察图形,发现图形的变化规律,得出第n个正方形中圆的个数为n2个和圆面积的变化是解决此题的关键.25.(6分)根据“算法”的约定:在数值转换机中,输入或输出的值写在“平行四边形”框内,计算程序(或步骤)写在“长方形”框内,菱形框则用于对结果作出是否符合要求的判定.因此画数值转换机必须注意框图的选择.(1)如图,当输入数字为1时,数值转换机输出的结果为26;(2)嘉悦的爸爸存入1年期的定期储蓄10000元(假定1年期定期储蓄的年利率为4%)到期后本息和(本金和利息的和)自动转存1年期的定期储蓄.请画出数值转换机,并求出转存几次就能使本息和超过11000元?【分析】(1)根据数值转换机规定的程序列式计算即可求解;(2)先根据题意画出数值转换机,再根据数值转换机规定的程序列式计算即可求解.【解答】解:(1)12×2﹣6=1×2﹣6=2﹣6=﹣4<5,(﹣4)2×2﹣6=16×2﹣6=32﹣6=26>5.故数值转换机输出的结果为26;(2)如图所示:10000×(1+4%)=10400(元)10400×(1+4%)=10816(元)<11000元,10816×(1+4%)=11248.64(元)>11000元.故答案为:26.【点评】本题考查了有理数的混合运算,解题关键是弄清题意,根据题意把输入数代入,按程序一步一步计算.26.(8分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.【分析】(1)由题意列出方程可求解;(2)分两种情况讨论,列出方程可求解;(3)M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动,结合数轴分类讨论分析即可.【解答】解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或=s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动①如上图,当t1=5s时,P在5,M在16,N在﹣38,再往前一点,MP之间的距离即包含8个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.【点评】本题考查了一元一次方程在数轴上的动点问题中的应用,理清题中的数量关系、数形结合,是解题的关键.。
江苏省南京市2020-2021学年七年级下学期期中考试数学试卷(word版 含答案)

2020~2021学年度第二学期期中学情分析样题七年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卷上,答在本试卷上无效.2.请认真核对监考教师在答题卷上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卷及本试卷上.3.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.在下列图形中,∠1与∠2是同位角的是A .B .C .D .2.计算(-a 2)3的结果是 A .a 5B .-a 5C .a 6D .-a 63.下列各式能用平方差公式计算的是 A .(a +b )(b +a )B .(2a +b )(2b -a )C .(a +1)(-a -1)D .(2a -1)(2a +1)4.如图,点E 在AC 的延长线上,下列条件中不能判断....BD ∥AC 的是 A .∠1=∠2B .∠3=∠4C .∠D =∠DCE D .∠D +∠ACD =180°5.能说明命题“如果|a |=|b |,那么a =b ”是假命题的反例是A .a =2,b =2B .a =-2,b =3C .a =-3,b =3D .a =-3,b =-3 6.如图,两个正方形的边长分别为a 和b ,如果a +b =10,a b =22,那么阴影部分的面积是 A .15B .17C .20B 31 4 2(第4题)ACDE121 21221(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20= ▲ ,2-1= ▲ . 8.多项式3a 2b -6a 3b 各项的公因式是 ▲ .9.新型冠状病毒的直径大约是0.000 000 7米,将0.000 000 7用科学记数法表示为 ▲ .10.已知⎩⎨⎧x =2,y =3是二元一次方程x +ky =-1的一个解,那么k 的值是 ▲ .11.若 2m =3,2n =2,则2m -2n的值为 ▲ .12.已知x 、y 满足方程组⎩⎪⎨⎪⎧x +3y =-1x -y =3 则x +y 的值为 ▲ .13.命题“垂直于同一条直线的两条直线平行”写成“如果…,那么…”的形式为:如果 ▲ ,那么14.公式(a -b )2=a 2a +b )2=a 2+2ab +b 2推导得出,已知 (a +b )3=a 3+3a 2b +3ab 2+b 3,则(a -b )3= ▲ .15.如图,将一张长方形纸片沿EF 折叠后,点D 落在BC 上的点D'处,点C 落在点C'处.若∠DEF =62°,则∠C'F D'= ▲ °.16.如图,AB //DE ,∠C =30°,∠CDE -∠B =110°,则∠CDE = ▲ °.三、解答题(本大题共10小题,共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(1)a 6÷a 2-2a 3·a ; (2)2x (x -2y )-(x -y )2.18.(6分)因式分解:(1)3ab 2+6ab +3a ; (2)a 2(a -b )-4(a -b ).(第15题)ABCDEFD ´C ´AB(第16题)ED, ,19.(7分)先化简,再求值:(m -2n )(m +2n )-(m -2n )2+4n 2,其中m =-2,n =12.20.(7分)解二元一次方程组⎩⎪⎨⎪⎧3x +y =1, ①x -2y =12.②(1)有同学这么做:由②,得x =2y +12.③将③代入①,得3(2y +12)+y =1,解得y =-5,将y =-5代入③,得x =2,所以这个方程组的解为⎩⎨⎧x =2y =-5.该同学解这个方程组的过程中使用了代入消元法,目的是把二元一次方程组转化为 ▲ . (2)请你用加减消元法解该二元一次方程组.21.(5分)如图,点A 、B 、C 、D 在同一条直线上,EC //FD ,∠F =∠E ,求证:AE //BF .将证明过程补充完整,并在括号内填写推理依据. 证明:∵EC //FD ,(已知)∴∠F =∠ ▲ .( ▲ ) ∵∠F =∠E ,(已知)∴∠ ▲ =∠E ,( ▲ ) ∴AE //BF .( ▲ )CDEABF(第21题)1222.(6分)如图,在每个小正方形边长为1的方格纸中,点A 、B 、A 1都在方格纸的格点上. (1)平移线段AB ,使点A 与点A 1重合,点B 与点B 1重合,画出线段A 1B 1; (2)连接AA 1、BB 1,AA 1与BB 1的关系是 ▲ ; (3)四边形ABB 1A 1的面积是 ▲ .23.(6分)同底数幂的乘法公式为:a m ·a n = ▲ (m 、n 是正整数).请写出这一公式的推导过程.24.(6分)观察下列各式:①32-12=4×2; ②42-22=4×3; ③52-32=4×4;……(1)探索以上式子的规律,写出第n 个等式 ▲ (用含n 的字母表示); (2)若式子a 2-b 2=2020满足以上规律,则a = ▲ ,b = ▲ ; (3)计算:20+24+28+ (100)(第22题)A。
2019--2020第二学期期末考试七年级数学试题(附答案)

54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:
2019-2020学年江苏省常州市七年级(下)期末数学试卷 (解析版)

2019-2020学年江苏省常州市七年级第二学期期末数学试卷一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a33.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.106.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=.10.因式分解:x2﹣4=.11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为.12.请写出命题“互为相反数的两个数和为零”的逆命题:.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=°.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为.15.已知2x﹣6y+6=0,则2x÷8y=.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=°.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.19.解方程组或不等式组:(1);(2).20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+44x;②当x=2时,x2+44x;③当x=﹣1时,x2+44x;④自己再任意取一些x的值,计算后猜想:x2+44x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.参考答案一、选择题(共8小题).1.数学课本一张纸的厚度大约是()A.0.1mm B.1cm C.1dm D.1m解:∵0.1mm<1cm<1dm<1m,且经测算数学课本的厚度约为10mm,∴数学课本一张纸的厚度大约是0.1mm.故选:A.2.下列计算中,正确的是()A.a3×a=a4B.(a3)2=a5C.a+a=a2D.a6÷a2=a3解:A.a3•a=a4,故本选项符合题意;B.(a3)2=a6,故本选项不合题意;C.a+a=2a,故本选项不合题意;D.a6÷a2=a4,故本选项不合题意.故选:A.3.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2cm,2cm,4cm B.3cm,4cm,5cmC.1cm,2cm,3cm D.2cm,3cm,6cm解:A、2+2=4,不能组成三角形,故本选项不合题意;B、3+4>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不合题意;D、2+3<6,不能组成三角形,故本选项不合题意.故选:B.4.如果a<b,那么下列不等式中,成立的是()A.a+5>b+5B.﹣2a<﹣2b C.b﹣a<0D.1﹣a>1﹣b 解:A、不等式a<b两边都加上5可得a+5<b+5,故本选项不合题意;B、不等式a<b两边都乘以﹣2可得﹣2a>﹣2b,故本选项不合题意;C、不等式a<b两边都减去b可得a﹣b<0,不等式a﹣b<0都乘以﹣1可得b﹣a>0,故本选项不合题意;D、不等式a<b两边都都乘以﹣1可得﹣a>﹣b,不等式﹣a>﹣b两边都加上1可得1﹣a>1﹣b,故本选项符合题意.故选:D.5.若某个多边形的内角和是外角和的3倍,则这个多边形的边数为()A.4B.6C.8D.10解:多边形的内角和是:3×360=1080°.设多边形的边数是n,则(n﹣2)•180=1080,解得:n=8.即这个多边形的边数是8.故选:C.6.在下列命题中,假命题的是()A.平行于同一直线的两条直线平行B.过一点有无数条直线与已知直线垂直C.两直线平行,同旁内角互补D.有两个角互余的三角形是直角三角形解:A、平行于同一直线的两条直线平行,正确,是真命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线垂直,故原命题错误,是假命题,符合题意;C、两直线平行,同旁内角互补,正确,是真命题,不符合题意;D、有两个角互余的三角形是直角三角形,正确,是真命题,不符合题意;故选:B.7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.8.4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是()A.a=1.5b B.a=2b C.a=2.5b D.a=3b解:由题意可得:S2=4×b(a+b)=2b(a+b);S1=(a+b)2﹣S2=(a+b)2﹣(2ab+2b2)=a2+2ab+b2﹣2ab﹣2b2=a2﹣b2;∵S1=S2,∴2b(a+b)=a2﹣b2,∴2b(a+b)=(a﹣b)(a+b),∵a+b>0,∴2b=a﹣b,∴a=3b.故选:D.二.填空题(本大题共8小题,每小题2分,共16分)9.计算:2x(x﹣3y+1)=2x2﹣6xy+2x.解:2x(x﹣3y+1)=2x2﹣6xy+2x.故答案为:2x2﹣6xy+2x.10.因式分解:x2﹣4=(x+2)(x﹣2).解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).11.某球形病毒颗粒直径约为0.0000001,将0.0000001用科学记数法表示为1×10﹣7.解:0.0000001=1×10﹣7,故答案为:1×10﹣7.12.请写出命题“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数.解:“互为相反数的两个数和为零”的逆命题:和为零的两数互为相反数,故答案为:和为零的两数互为相反数.13.如图,点D是∠AOB的平分线OC上的任意一点,DE∥OB,交OA于点E,若∠AED =50°,则∠1=25°.解:∵DE∥OB,∴∠AED=∠AOB=50°,∵点D是∠AOB的平分线OC上的任意一点,∴∠1=∠AOC=×50°=25°.故答案为:25.14.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为a=5.解:由2x﹣a>﹣3,得x>,∵不等式2x﹣a>﹣3的解集是x>1,∴=1,解得,a=5,故答案为:5.15.已知2x﹣6y+6=0,则2x÷8y=.解:2x﹣6y+6=0,2(x﹣3y)=﹣6,x﹣3y=﹣2,∴2x÷8y=2x÷23y=2x﹣3y=2﹣3=.故答案为:.16.如图,AB∥CD,∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,若∠AEC=80°,则∠AGC=140°.解:过G作GM∥AB,过E作EN∥AB,∵AB∥CD,∴AB∥CD∥GM,EN∥AB∥CD,∴∠BAG=∠AGM,∠MGC=∠DCG,∠BAE=∠AEN,∠DCE=∠NEC,∵∠GAF:∠FAE:∠EAB=∠GCF:∠FCE:∠ECD=1:2:4,∴设∠GAF=x°,∠FAE=2x°,∠EAB=4x°,∠GCF=x°,∠FCE=2x°,∠ECD =4x°,∴∠BAG=7x°,∠GCD=7x°,∠AEN=4x°,∠NEC=4x°,∴∠AGM=7x°,∠MGC=7x°,∠AEC=8x°,∵∠AEC=80°,∴8x=80,∴x=10,∴∠AGC=14x°=140°,故答案为:140.三、解答题(本大题共9小题,共68分.第17、19、20、22.24题每题8分,第18、21、23题每题6分,第25题10分)17.计算:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a).解:(1)(π﹣3.14)0﹣()﹣3+(﹣3)2=1﹣8+9=2;(2)(a﹣2b)2﹣(3a+2b)(2b﹣3a)=a2﹣4ab+4b2﹣(4b2﹣9a2)=a2﹣4ab+4b2﹣4b2+9a2=10a2﹣4ab.18.因式分解:(1)a2b﹣ab;(2)12m3n﹣3mn.解:(1)原式=ab(a﹣1);(2)原式=3mn(4m2﹣1)=3mn(2m+1)(2m﹣1).19.解方程组或不等式组:(1);(2).解:(1),①×2得:2x+4y=0③,③﹣②得:7y=﹣7,解得:y=﹣1,把y=﹣1代入①得:x﹣2=0,解得:x=2,方程组的解为;(2),解不等式①得:x<2,解不等式②得:x>1,不等式组的解集为:1<x<2.20.已知a﹣b=5,ab=1,求下列各式的值:(1)(a+b)2;(2)a3b+ab3.解:(1)原式=(a﹣b)2+4ab=52+4=29;(2)原式=ab(a2+b2)=ab[(a﹣b)2+2ab]=1×(25+2)=27.21.如图,CF⊥AB于点F,ED⊥AB于点D,∠BED=∠CFG,请问:FG与BC平行吗?说明理由.解:FG∥BC,理由是:∵CF⊥AB,ED⊥AB,∴DE∥CF,∴∠BED=∠BCF,∵∠BED=∠CFG,∴∠CFG=∠BCF,∴FG∥BC.22.2020年初,由于新冠病毒的蔓延,口罩市场出现热销,小明的爸爸用18000元购进甲、乙两种型号的口罩,在自家药店销售,销售完后共获利3900元,进价和售价如表所示:甲种型号口罩乙种型号口罩价格型号进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的药店购进甲、乙两种型号的口罩各多少袋?(2)由于需求量大,口罩很快售完,小明的爸爸决定再一次购进甲、乙两种型号的口罩共800袋.如果要使这800袋口罩全部售完后所得利润不低于4500元,那么至少需购进多少袋乙种型号的口罩?解:(1)设小明爸爸的商店购进甲种型号口罩x袋,乙种型号口罩y袋,则,解得:,答:小明爸爸的药店购进甲种型号口罩300袋,乙种型号口罩400袋;(2)设需购进a袋乙种型号的口罩,根据题意得,(25﹣20)(800﹣a)+(36﹣30)a≥4500.解这个不等式,得a≥500.答:至少需购进500袋乙种型号的口罩.23.(1)比较x2+4与4x的大小:(用“>”或“=”或“<”或“≥”或“≤”号填空)①当x=1时,x2+4>4x;②当x=2时,x2+4=4x;③当x=﹣1时,x2+4>4x;④自己再任意取一些x的值,计算后猜想:x2+4≥4x.(2)无论x取什么值,x2+4与4x总有这样的大小关系吗?请说明理由.解:(1)①当x=1时,x2+4=1+4=5,4x=4,∴x2+4>4x;②当x=2时,x2+4=4+4=8,4x=8,∴x2+4=4x;③当x=﹣1时,x2+4=1+4=5,4x=﹣4,∴x2+4>4x;④再任意取一些x的值,计算后可以得到:x2+4≥4x,故答案为:①>;②=;③>;④≥;(2)x2+4﹣4x=(x﹣2)2,∵(x﹣2)2≥0,∴x2+4≥4x.24.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为1<x<4,因为1<3<4,所以称方程2x﹣6=0为不等式组的关联方程.(1)在方程①3x﹣3=0;②x+1=0;③x﹣(3x+1)=﹣9中,不等式组的关联方程是①.(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是x ﹣3=0.(写出一个即可)(3)若方程2x﹣1=x+2,x+5=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.解:(1)解不等式组得﹣1<x<4,解①得:x=1,﹣1<1<4,故①是不等式组的关联方程;解②得:x=﹣,不在﹣1<x<4内,故②不是不等式组的关联方程;解③得:x=4,不在﹣1<x<4内,故③是不不等式组的关联方程;故答案为:①;(2)解不等式组得:<x<因此不等式组的整数解可以为x=3,则该不等式的关联方程为x﹣3=0.故答案为:x﹣3=0.(3)解方程2x﹣1=x+2得,x=3,解方程x+5=2(x+)得,x=4,不等式组,得:,由题意,x=3和x=4是不等式组的解,∴,解得m<﹣10,∴m的取值范围为m<﹣10.25.【基本模型】:如图1,BO平分△ABC的内角∠ABC,CO平分△ABC的外角∠ACD,试证明:∠BOC=∠A;【变式应用】:(1)如图2,直线PQ⊥MN,垂足为点O,作∠PON的角平分线OE,在OE上任取一点A,在ON上任取一点B,连接AB,作∠BAE的角平分线AC,AC的反向延长线与∠ABO的平分线相交于点F,请问:∠F的大小是否随着点A,B位置的变化而变化?若发生变化,请说明理由;若不发生变化,请求出其度数;(2)在(1)的基础上,若FC∥MN,则AB与OE有何位置关系?请说明理由.【解答】【基本模型】证明:∵∠OCD=∠OBC+∠BOC,∠ACD=∠ABC+∠A,∴∠BOC=∠OCD﹣∠OBC,∠A=∠ACD﹣∠ABC,又∵CO平分∠ACD,BO平分∠ABC,∴∠OCD=∠ACD,∠OBC=∠ABC,∴∠OCD﹣∠OBC=(∠ACD﹣∠ABC),∴∠BOC=∠A;【变式应用】解:(1)∠F的大小不变;理由如下:∵PQ⊥MN,∴∠PON=90°,∵OE是∠PON的平分线,∴∠AOB=∠PON=45°,∵∠BAC=∠ABF+∠F,∠BAE=∠ABO+∠AOB,∴∠F=∠BAC﹣∠ABF,∠AOB=∠BAE﹣∠ABO,∵AC、BF分别平分∠BAE、∠ABO,∴∠BAC=∠BAE,∠ABF=∠ABO,∴∠BAC﹣∠ABF=(∠BAE﹣∠ABO),∴∠F=∠AOB=22.5°;(2)AB⊥OE,理由如下:∵FC∥MN,∴∠FBO=∠F=22.5°,∵BF平分∠ABO,∴∠ABO=2∠FBO=45°,∴∠OAB=180°﹣∠AOB﹣∠ABO=90°,∴AB⊥OE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市2019-2020学年七年级下学期期末数
学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 计算的结果是()
A.B.C.D.
2. 某红外线遥控器发出的红外线波长为0.00 000 09米,用科学记数法表示这个数是()
A.B.C.D.
3. 已知a>b,则下列不等关系中正确的是()
A.ac>bc B.a+c>b+c C.a-1>b+1 D.ac2>bc2
4. 如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数是()
A.35°B.45°C.50°D.65°
5. 如图,已知CB∥DF,则下列结论成立的是()
A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠1+∠2=180º
6. 下列命题是真命题的是()
A.如果a2=b2,那么a=b
B.如果两个角是同位角,那么这两个角相等
C.相等的两个角是对项角
D.在同一平面内,垂直于同一条直线的两条直线平行
7. 《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉;下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子;有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打出来的谷子.问上等、下等稻子每捆打多少斗谷子?设上等稻子每捆打斗谷子,下等稻子每捆打斗谷子,根据题意可列方程组为()
A.B.C.D.
8. 关于x的不等式x-a≥1.若x=1是不等式的解,x=-1不是不等式的解,则a的范围为()
A.-2≤a≤0B.-2<a<0 C.-2≤a<0 D.-2<a≤0
二、填空题
9. 计算:__________,__________.
10. 若三角形有两边长分别为2和5,第三边为a,则a的取值范围是______.
11. 写出命题“两直线平行,同旁内角互补.”的逆命题________。
12. 分解因式:a3-a=___________
13. 已知是方程2x﹣ay=3的一个解,则a的值是_____.
14. 如图,、、、是五边形的4个外角,若,则_______°.
15. 已知,,则的值是__________.
16. 若,,则__________.
17. 已知不等式组有3个整数解,则n的取值范围是______.
18. 如图,C是线段AB上一点,∠DAC=∠D,∠EBC=∠E,AO平分∠DAC,BO
平分∠EBC.若∠DCE=40°,则∠O=______°.
三、解答题
19. 计算
(1)
(2)
20. 分解因式(1);(2)
.
21. 先化简,再求值:(2a-b)2-(2a-3b)(2a+3b),其中,a=,b =1.
22. 解方程组
23. (1)解不等式-≤1,并把解集在数轴上表示出来.
(2)解不等式组并写出它的所有整数解.
24. 如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE的度数.
25. 如图,已知,平分,平分,交于点
,求证.
26. 新冠肺炎疫情期间,某口罩厂为生产更多的口罩满足疫情防控需求,决定拨款456万元购进A,B两种型号的口罩机共30台.两种型号口罩机的单价和
单价/万元工作效率/(只/h)
A种型号16 4000
B种型号14.8 3000
(1)求购进A,B两种型号的口罩生产线各多少台.
(2)现有200万只口罩的生产任务,计划安排新购进的口罩机共15台同时进行生产.若工厂的工人每天工作8h,则至少租用A种型号的口罩机多少台才能在5天内完成任务?
27. (概念认识)
如图①,在中,若,则,叫做的“三分线”.其中,是“邻三分线”,是“邻三分线”.
(问题解决)
(1)如图②,在中,,,若的三分线交于点,则°;
(2)如图③,在中,分别是邻三分线和邻
三分线,且,求的度数;
(延伸推广)
(3)在中,是的外角,的三分线所在的直线与
的三分线所在的直线交于点.若,,直接写出的度数.(用含的代数式表示)。