函数概念&基本初等函数——2021届高三数学一轮复习讲义
函数的基本概念

函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
函数的概念与性质

函数的概念与性质函数是数学中一种重要的概念,它在各个领域都有着广泛的应用。
本文将介绍函数的基本概念和性质,以帮助读者更好地理解和应用函数。
一、函数的概念函数是一个自变量和因变量之间的对应关系。
它将一个变量的值映射到另一个变量的值,通常表示为f(x),其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式来表示。
函数的定义域是指自变量的所有可能取值的集合,值域是指函数对应的因变量的所有可能取值的集合。
一个函数可以在定义域内对每个自变量的取值,唯一地确定一个因变量的取值。
二、函数的性质1. 单调性:函数可以具有单调递增或单调递减的性质。
当自变量增大时,如果对应的因变量也增大,则函数为单调递增;当自变量增大时,如果对应的因变量减小,则函数为单调递减。
2. 奇偶性:函数可以具有奇函数或偶函数的性质。
当自变量取负值时,如果对应的因变量取相反数,则函数为奇函数;当自变量取负值时,如果对应的因变量不变,则函数为偶函数。
3. 零点:函数的零点是指使函数等于零的自变量的值。
如果函数的零点存在,可以用解方程的方法来求解。
4. 极值:函数的极值是指函数在其定义域上取得的最大值或最小值。
可以通过求导数或使用判别式的方法来确定函数的极值。
5. 逆函数:函数的逆函数是指满足条件f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。
逆函数可以将原函数的自变量与因变量互相转换。
6. 复合函数:复合函数是指函数嵌套在另一个函数中的情况。
例如f(g(x))表示将g(x)的结果作为自变量代入函数f中。
7. 函数图像:函数的图像是通过绘制自变量和因变量之间的对应关系得到的。
函数图像可以反映函数的性质和变化趋势。
8. 函数关系:函数的关系可以是线性的、二次的、指数的或对数的等。
不同的函数关系对应着不同的函数图像和性质。
总结:函数是数学中的重要概念,它描述了自变量和因变量之间的对应关系。
函数的概念和性质如零点、极值、逆函数等对于解题和理解数学问题都具有重要的意义。
函数的概念与基本性质

函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。
本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。
一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。
函数在定义域内的每个自变量都对应一个唯一的因变量。
二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。
定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。
在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。
2. 对应关系:函数的一个重要性质是具有确定的对应关系。
即在定义域内的每个自变量都对应唯一的因变量。
这种一一对应的关系使得函数具有明确的输入和输出。
3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。
如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。
反之,如果 f(x1) > f(x2),则称该函数是单调递减的。
4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。
如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。
而如果有 f(-x) = f(x),则称函数是偶函数。
5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。
如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。
三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。
在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。
在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。
函数的11个概念

函数的11个概念函数是数学中的一个重要概念,它在数学领域、计算机科学领域和其他许多学科中都有广泛应用。
下面我将详细介绍函数的11个概念。
1. 函数定义函数是一种特殊的关系,它将一个自变量的值映射到一个因变量的值。
对于每个自变量的取值,函数都具有唯一的因变量值。
函数的定义常用函数公式、表格或图像表示。
2. 函数的值域和定义域函数的定义域是所有自变量的取值范围,值域是函数所有可能的因变量值的范围。
在一些情况下,值域和定义域可能有限制。
3. 函数的反函数函数的反函数是指将函数的因变量和自变量进行互换得到的新函数。
反函数可以理解为原函数的逆运算,它可以通过函数的图像关于直线y=x的对称性得到。
4. 函数的奇偶性函数可以根据其图像的对称性来确定奇偶性。
如果函数满足f(-x) = f(x) ,则它是偶函数;如果函数满足f(-x) = -f(x),则它是奇函数。
有些函数既不是偶函数也不是奇函数。
5. 函数的零点函数的零点是指函数取零值的自变量的值。
求函数的零点通常需要解方程f(x) = 0, 通过求解这个方程可以找到函数的零点。
6. 函数的连续性函数的连续性是指函数在其定义域内的所有点都具有连续性。
一个函数在某一点连续,意味着在这个点函数的极限存在且等于函数在该点的值。
函数的连续性在数学分析和物理学中有广泛应用。
7. 函数的导数和导函数函数的导数描述了函数在某一点的变化率。
如果函数在某一点可导,那么该点的导数表示了函数曲线在该点的切线的斜率。
导函数是原函数的导数函数,它可以用来求函数在某点的切线斜率。
8. 函数的积分和不定积分函数的积分描述了函数在一定区间上的“累积变化”。
不定积分是对函数求解反函数运算,它可以得到函数在给定区间上的积分值。
积分在数学和物理学中有广泛应用。
9. 函数的极限函数的极限描述了函数在某一点不断逼近某个特定值的趋势。
极限可以用来描述函数在无穷大或无穷小趋势的特性。
10. 函数的峰值和谷值函数的峰值和谷值是函数在定义域内的最大值和最小值。
函数的概念及其表示方法

教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。
函数的概念与性质

函数的概念与性质函数是数学中关键的概念之一,广泛应用于各个学科领域。
本文将就函数的基本概念、性质以及应用进行论述,重点探讨函数在数学和实际问题中的重要性。
一、函数的基本概念函数是两个数集之间的一种对应关系。
通俗地说,函数可以理解为一种规则,使得对于集合A中的任意一个元素,都有一个唯一的元素与之对应在集合B中。
如果把集合A中的元素称为自变量,集合B中的元素称为因变量,那么函数就是自变量与因变量之间的确定关系。
函数一般用f(x)或者y来表示,其中x为自变量,f(x)或y为因变量。
例如,f(x) = x^2表示一个函数,它的自变量x的平方为因变量。
二、函数的性质1. 定义域与值域:函数的定义域是指能使函数有意义的自变量的取值范围,而值域是函数对应的因变量的所有可能取值。
函数的定义域和值域是函数的重要性质,也是确定函数性质的基础。
2. 单调性:函数的单调性是指函数在定义域内的取值变化的趋势。
函数可以分为递增和递减两种单调性,当函数对于任意的x1和x2,当x1小于x2时,如果f(x1)小于f(x2),则函数为递增函数;反之,如果f(x1)大于f(x2),则函数为递减函数。
3. 奇偶性:奇函数是指当自变量为正负相等的两个数时,函数值互为相反数;偶函数是指当自变量为相反数时,函数值相等。
例如,奇函数f(x) = x^3满足f(-x) = -f(x),偶函数f(x) = x^2满足f(-x) = f(x)。
4. 对称轴:对称轴是指函数图像与某条直线的位置关系。
对于奇函数来说,对称轴为原点;而对于偶函数来说,对称轴为y轴。
这种对称性质有助于简化函数的研究和图像的绘制。
三、函数的应用函数的概念和性质在数学和实际问题中都有广泛的应用。
1. 数学中的应用:函数被广泛应用于代数、解析几何、微积分等数学学科中。
在代数中,函数是多项式、指数函数、对数函数和三角函数的重要组成部分,通过函数的运算与组合,可以推导出很多重要的数学结论。
函数的概念及性质
函数的概念及性质函数是数学中的重要概念之一,它在数学领域和其他学科中都有着广泛的应用。
函数的概念是描述一个变量与另一个变量之间关系的数学工具。
本文将对函数的概念及其基本性质进行探讨,从而帮助读者更好地理解和应用函数。
一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
通常用f(x)来表示函数,其中x是函数的自变量,f(x)是函数的因变量。
例如,我们可以定义一个函数f(x)=2x,其中x是实数集合中的任意一个数,f(x)表示x的两倍。
这个函数可以描述一个数与它的两倍之间的关系。
二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
函数的定义域和值域取决于函数的性质和条件。
例如,对于函数f(x)=2x,定义域是实数集合,值域也是实数集合。
2. 单调性:函数的单调性是指函数在定义域内的变化趋势。
函数可以是递增的(单调递增)或递减的(单调递减)。
例如,函数f(x)=2x 是递增函数,而函数g(x)=2-x是递减函数。
3. 奇偶性:函数的奇偶性是指函数关于y轴(x=0)的对称性。
如果对于定义域内的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域内的任意x,有f(-x)=-f(x),则函数是奇函数。
例如,函数f(x)=x^2是偶函数,函数g(x)=x^3是奇函数。
4. 周期性:函数的周期性是指函数在定义域内以一定的间隔重复的特性。
如果存在一个正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则函数具有周期性。
例如,正弦函数sin(x)和余弦函数cos(x)都是周期为2π的函数。
5. 反函数:如果存在一个函数g,使得对于定义域内的任意x,有g(f(x))=x,且f(g(x))=x,则g称为f的反函数。
反函数可以将函数的输入与输出进行互换。
例如,函数f(x)=2x的反函数为g(x)=x/2。
三、函数的应用函数在数学、物理、经济学等学科中都有着重要的应用。
函数的概念.
函数的概念函数是数学中非常重要的概念,它描述了变量之间的依赖关系,帮助我们更好地理解数学中的各种关系。
本文将从函数的定义、表示、性质、运算以及实际应用等方面进行介绍。
1.函数的定义函数是一个数学表达式,它表示了一个或多个自变量的输入值与对应因变量的输出值之间的关系。
在数学中,用符号“f”表示函数,其中f后面的括号内是自变量的取值范围,而f右侧的表达式则是因变量的取值范围。
例如,一个简单的函数可以定义为y=x+2,其中x 是自变量,y是因变量。
2.函数的表示函数的表示方法有多种,包括解析法、表格法和图象法等。
解析法是用数学符号和公式来表示函数关系的一种方法,如y=x+2。
表格法是用表格形式表示函数关系的一种方法,它适用于离散变量函数,如阶跃函数等。
图象法则是用函数图象表示函数关系的一种方法,适用于连续变量函数。
3.函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一区间内随着自变量的增加,因变量的值也相应增加,反之亦然。
奇偶性是指函数在原点对称或旋转对称时具有的性质。
周期性是指函数按照一定的周期重复出现的现象。
4.函数的运算函数的运算包括函数的加、减、乘、除等基本运算以及复合运算等。
函数的加、减、乘、除等基本运算可以类比于代数中的运算,而复合运算则是将两个或多个基本函数组合成一个新函数的过程。
5.函数的实际应用函数在实际生活中有着广泛的应用,例如在物理学、工程学、经济学等领域中都有函数的身影。
例如,在物理学中,牛顿第二定律F=ma就描述了力与加速度之间的关系;在经济学中,成本函数、收益函数等都是描述经济变量的重要工具;在工程学中,各种系统模型也都是用函数来描述的。
此外,函数还在计算机科学、统计学等领域中有着广泛的应用。
总之,函数是数学中非常重要的概念之一,它描述了变量之间的依赖关系,并为我们提供了分析问题、解决问题的重要工具。
通过深入理解函数的定义、表示、性质、运算以及实际应用等方面,我们可以更好地掌握函数这一重要概念,并为解决实际问题提供有力的支持。
函数概念与知识点总结
函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。
在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。
函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。
函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。
1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。
单值性表示对于每个输入参数,函数有且只有一个输出结果。
有限性表示函数的定义域和值域都是有限的。
定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。
1.3 函数的分类函数可以根据其形式、性质和用途进行分类。
常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。
函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。
二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。
若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。
2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。
若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。
2.3 函数的最值函数的最值指在定义域内的最大值和最小值。
函数的最值可以通过求导数或利用一阶导数的性质进行判断。
2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。
通过绘制函数的图像,可以直观地理解函数的性质和变化规律。
例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。
三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。
函数的概念与基本性质
函数的概念与基本性质函数是数学中一个非常重要的概念,它在数学及其应用领域具有广泛的应用。
本文将介绍函数的概念以及其基本性质。
一、函数的概念函数是一种数学关系,它将一个集合的元素映射到另一个集合中的元素。
具体来说,设有两个集合A和B,如果对于集合A中的任意一个元素a,都存在集合B中的唯一一个元素b与之对应,那么我们就称这种关系为函数。
通常用符号f来表示函数,表示为f: A → B,其中A 称为定义域,B称为值域。
例如,设有集合A={1,2,3}和集合B={4,5,6},我们可以定义一个函数f,将A中的元素映射到B中的元素,即f(1)=4,f(2)=5,f(3)=6。
二、函数的基本性质1. 定义域和值域函数的定义域是指函数的输入值可以取的全部实数集合,也就是函数的自变量的取值范围。
而函数的值域则是函数的输出值可以取的全部实数集合,即函数的因变量的取值范围。
2. 单射、满射和双射若具有函数f: A → B,对于集合B中的任意一个元素b,存在集合A中的至多一个元素a与之对应,那么我们称函数f为单射。
若对于集合B中的任意一个元素b,都存在集合A中的至少一个元素a与之对应,那么我们称函数f为满射。
若函数f既是单射又是满射,即对于集合B中的任意一个元素b,存在且仅存在集合A中唯一一个元素a与之对应,那么我们称函数f为双射。
3. 奇偶性若函数f满足f(-x) = -f(x)对于定义域内的任意实数x成立,那么我们称函数f为奇函数。
若函数f满足f(-x) = f(x)对于定义域内的任意实数x成立,那么我们称函数f为偶函数。
4. 复合函数若有函数g: A → B和函数f: B → C,那么我们可以定义出一个新的函数h: A → C,称为复合函数。
复合函数h的定义为h(x) = f(g(x)),其中x∈A。
5. 反函数若函数f: A → B是一个双射函数,那么存在一个函数g: B → A,使得对于任意的x∈A和y∈B,有f(g(y)) = y和g(f(x)) = x成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分段函数 内容 了解分段函数简单应用 知识点 1、概念:自变量 x在不同区间,有不同的对应法则 2、它是一个函数 3、定义域:各段定义域区间的并集 4、值域:各段值域的并集
例 1函数
,若
,则实数 a的值( )
A±1
B-1 C-2或-1 D±1或-2
【答案】 B
【分析】分类讨论:
或
【详解】
时
,
舍去
时
2、要素:定义域、对应法则、值域
函数
中
(1)x为自变量,取值范围 A叫函数的定义域 (2)f为 x→y的对应法则 (3)x在对应关系 f下得到的 y的集合叫函数的值域⊆B 3、表示法:解析法、图像法、列表法 易错点 1、函数是一种映射,但映射不一定是函数 2、函数与映射区别:是否为数集
例 1与函数 y=x相同的函数是( )
例 2以下函数中,定义域为[0,+∞)的函数( ) Ay= x By=-2x2 Cy=3x+1Dy=(x-1)2 【答案】 A 【分析】数的性质--解析式有意义判断定义域:偶次根式中被开方数非负、分数的分母不为 0等
【详解】A中 y= x,x≥0;B、C、D中 xϵR 【考核】求函数定义域
例 3函数
,
,有
;最后用 x
求原函数解析式
,注意定义域在换元前后的变化
例 5已知函数
在定义域(0,+∞)上是单调函数,若对于
则函数
的解析式( )
A
B
C
D
【答案】 D
【分析】已知
在 (0,+∞)上 是 单 调 , 而
为常数
【详解】令
,
,而由题意知
∴
,m=1:
【考核】函数单调性、函数的定义
, 即可确定
例 6若函数
减函数
定义域为 I的函数 f(x),在区间 D(D⊆I)中任 意两个自变量的值 x1,x2
x1<x2时,f(x1)<f(x2) x1<x2时,f(x1)>f(x2)
图像
2、单调区间 函数 f(x)在区间 D上为增(减)函数,那么函数在 D上具有单调性, 即 D是 f(x)的一个单调区间
3、函数最值
定义域 I内函数 f(x):∃实数 M且
都有 最大值
都有 最小值
易错点
1、“单调区间是 A”与“在区间 B上单调”:A是“最大”的单调区间, B是 A的一个子集;如:y=x2,单调增区间[0,+∞),而在(5,+∞)上单调 增
2、不同区间(不连续)的单调性相同,区间不能写成并集形式。如:1x
例 1函数定义域 R且为增函数的是( )
Ay=e-x
,
,其中舍去 a=1
∴ a=-1 【考核】根据分段函数区间不同讨论求参数
例 2设
是定义在 R上且周期为 2的函数,在区间[-1,1)上,
,
其中
,若
,则
的值______
【答案】 -2 5
【分析】
在 R上的周期为 2且
,得到 a值,最后求
【详解】
,
, 【考核】利用函数周期性将自变量转化到分段函数定义域内,求参数
By=x3
Cy=lnx
Dy=|x|
【答案】 B
【分析】
【详解】
【考核】函数的图像、单调性、定义域
例 2函数
,
的递减区间( )
A[0,+∞)
B[0,1) C(-∞,1) D(-1,1)
【答案】 B 【分析】数形结合 【详解】
【考核】分段函数、单调区间
例 3函数
,则当
A4 B1 C3 D5 【答案】 D 【分析】 【详解】
总结 1、解析式的求法
(1)待定系数法:函数类型确定的情况
(2)换元法:复合函数
解析式已知的情况,注意换元后的取值范围
(3)凑配法:已知 到 解析式
,用 表示 ,最后用 x替换 得
2、定义域的求法 (1)已知解析式:构造使解析式有意义的不等式组,求解 (2)实际问题:结合(1)和实际意义构造不等式组,求解 (3)复合函数:外函数定义域是内函数的值域
专题 2-1函数的概念与表示
函数的概念及表示
内容
1、函数的要素,求定义域、值域,映射的概念
2、函数的表示:图像法、列表法、解析法
知识点
1、概念
集合论描述
函数
映射
集合 A、B 非空数集
非空集合
对应关系 在对应关系 f下,∀x∈A,∃唯一 f(x)∈B
f:A→B的函数
f:A→B的映射
记法
y=f(x),x∈A
总结
1、分段函数的求解问题
(1)根据给定自变量的值,使用分段函数相应区间的对应函数求解(注意: 交替使用各区间的函数求值)
(2)分段函数的方程、不等式:根据定义域区间分类讨论求解,最后合并结 果
专题 2-2函数的基本性质
单调性与最值
内容
函数的单调性、最大(小)值及其几何意义
知识点
1、单调函数
增函数
Ay= x2 【答案】 D
By=xx2
Cy=( x)2
Dy=logaax(a>0且 a≠1)
【分析】函数是否相同:定义域、对应法则是否相同
【详解】
,A中 y=|x|,xϵR;B中 x≠0;C中 x≥0;D中 y=xlogaa=x,xϵR
∴ 只有 D:化简后为 y=x,且 xϵR,即与原函数 y=x相同 【考核】相同函数:定义域、对应法则相同
例 5已知奇函数
在 R上是增函数,
。若
,则 a、b、c的大小( )
A
B
C
D
【答案】 C
,
,
【分析】判断 log25.1、20.8、3的大小关系,根据 f(x)的性质得到 g(x)的性质判断 a、b、c 大小
【详解】∵ 20.8<2=log24<log25.1<3=log28
满足
,则
=( )
A0 B1 【答案】 C
C-1 D2
【分析】
求
:换元方式交换函数不同项位置,达到消元的目的
【详解】令
,
∴
:
【考核】求抽象函数的函数值
,结合
,有
=-1
例 7函数
的定义域
,则函数
的定义域为( )
A
B
【答案】 A
【分析】
C
D
可得
,再求
定义域
【详解】
,在
中
,
【考核】求复合函数的定义域:外函数的定义域是内函数的值域
2
2
【答案】 -2 ≤x≤ 2
【分析】解析式有意义:
的定义域( ) 被开方数非负、
【详解】
得:
【考核】求函数定义域
的真数大于 0
例 4已知
,则
=( )
A4x-5 B4x+5 C4x+13 D4x-13 【答案】 A
【分析】已知
向左平移 2后的
解析式求原解析式
【详解】换元法:令 代换 X即可
【考核】复合函数
时
的最大值( )
【考核】函数最值
例 4函数
的递减区间( )
A (-∞,1) 【答案】 A
B(2,+∞) C(-∞,32)
D(32,+∞)
【分析】确定
的单调性,
的单调性,判断复合函数单调性
【 详 解 】 1、
, 外 层 函 数 真 数 为 +:
在定义域内↑,∴
【结合函数图像】
,而
【考核】复合函数的单调性