2016中考数学考前冲刺模拟试题及答案(1)

合集下载

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2016年中考模拟数学试卷一(含答案)

2016年中考模拟数学试卷一(含答案)

河南省西华县东王营中学2016年中考模拟数学试卷一一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1.下列各数中,最小的数是( )A.3-2B.25C. 17-D.22.以下是我市著名企事业(新飞电器、心连心化肥、新乡银行、格美特科技)的徽标或者商标,其中既是轴对称图形又是中心对称图形的是( )A B C D 3.2014年巴西世界杯在南美洲国家巴西境内12座城市中的12座球场内举行,本届世界杯的冠军将获得3500万美元的奖励,将3500万用科学记数法表示为( )A.3.5×106B.3.5×l07C.35×l06D.0.35×l084、下列各式计算正确的是( )(A)321-=(B)623a a a÷=(C)235x x x+=(D)236()x x-=-5、用6个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.6、如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是( )A.8,6B.8,5C.52,52D.52,537.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4 cm,如果点C是OB上一个动点,则PC的最小值为( )(C)4 (D)43(A)2 (B)238、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是()。

A.(2011,0)B.(2011,2)C. (2011,1)D. (2010,0)二、填空题(每小题3分,共21分)9.计算:(2+π)0-2|1-sin30°|+(12)-1= .10.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4).将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是.11.一个盒子内装有只有颜色不同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球放回,再摸出一个球,则两次都摸到白球的概率是.12、如图,在△ABC中,AC = BC,∠B = 70°,分别以点A,C为圆心,大于AC 的长为半径作弧,两弧相交于点M,N,作直线MN,分别交AC,BC于点D,E,连接AE,则∠AED的度数是___ .13.抛物线y=x2 -4x+c与x轴交于A、B两点,己知点A的坐标为(1,0),则线段AB的长度为.14.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O 为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EH经过点C,则图中阴影部分的面积为.15. 如图,矩形ABCD中,AB = 6,BC = 8,点F为BC边上的一个动点,把△ABF 沿AF折叠. 当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(a+12a+)÷(a-2+32a+)其中a满足a2-a-2=0.17.(9分)在2015年的政府工作报告中提出了九大热词,某数学兴趣小组就A 互联网+、B民生底线、C中国制造2.0、D能耗强度等四个热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,热词B所在扇形的圆心角的度数是;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?18.(9分)如图,AB为⊙O的直径,点C为AB延长线上一点,动点P从点A 出发沿AC方向以l cm/s的速度运动,同时动点Q从点C出发以相同的速度沿CA 方向运动,当两点相遇时停止运动,过点P作AB的垂线,分别交⊙O于点M和点N,已知⊙O的半径为l,设运动时间为t秒.(1)若AC=5,则当t= 时,四边形AMQN为菱形;当t= 时,NQ与⊙O相切;(2)当AC的长为多少时,存在t的值,使四边形AMQN为正方形?请说明理由,并求出此时t的值.19.(9分)已知关于x的一元二次方程(m -2)x2 + 2mx + m +3 = 0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根. 20.(本题9分)在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得一架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距C处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由.l_东21.(10分)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费.甲厂的总费用y1(干元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示.(l)甲厂的制版费为____千元,印刷费为平均每个元,甲厂的费用y l与证书数量x之间的函数关系式为,(2)当印制证书数量不超过2千个时,乙厂的印刷费为平均每个元;(3)当印制证书数量超过2干个时,求乙厂的总费用Y2与证书数量x之间的函数关系式;(4)若该单位需印制证书数量为8干个,该单位应选择哪个厂更节省费用?请说明理由.22.(10分)问题:如图(1),点E、F 分别在正方形ABCD 的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠EAF与∠BAD满足∠BAD=2∠EAF关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)23、(11分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C (5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2016年东王营中学九年级模拟一(数学)(答案)题号 1 2 3 45 6 78 答案 A D B D DC C B 题号 9 10 1112 13 1415答案 2 8y x =140502142π-23或935-三、解答题(本大题8分,共75分)16.解:原式== ………………2分 = …………………………4分a 2-a -2=0,a =2或a =-1,………………………………6分 当a =-1时,原式无意义 当a =2时,原式=3.…………………………………8分 17、 解:(1)105÷35%=300(人). 故答案为:300;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人). 故答案为:60,90; (3)×360°=72°.故答案为:72°; (4).答:从该校学生中随机抽取一个最关注热词D 的学生的概率是.18、()()()1a 1a 2a 1a 2-+•++1a 1a -+()234212a a 2++-÷+++a a a(9分)(1)53………4分(2)当AC 的长为3时,存在t =1,使四边形AMQN 为正方形.理由如下:∵四边形AMQN 为正方形.∴∠MAN =90º.∴MN 为⊙O 的直径; ∴MN=AQ=2.∴t =AP =12AQ =1, 又∵CQ =t =1,∴AC =AQ +CQ =2+1=3 ………9分 19、 解:(1)∵方程有两个不相等的实数2m 根.∴V =b 2-4ac=(2m)2-4 (m -2)( m +3)>0 ………2分 ∴m <6且m ≠2 ………4分 (2)∵m 取满足条件的最大整数∴m=5 ………5分把m=5代入原方程得:3x 2 + 10x + 8= 0 ………6分解得:124,23x x =-=- ………9分20.(本题9分)解:(1)由题意,得∠BAC =90°. ………(1分)∴BC == ………(3分)∴飞机航行的速度为60=/h . ………(4分) (2)能.……(5分)作CE ⊥l 于点E ,设直线BC 交l 于点F . 在Rt △ ABC中,AC BC ==. 所以∠ABC =30°,即∠BCA=60°.又∵∠CAE =30°,∠ACE =∠FCE =60°,∴CE =AC ·sin ∠CAE =325, AE =AC ·cos ∠CAE =215. 则AF =2AE =15 km . ………(7分)∴AN =AM +MN =14.5+1=15.5 km . ∵AM <AF <AN ,………(8分) ∴飞机不改变航向继续航行,可以落在跑道MN 之间.………(9分) 21.l _ 东(10分)(1)1;0.5;y=0.5x+1;………3分(2)1.5;………4分(3)设y2=kx+b,由图可知,当x=6时,y2=y1=0.5×6+1=4,所以函数图象经过点(2,3)和(6,4)………5分所以把(2,3)和(6,4)代入y2=kx+b,得2364k bk b+=⎧⎨+=⎩,………6分解得1452kb⎧=⎪⎪⎨⎪=⎪⎩,所以y2与x之间的函数关系式为21542y x=+.………8分(4)由图象可知,当x=8时,y1>y2,因此该单位选择乙厂更节省费用 (10)分(求出当x=8时,y1和y2的值,用比较大小的方法得到结论也正确)22.解答:【发现证明】证明:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∴∠GAF=∠FAE,在△GAF和△FAE中,,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109.2(米),即这条道路EF的长约为109.2米.23、解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).。

广西南宁市2016届中考权威预测模拟数学试卷(一)含答案解析

广西南宁市2016届中考权威预测模拟数学试卷(一)含答案解析

2016年广西南宁市中考权威预测模拟数学试卷(一)一、选择题(共12小题,每小题3分,满分36分)1.2016的倒数是()A.2016 B.﹣2016 C.D.﹣2.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.3.下列运算正确的是()A.(2a2)3=6a6B.﹣x6÷x2=﹣x4C.2x+2y=4xy D.(x﹣1)2=x2﹣124.一组数据1,3,2,5,8,7,1的中位数是()A.1 B.2 C.3 D.55.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.106.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.7.把分式方程的两边同时乘以(x﹣3),约去分母,得()A.1+(1﹣x)=1 B.1﹣(1﹣x)=1 C.1+(1﹣x)=x﹣3 D.1﹣(1﹣x)=x﹣38.若x1,x2是一元二次方程x2+ax﹣8=0的两个根,则x1•x2的值是()A.a B.﹣a C.8 D.﹣89.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.1111.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个12.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a3﹣9a=.14.使在实数范围内有意义,x的取值范围是.15.将抛物线y=2(x﹣1)2+1向上平移3个单位,那么平移后得到的抛物线的解析式是.16.如图,在△ABC中∠C=90°,AC=BC=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.17.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是cm.18.如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2,…,如此继续下去,得到△OB2016C2016,则点C2016的坐标为.三、解答题(共8小题,满分66分)19.计算:()﹣1﹣(5﹣π)0﹣|﹣|+4sin60°.20.先化简:(1﹣)÷,再选择一个恰当的a值代入求值.21.如图,在△ABC中,AB=AC,D为BC边的中点,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.22.某中学在“你最喜爱的球类运动”调查中,随机调查了若干名学生(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C 点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).24.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.25.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=,求AC的长.26.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.2016年广西南宁市中考权威预测模拟数学试卷(一)参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.2016的倒数是()A.2016 B.﹣2016 C.D.﹣【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:2016的倒数是.故选C.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面看可得到第一层为2个正方形,第二层左面有一个正方形.故选A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.下列运算正确的是()A.(2a2)3=6a6B.﹣x6÷x2=﹣x4C.2x+2y=4xy D.(x﹣1)2=x2﹣12【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积;单项式的除法,系数除以系数,同底数的幂相除;合并同类项系数相加字母及指数不变;差的平方等于平方和减积的二倍,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法,系数除以系数,同底数的幂相除,故B正确;C、不是同类项不能合并,故C错误;D、差的平方等于平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.一组数据1,3,2,5,8,7,1的中位数是()A.1 B.2 C.3 D.5【考点】中位数.【分析】根据中位数的定义求解即可.【解答】解:这组数据按顺序排列为:1,1,2,3,5,7,8,故中位数为:34.故选C.【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.5.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,周长为12.故选B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】利用一次函数的性质进行判断.【解答】解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图形过第一,二,四象限.故选A.【点评】熟练掌握一次函数的性质.k>0,图象过第1,3象限;k<0,图象过第2,4象限.b>o,图象与y轴正半轴相交;b=0,图象过原点;b<0,图象与y轴负半轴相交.7.把分式方程的两边同时乘以(x﹣3),约去分母,得()A.1+(1﹣x)=1 B.1﹣(1﹣x)=1 C.1+(1﹣x)=x﹣3 D.1﹣(1﹣x)=x﹣3【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母得到结果,即可作出判断.【解答】解:分式方程变形得:+=1,去分母得:1+(x﹣1)=x﹣3,即1﹣(1﹣x)=x﹣3,故选D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.若x1,x2是一元二次方程x2+ax﹣8=0的两个根,则x1•x2的值是()A.a B.﹣a C.8 D.﹣8【考点】根与系数的关系.【分析】由根与系数的关系可得x1•x2=,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2+ax﹣8=0的两个根,∴x1•x2===﹣8.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出x1•x2=.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之积与系数的关系,再套入数据即可.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.11【考点】菱形的性质;平行四边形的判定与性质.【专题】几何图形问题.【分析】根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF 是平行四边形,再根据周长的定义列式计算即可得解.【解答】解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.【点评】本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.11.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.12.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、□OABC的面积与|k|的关系,列出等式求出k值.【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=,S△OAD=,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则++6=4k,k=2.故选B.【点评】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.二、填空题(共6小题,每小题3分,满分18分)13.因式分解:a3﹣9a=a(a+3)(a﹣3).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.使在实数范围内有意义,x的取值范围是x≥2.【考点】二次根式有意义的条件.【专题】探究型.【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.15.将抛物线y=2(x﹣1)2+1向上平移3个单位,那么平移后得到的抛物线的解析式是y=2(x ﹣1)2+4.【考点】二次函数图象与几何变换.【分析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:抛物线y=2(x﹣1)2+1的顶点坐标是(1,1),则抛物线y=2(x ﹣1)2+1向上平移3个单位后的顶点坐标是(1,4),所以,平移后得到的抛物线的解析式是y=2(x ﹣1)2+4.故答案为:y=2(x ﹣1)2+4.【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.16.如图,在△ABC 中∠C=90°,AC=BC=2,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为 π﹣1 .【考点】扇形面积的计算.【分析】连接OC ,作OM ⊥BC ,ON ⊥AC ,证明△OMG ≌△ONH ,则S 四边形OGCH =S 四边形OMCN ,求得扇形FOE 的面积,则阴影部分的面积即可求得.【解答】解:连接OC ,作OM ⊥BC ,ON ⊥AC .∵CA=CB=2,∠ACB=90°,∴AB=2,∵点O 为AB 的中点,∴OC=AB=,四边形OMCN 是正方形,OM=1,则扇形FOE 的面积是: =π,∵OA=OB ,∠AOB=90°,点D 为AB 的中点,∴OC 平分∠BCA ,又∵OM ⊥BC ,ON ⊥AC ,∴OM=ON ,∵∠GOH=∠MON=90°,∴∠GOM=∠HON ,则在△OMG 和△ONH 中,,∴△OMG ≌△ONH (AAS ),∴S 四边形OGCH =S 四边形OMCN =1.则阴影部分的面积是:π﹣1,故答案为:π﹣1.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG ≌△ONH ,得到S 四边形OGCH =S 四边形OMCN 是解题的关键.17.如图,正方形ABCD 的边长为10cm ,E 是AB 上一点,BE=4cm ,P 是对角线AC 上一动点,则PB+PE 的最小值是 2 cm .【考点】轴对称-最短路线问题;正方形的性质.【分析】直接利用正方形的性质,得出B ,D 点关于直线AC 对称,连接BD ,ED ,BP ,进而利用勾股定理得出答案.【解答】解:如图所示:连接BD ,DE ,BP ,由题意可得:B ,D 点关于直线AC 对称,则P 点是ED 与AC 的交点,∵正方形ABCD 的边长为10cm ,BE=4cm ,∴AE=6cm ,AD=10cm ,则EP+BP=ED==2(cm ).故答案为:2.【点评】此题主要考查了利用轴对称求最短路线以及正方形的性质,正确得出P点位置是解题关键.18.如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2,…,如此继续下去,得到△OB2016C2016,则点C2016的坐标为(22016,•22016).【考点】坐标与图形变化-旋转.【专题】规律型.【分析】先解直角三角形求出∠BOC=60°,再求出OC1、OC2、OC3、…、OC2016的长度,再根据周角等于360°,每6次为一个循环,求出点C2016是第几个循环组的第几个点,再根据变化规律写出点的坐标即可.【解答】解:∵∠OBC=90°,且OC=2,BC=,∴sin∠BOC==,∴∠BOC=60°,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2016=22017,∵2016÷6=336,∴点C2016与点C在同一射线上,∴OB2016=OC2016=22016,C2016B2016=OB2016=•22016,∴点C2016的坐标为(22016,•22016).故答案为(22016,•22016).【点评】本题考查了坐标与图形变换:旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了30°角所对的直角边等于斜边的一半.三、解答题(共8小题,满分66分)19.计算:()﹣1﹣(5﹣π)0﹣|﹣|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2﹣1﹣3+4×=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简:(1﹣)÷,再选择一个恰当的a值代入求值.【考点】分式的化简求值.【分析】先算括号里面的减法,再算除法,选出合适的a的值代入进行计算即可.【解答】解:原式=•=,当a=0时,原式=1.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意a的取值保证分式有意义.21.如图,在△ABC中,AB=AC,D为BC边的中点,AE∥BC.(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=2,求DF的长.【考点】作图—基本作图;等腰三角形的性质;等腰直角三角形.【分析】(1)利用角平分线的作法进而得出即可;(2)利用角平分线的性质得出△ADF为等腰直角三角形,进而得出答案.【解答】解:(1)如图所示:(2)∵AB=AC,D为BC边的中点,∴AD⊥BC 即∠ADC=90°,又∵DF平分∠ADC,∴∠ADF=45°,又∵AE∥BC,∴∠DAF=∠ADC=90°,∴△ADF为等腰直角三角形,又∵AD=2,∴DF=2.【点评】此题主要考查了角平分线的性质与画法,得出△ADF为等腰直角三角形是解题关键.22.某中学在“你最喜爱的球类运动”调查中,随机调查了若干名学生(2014•哈尔滨)如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C 点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间水平距离BD的长度;(2)求建筑物CD的高度(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】(1)根据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,利用BD=AB=60,求得两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,根据AF=BD=DF=60,在Rt△AFC 中利用∠FAC=30°求得CF,然后即可求得CD的长.【解答】解:(1)根据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间水平距离BD的长度为60米;(2)延长AE、DC交于点F,根据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.【点评】考查解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的突破点.24.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;(2)求销售单价为多少元时,该商品每天的销售利润最大;(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.方案A:每件商品涨价不超过5元;方案B:每件商品的利润至少为16元.请比较哪种方案的最大利润更高,并说明理由.【考点】二次函数的应用.【分析】(1)利用销量×每件利润=总利润,进而求出即可;(2)利用二次函数的性质得出销售单价;(3)分别求出两种方案的最值进而比较得出答案.【解答】解:(1)根据题意得:w=(25+x﹣20)(250﹣10x)即:w=﹣10x2+200x+1250或w=﹣10(x﹣10)2+2250(0≤x≤25)(2)∵﹣10<0,∴抛物线开口向下,二次函数有最大值,当时,销售利润最大此时销售单价为:10+25=35(元)答:销售单价为35元时,该商品每天的销售利润最大.(3)由(2)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w随x的增大而增大,对称轴右侧w随x的增大而减小方案A:根据题意得,x≤5,则0≤x≤5当x=5时,利润最大最大利润为w=﹣10×52+200×5+1250=2000(元),方案B:根据题意得,25+x﹣20≥16,解得:x≥11则11≤x≤25,故当x=11时,利润最大,最大利润为w=﹣10×112+200×11+1250=2240(元),∵2240>2000,∴综上所述,方案B最大利润更高.【点评】此题主要考查了二次函数的应用,根据题意利用函数性质得出最值是解题关键.25.如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)求证:EF2=4OD•OP;(3)若BC=6,tan∠F=,求AC的长.【考点】圆的综合题.【分析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.(3)根据OA=OC,AD=BD,BC=6,得到OD=BC=3.设AD=x,从而得到tan∠F=,表示出FD=2x,OA=OF=2x﹣3.在Rt△AOD中,由勾股定理求得x后即可求得半径,从而求得直径.【解答】解:(1)连接OB,∵PB是⊙O的切线,∴∠PBO=90°.∵OA=OB,BA⊥PO于D∴AD=BD,∠POA=∠POB.又∵PO=PO,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°∴直线PA为⊙O的切线.(2)∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.∴∠OAD=∠OPA,∴△OAD∽△OPA,∴=,即OA2=OD•OP.又∵EF=2OA,∴EF2=4OD•OP;(3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3.设AD=x,∵tan∠F=,∴FD=2x,OA=OF=2x﹣3.在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32.解之得,x1=4,x2=0(不合题意,舍去).AD=4,OA=2x﹣3=5.∵AC是⊙O的直径,∴AC=2OA=10.【点评】此题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.26.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(﹣3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值;(2)根据(1)得到的函数解析式,可求出D、C的坐标;易证得△OBC是等腰Rt△,若过A作BC的垂线,设垂足为E,在Rt△ABE中,根据∠ABE的度数及AB的长即可求出AE、BE、CE的长;连接AC,设抛物线的对称轴与x轴的交点为F,若∠APD=∠ACB,那么△AEC与△AFP,根据得到的比例线段,即可求出PF的长,也就求得了P点的坐标;(3)当Q到直线BC的距离最远时,△QBC的面积最大(因为BC是定长),可过Q作y轴的平行线,交BC于S;根据B、C的坐标,易求出直线BC的解析式,可设出Q点的坐标,根据抛物线和直线BC的解析式,分别表示出Q、S的纵坐标,即可得到关于QS的长以及Q点横坐标的函数关系式,以QS为底,B、C横坐标差的绝对值为高可得到△QBC的面积,由于B、C横坐标差的绝对值为定值,那么QS最长时,△QBC的面积最大,此时Q离BC的距离最远;可根据上面得到的函数的性质求出QS的最大值及对应的Q点横坐标,然后将其代入抛物线的解析式中,即可求出Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(﹣3,0),∴解得:∴抛物线的解析式为y=﹣x2﹣4x﹣3(2)由y=﹣x2﹣4x﹣3可得D(﹣2,1),C(0,﹣3)∴OB=3,OC=3,OA=1,AB=2可得△OBC是等腰直角三角形∴∠OBC=45°,如图,设抛物线对称轴与x轴交于点F,∴过点A作AE⊥BC于点E∴∠AEB=90°可得,在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,∴△AEC∽△AFP∴,,解得PF=2∵点P在抛物线的对称轴上,∴点P的坐标为(﹣2,2)或(﹣2,﹣2)(3)设直线BC的解析式y=kx+b,直线BC经过B(﹣3,0),C(0,﹣3),∴解得:k=﹣1,b=﹣3,∴直线BC的解析式y=﹣x﹣3设点Q(m,n),过点Q作QH⊥BC于H,并过点Q作QS∥y轴交直线BC于点S,则S点坐标为(m,﹣m﹣3)∴QS=n﹣(﹣m﹣3)=n+m+3∵点Q(m,n)在抛物线y=﹣x2﹣4x﹣3上,∴n=﹣m2﹣4m﹣3∴QS=﹣m2﹣4m﹣3+m+3=﹣m2﹣3m=当m=时,QS有最大值∵BO=OC,∠BOC=90°,∴∠OCB=45°∵QS∥y轴,∴∠QSH=45°∴△QHS是等腰直角三角形;∴当斜边QS最大时QH最大;∵当m=时,QS最大,∴此时n=﹣m2﹣4m﹣3=﹣+6﹣3=;∴Q(﹣,);∴Q点的坐标为(﹣,)时,点Q到直线BC的距离最远.(注:1、如果学生有不同的解题方法,只要正确,可参考评分标准,酌情给分;2、对第(3)题,如果只用△=0求解,扣.理由:△=0判断只有一个交点,不是充分条件)【点评】此题考查了二次函数解析式的确定、相似三角形的判定和性质、函数图象交点及图形面积的求法等知识,综合性强,难度较大.。

2016年中考数学模拟试卷1

2016年中考数学模拟试卷1

中考数学模拟试卷1(满分:150分;考试时间:120分钟 出卷人:英都中学 洪老师)友情提示:所有答案必须填写在答题卡相应的位置上.毕业学校: 姓名: 考生号:一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分. 1.-2016的相反数是( ).A .2016B .-2016C .20161D .-201612.下列计算结果正确的是( )A .2a a a += B . 22(3)6a a = C . 22(1)1a a +=+ D . 2a a a ⋅= 3.如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是( )4.不等式组⎩⎨⎧x +2<3-2x <4的解集是( )A .x >-2B .x <1C .-2<x <1D .x <-25.正六边形的每一个...外角都是( ). A .︒720 B .︒360 C . ︒120 D .︒606.如图,菱形ABCD 的周长为16,∠A =60º,则对角线BD 的长度是()A .B .C .D .A .2B .2 3C .4D .4 3第6题7.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数 是( )A .2B .3C .4D .5二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.-27的立方根是 .9.比较大小:-2 -3(填“>”、“<”或“=”). 10.将562 000 000用科学记数法表示为 . 11.若∠A =30°,则∠A 的补角是 。

12.分解因式:=-92x ____________.13.小华五次跳远的成绩如下(单位:米):3.9、4.1、3.9、3.8、4.2,则这组数据的中位数是 .14.已知⎩⎨⎧-==12y x 是关于x 方程5=-y kx 的一个解,则k =_________ 15.已知梯形的上底长为5cm ,下底长为7cm ,则它的中位线长是 cm . 16.将一个底面半径为6cm ,母线长为12cm 的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是 度.17.如图,矩形ABCD 中,AB =1,BCAC 、BD 相交 于点O ,直线BD 绕点O 逆时针旋转α度,交BC 于点E ,交AD 于点F .第7题F O αABCDE17题图⑴不论α取何值时,四边形AECF 的形状一定是 ; ⑵若四边形AECF 恰好为菱形时,α的值为 .三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:1228)1(3--÷+-+-o π19.(9分)先化简,再求值:(x -3) 2-x(x +3),其中x =2+1.20.(9分)如图,D 是△ABC 边AB 上的一点,DF 交AC 于点E ,AE =EC,CF ∥AB. 求证:AD =CF.21.(9分)一个不透明的布袋里装有3个小球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个小球是白球的概率;(2)摸出1个小球,记下颜色后放回,并搅均,再摸出1个小球.求两次摸出的小球恰好颜色不同的概率.(要求画树状图或列表)22.(9分)为了丰富学生的课外生活,某中学计划对本校七年级10个班的500名学生按“音乐”、“美术”、“体育”三个学科组建课外兴趣小组.从每个班中随机抽取10名学生进行问卷调查,并将统计结果制成如下所示的统计图(不完整). (1)抽样调查样本的容量是 ;(2)请将条形统计图补充完整,并求喜欢“美术”学科的学生人数所对应的圆心角度数; (3)请用抽样调查统计结果估计该校七年级500名学生参加体育课外兴趣小组的人数.23.(9分)已知反比例函数x my 2=(m 为常数)的图象经过点A (1,6). (1)求m 的值;(2)如图,过点A 作直线AC 与函数xmy 2=的图象交于点B , (第20题图) AD B C FE与x轴交于点C,且AB=2BC,连结BO,求△BO C的面积.24.(9分)某货运码头,有稻谷和棉花共2680吨,其中稻谷比棉花多380吨.(1)求稻谷和棉花各是多少?(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地.已知稻谷35吨和棉花15吨可装满一个甲型集装箱;稻谷25吨和棉花35吨可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?25.(13分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。

最新)2016年中考模拟数学试题(含答案)

最新)2016年中考模拟数学试题(含答案)

最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。

A。

4/3443 B。

3443/3 C。

-4/3443 D。

-3443/42.右图是某几何体的三视图,该几何体是()。

A。

圆锥 B。

圆柱 C。

正三棱柱 D。

正三棱锥3.下列运算中正确的是()。

A。

π=1 B。

x2=x C。

2-2=-4 D。

--2=24.不等式组{x≤-2,x-2>1}的解集是()。

A。

x≤-2 B。

x>3 C。

3<x≤-2 D。

无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。

灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。

截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。

科学计数法表示为()元。

A。

8.01×107 B。

80.1×107 C。

8.01×108 D。

0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。

A。

19,15 B。

15,14.5 C。

19,14.5 D。

15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。

A。

115° B。

120° C。

100° D。

80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。

9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。

10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。

2016中考数学模拟试题含答案(精选5套)

2016中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑)1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10 B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五圆弧 角 扇形 菱形 等腰梯形A. B. C. D.类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .(第9题图)(第11题图)(第12题图)16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第17题图)(第18题图)(第21题图)°22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?(第23题图)(第24题图)26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( )A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=CBDE主视图左视图俯视图14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

【真卷】2016年山西省中考数学模拟冲刺试卷及解析PDF(一)


3
16. (3 分)小明和小亮正在按以下三步做游戏: 第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”; 第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”; 第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一 只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同种手势不分胜负. 则小亮获胜的概率为 .
2016 年山西省中考数学模拟冲刺试卷(一)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个 选项中,只有一项符合题目要求,请将正确答案的字母号填入下表相应的空格 内) 1. (3 分)﹣ 的倒数是( A. B.﹣ C.﹣ D. ) )
2. (3 分)下列各式化简结果为无理数的是( A. B. C. D.
2
≠0)上,将△OAB 绕点 O 顺时针旋转 α 度(0<α<360°) ,使点 A 仍落在双曲 线 y= (k≠0)上,则 α 的值不可能是( )
A.30 B.180 C.200 D.210
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11. (3 分)计算|﹣3|﹣(﹣2)= .
9. (3 分)如图,在矩形 ABCD 中,AB=2,AD=3,点 E 是 BC 边上一点,且 BE=1, 动点 P 从点 A 出发,沿路径 A→D→C→E 运动,则△APE 的面积 y 与点 P 经过的 路程长 x 之间的函数关系用图象表示应为( )
A.
B.
C.
D.
10. (3 分)如图,等边△OAB 的边长为 2,点 B 在 x 轴上,点 A 在双曲线 y= (k
三、解答题(本大题共 8 个小题,共 72 分,解答应写出文字说明、证明过程或 演算步骤) 17. (5 分)解不等式组 18. (5 分)先化简 . ,再任选一个适当的整数代入求值.

2016年中考数学模拟试卷及答案(精选两套)

1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。

2016中考数学最新模拟考试试题1

民勤三中2016年中考数学模拟试题(一)2016.5.18一、选择题(每小题3分,共30分)1.-3的倒数是 ( )A .3B .±3C .13D .-132.函数y =x -4中自变量x 的取值范围是 ( ) A .x >4 B .x ≥4 C .x ≤4 D .x ≠43.今年江苏省参加高考的人数约为393 000人,这个数据用科学记数法可表示为 ( )A .393×103B .3.93×103C .3.93×105D .3.93×1064.方程2x -1=3x +2的解为 ( )A .x =1B .x =-1C .x =3D .x =-35.若点A (3,-4)、B (-2,m )在同一个反比例函数的图像上,则m 的值为 ( ) A .6 B .-6 C .12 D .-126.下列图形中,是轴对称图形但不是中心对称图形的是 ( )A .等边三角形B .平行四边形C .矩形D .圆7.tan45º的值为 ( ) A .12 B .1 C .22D . 28.八边形的内角和为 ( ) A .180º B .360º C .1080º D .1440º9.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是 ( )10.如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为 ( ▲ ) A .35 B .45 C .23 D .32二、填空题(每小题3分,共24分) 11.分解因式:8-2x 2= .(第9题)A .B .C .D .(第10题)12.化简2x +6x 2-9得 .13.一次函数y =2x -6的图像与x 轴的交点坐标为 .14.如图,已知矩形ABCD 的对角线长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长等于 cm .15.命题“全等三角形的面积相等”的逆命题...是 命题.(填“真”或“假”) 16.某种蔬菜按品质分成三个等级销售,销售情况如下表:则售出蔬菜的平均单价为 元/千克.17.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于 . 18.某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款 元. 三、解答题19.(本题满分8分)计算:(1)(-5)0-(3)2+|-3|; (2)(x +1)2-2(x -2).20.(本题满分8分)(1)解不等式:2(x -3)-2≤0; (2)解方程组:⎩⎪⎨⎪⎧2x -y =5,………①x -1=12(2y -1).…② A BC D E FGH(第14题)B A CD E (第17题)21.(本题满分8分)已知:如图,AB ∥C D ,E 是AB 的中点,CE =DE .求证:(1)∠AEC =∠BED ;(2)AC =BD .22.(本题满分8分)已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.23.(本题满分6分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达 ( ) A .从不 B .很少 C .有时 D .常常 E .总是答题的学生在这五个选项中只能选择一项.下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有 名初二年级的学生参加了本次问卷调查; (2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为 .C ADEB各选项选择人数的条形统计图 各选项选择人数分布的扇形统计图600 900 从不很少有时常常总是从不3%人数24.(本题满分8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).25.(本题满分8分)某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价-购买原材料成本-水费)26.如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC是⊙O的切线;(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)第1题图27.(本题满分10分)一次函数y =34x 的图像如图所示,它与二次函数y =ax 2-4ax +c 的图像交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图像的对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D .①若点D 与点C 关于x 轴对称,且△ACD 的面积等于3,求此二次函数的关系式; ②若CD =AC ,且△ACD 的面积等于10,求此二次函数的关系式.。

2016年初中毕业升学考试数学模拟测试卷(一)参考答案

2016年初中毕业升学考试数学模拟测试卷(一)参考答案及评分标准二、填空题(本题有6小题,每小题4分,共24分)11.(1)(1)a b b -+; 12. 66.710⨯; 13.90°; 14 15. 3; 16. 480 或768. 三、解答题(本题有8小题,共66分) 17. 18. 2 19. 解:每个图3分,共6分.图1图2或图1图220.(本题8分)解: (1)120;36 (2分) (2)图略;(3分) (3)450(3分)21.(本题8分)(1)证明:连接AD ,OD ;∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ;∵AB =AC ,∴BD =D C .∵OA =OB ,∴OD ∥A C .∵DF ⊥AC ,∴DF ⊥O D . ∴∠ODF =∠DFA =90°,∴DF 为⊙O 的切线. (4分)(2)解:连接BE 交OD 于G ,∵AC =AB ,AD ⊥BC ,ED =BD ,∴∠EAD =∠BA D .∴弧DE =弧B D . ∴ED =BD ,OE =O B .∴OD 垂直平分E B .∴EG =BG .又AO =BO ,∴OG =21AE .在Rt △DGB 和Rt △OGB 中, BD 2﹣DG 2=BO 2﹣OG 2∴2222)45()25(OG OB OG -=-- 解得:OG =43.∴AE =2OG =23. (4分)22. (本题10分)解:(1)乙出发后5分钟与甲第一次相遇;乙出发后30分钟与甲第二次相遇.(各3分,共6分)(2)68米/分钟. (4分)23.(本题10分)解:(1)①∵∠BAC =90°,θ=45°,∴AP ⊥BC ,BP =CP (等腰三角形三线合一),∴AP =BP (直角三角形斜边上的中线等于斜边的一半), 又∵∠MBN =90°,BM =BN ,∴AP =PN (等腰三角形三线合一), ∴AP =PN =BP =PC ,且AN ⊥BC ,∴四边形ABNC 是正方形, ∴∠ANC =45°; (4分)②当θ≠45°时,①中的结论不发生变化.理由如下:∵∠BAC =∠MBN =90°,AB =AC ,BM =BN ,∴∠ABC =∠ACB =∠BNP =45°,又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC=45°;(4分)(2)∠ANC=90°﹣∠BAC.理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,∴∠ABC=∠ACB=∠BNP=(180°﹣∠BAC),又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC,在△ABC中,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC.(2分)24.(本题12分)解:(1)A(-2,0),B(4,0),D(1,27 -8)(2)(3)(0,7-3),(0,-53)(0,53),(0,193)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学考前冲刺模拟试题及答案(1)总结:话题作文与学期梳理
 课程特色:
 以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

 适合学员
 想扎实写作基础,稳固提高作文水平的初中生
 赠送
 《中学语文知识地图—中学必考文学常识一本通》
 第十五章:学期课程融汇与升华
 课程特色:
 以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析。

相关文档
最新文档