兰州大学2000年高等代数
兰州大学《数学分析》《高等代数》考研真题汇总(2009-2018历年真题)

Dn = −a −a x · · · a ;
... ... ...
...
−a −a −a · · · x
1 3 3 ··· 3
3 2 3 ··· 3
Dn = 3 3 3 · · · 3 .
... ... ...
...
3 3 3 ··· n
A, B, C, D Ñ´ n ?¢Ý , … AC = CA. y²:
AB = |AD − CB|.
CD
o. ( 20 ©) y²: n ?Ý A •˜ Ý (A2 = A) ¿©7‡^‡´ r(A) + r(E − A) = n.
Ê. ( 13 ©) A ´ n ? Ý , ÙA Šþ•¢ê. y²: A ´é¡Ý .
8. ( 15 ©) A, B Ñ´ n ? ½Ý . y²: A−1, A + B ´ ½Ý .
(2) f (x) = (x − a1)(x − a2) · · · (x − an) − 1, Ù¥ a1, a2, · · · , an ´ n ‡üüØ knê•þØŒ .
ê. y²: f (x) 3
. ( 16 ©) OŽe 1 ª Š.
(1)
1 + x1 1 + x21 · · · 1 + xn1
20
13 =²ŒÆ 2011 cïÄ)\Æ•ÁÁKêÆ©Û
21
14 =²ŒÆ 2012 cïÄ)\Æ•ÁÁKêÆ©Û
23
15 =²ŒÆ 2013 cïÄ)\Æ•ÁÁKêÆ©Û
24
16 =²ŒÆ 2014 cïÄ)\Æ•ÁÁKêÆ©Û
25
17 =²ŒÆ 2015 cïÄ)\Æ•ÁÁKêÆ©Û
26
18 =²ŒÆ 2016 cïÄ)\Æ•ÁÁKêÆ©Û
一、高等代数与解析几何之间的关系

利用几何直观理解高等代数中抽象的定义和定理一、高等代数与解析几何的关系代数为几何的发展提供了研究方法,几何为代数提供直观背景。
解析几何中的很多概念、方法都是应用线性代数的知识、定义来刻画、描述和表达的.例如,解析几何中的向量的共线、共面的充分必要条件就是用线性运算的线性相关来刻画的,最终转化为用行列式工具来表述,再如,解析几何中的向量的外积(向量积)、混合积也是行列式工具来表示的典型事例。
高等代数中的许多知识点的引入、叙述和刻画亦用到解析几何的概念或定义.例如线性空间的概念表述就是以解析几何的二维、三维几何空间为实例模型.“如果代数与几何各自分开发展,那它的进步十分缓慢,而且应用范围也很有限,但若两者互相结合而共同发展,则就会相互加强,并以快速的步伐向着完善化的方向猛进。
”-———-—-—拉格朗日二、目前将高等代数与解析几何合并开课的大学中国科大:陈发来,陈效群,李思敏,线性代数与解析几何,高等教育出版社,北京:2011.南开大学:孟道骥,高等代数与解析几何(上下册)(第二版),科学出版社,北京:2007.华东师大:陈志杰,高等代数与解析几何 (上下册) (第2版),高等教育出版社,北京:2008。
华中师大:樊恽,郑延履,线性代数与几何引论,科学出版社,北京:2004.同济大学:高等代数与解析几何同济大学应用数学系高等教育出版社(2005-05出版)兰州大学,广西大学,西南科技大学,成都理工大学三、高等代数的特点1、逻辑推理的严密性;2、研究方法的公理性;3、代数系统的结构性.四、高等代数一些概念的引入对于刚上大学的一年级新生,大多数难以适应高等代数的抽象概念的引入、推导和应用。
通过一些实例,特别是几何实例,引入高等代数的相关概念,一方面可以让学生了解抽象概念的来龙去脉,另一方面可以让学生找到理解抽象概念的思维立足点。
五、高等代数的一些概念的几何解析高等代数中相关概念和定理的几何解析,可以使学生更容易把握这些概念和定理的几何本质,更容易直观地理解这些抽象的概念和定理,从而可以提高学生运用这些抽象的概念和定理去解题的能力。
矩阵可交换问题及其在高等代数考研中的应用

( 详情请看文献 % 3 & ) " 即 它 们 之 间 存 在 着 同 构 的 关 系" 线 性变换的可交换对应着矩阵的可交换# 在每年的高等代 数考研试题的大题中"都会涉及有关矩阵(线性变换) 可交 换问题# 大致会从这几个方面来进行考察!($) 在求矩阵 的 , 次方幂时"可以观察矩阵的特点"将其拆分成两个可 交换的矩阵"再进行二项式展开# ())已知一个矩阵"求与 此矩阵可交换的矩阵是哪种类型的矩阵# (() 已知一个矩 阵"求与此矩阵可交换的所有矩阵# (3) 已知两个矩阵可 交换"求证对于二阶分块矩阵的行列式的计算方法类似二 阶数字矩阵的计算方法# (5)有关矩阵可交换问题而引出 的可同时三角化( 对角化) 问题# (0) 涉及线性变换下的 可交换问题# 下面通过对历年真题的研究"总结有关可交 换问题的考点#
科教论坛 !"#!$%&$'(') *+&,-./&$01$21(3$&)%)$((%$'
科技风 @A@B 年 BB 月
矩阵可交换问题及其在高等代数考研中的应用
张 蓉4陈国华#
湖南人文科技学院!湖南娄底!B"J###
摘4要高等代数是数学专业的学生必学的科目同时也是考研数学的专业课 有关矩阵的内容在高等代数的教学 中有着举足轻重的地位 我们知道矩阵的乘法一般都不满足交换律但是在特定的条件下矩阵之间是可以交换的而数 学主要研究的就是这类特殊的东西 可交换问题是高等代数教学中的重点内容之一同时也是高等代数考研数学中的热 点之一 本文罗列出了一些矩阵线性变换可交换问题在高等代数考研数学中的应用希望对考研数学有一定的帮助
2020年数学分析高等代数考研试题参考解答

安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答。
浙江大学2000年研究生高等代数试题

三、 (20 分) (1) A 是正定阵, C 是实对称矩阵,证明:存在可逆矩阵 P 使得 P 1 AP, P 1CP 同时为 对角形; (2) A 是正定阵, B 是实矩阵,而 AB 是实对称的,证明: AB 正定的充要条件是 B 的 特征值全大于 0. 四、 (20 分)设 n 维线性空间 V 的线性变换 A 有 n 个互异的特征值,线性变换 B 与 A 可交换
下证不可能是情形二。 (反证法)若不然为情形二,就是 ( f ( x), g ( x)) 1 则
u ( x), v( x) P[ x]s.t u ( x) f ( x) v( x) g ( x) 1L (*)
由已知条件, f 与g 有一公共复根(设为 ) ,则 f ( ) g ( ) 0 ,将 代入 盾,故假设不正确,得证! (2)设 b 是 f ( x) 的任一根,下证 f ( ) 0 。证明见《高等代数题解精粹》钱吉林编 P20 第 42 题. 二、计算行列式
PAP E 1 (2)由(1)知 P非异s. t 2 PABP O n
1 所以 P BP 2 ,故 AB 正定 i 0, i 1, 2,L , n 得证!! O n
1 , 2 ,L , n s.t A i i i ,其中 i 为 A 的特征值,且 i j , i j , i , j 1, 2L , n 1 令 T (1 , 2 ,L , n ) s.tT AT 2 O n
1
(2)Q AB BA 则, (T AT )(T BT ) (T BT )(T AT ) ,令 C T AT , D T BT , C 为对 角矩阵,且主对角线上的元素互异,而 CD DC ,
高等代数Ⅱ智慧树知到答案章节测试2023年河西学院

绪论单元测试1.对于线性空间的学习,要从三个方面讨论:定义,线性关系(主要是在有限维空间中),子空间。
A:对B:错答案:A2.对于线性空间中线性关系的研究有一个非常重要的概念,就是n维线性空间的基,有了基就可以把数域P上抽象的n维线性空间模型化成具体的空间Pn,而把抽象的向量模型化成它的坐标,即有序数组。
A:错B:对答案:B3.对于线性空间的认识,不仅要知道线性空间的定义,还要了解基本性质以及认识一些具体的线性空间。
A:错B:对答案:B4.线性空间立足于它的基础——集合,于是可以通过学习线性空间的子空间来更好的把握全空间,对于子空间的学习,需要把握其存在性、有限维空间中子空间的构造——生成子空间以及子空间的运算。
A:错B:对答案:B第一章测试1.全体实对称矩阵关于矩阵的加法和数量乘法构成实数域上维的线性空间。
A:对B:错答案:B2.每一n维线性空间都可以表示成n个一维子空间的直和。
A:错B:对答案:B3.数域P上两个有限维线性空间同构的充要条件是它们有相同的维数。
A:对B:错答案:A4.在中,子集构不成子空间。
A:对B:错答案:A5.在中,向量在基,,,下的坐标是()。
A:(1,0,0,2)B:(—1,0,0,2)C:(2,—1,1,0)D:(2,—1,0,0)答案:D6.在数域P上的n维线性空间V中,由基到基的过渡矩阵是A,由基到基的过渡矩阵是B。
那么由基到基的过渡矩阵是()。
A:B:C:D:答案:D7.设是线性空间中三个互素的多项式,但其中任意两个都不互素。
则()。
A:是的一个基B:最大公因式是一次多项式C:线性相关D:线性无关答案:D8.子空间的和是直和的充要条件是()。
A: dimdim+dimB:C:D:⊂答案:ABC9.下列说法正确的有()。
A:复数域关于数的加法和乘法构成有理数域上的线性空间B:有理数域关于数的加法和乘法构成实数上的线性空间C:实数域关于数的加法和乘法构成自身上的线性空间D:实数域关于数的加法和乘法构成复数域上的线性空间答案:AC10.在数域P上的线性空间V中,如果向量满足且。
985院校数学系2019年考研数学分析高等代数试题及部分解答
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1
高代考研辅导第8章线性变换
八.线性变换1.(中国科学院2006)若α为一实数,试计算11lim nn n nαα→+∞⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭。
解令11n A nαα⎛⎫⎪= ⎪ ⎪- ⎪⎝⎭,容易求得A 的两个特征值为1,1i i n n αα+-,相应的特征向量为1,1i i ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭。
令11i P i ⎛⎫= ⎪⎝⎭,则1111112i i P i i --⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,使得11001i n A P P i n αα-⎛⎫+ ⎪= ⎪ ⎪-⎪⎝⎭,1(1)00(1)n nn i n A P P i n αα-⎛⎫+ ⎪=⎪ ⎪- ⎪⎝⎭。
注意1(1)1lim lim in in in n n i i e n ααααα→∞→∞⎡⎤⎛⎫⎢⎥+=+= ⎪⎢⎥⎝⎭⎢⎥⎣⎦,(1)lim n i n i e nαα-→∞-=,所以11011120lim ini n i i e A i i e αα-→∞-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭cos sin 1sin cos 2i ii i iii i e e ie ie ie ie e e αααααααααααα----⎛⎫+-+⎛⎫== ⎪ ⎪--+⎝⎭⎝⎭。
2.(华南理工大学2006)设()n V M F =表示数域F 上n 阶全体矩阵的向量空间。
定义:(),()T n A A A M F σ=∀∈。
(1)证明:σ是线性变换;(2)求σ的全部特征子空间;(3)证明:σ可对角化。
证明(1),(),n A B M F k F ∀∈∀∈,有()()()()T T T A B A B A B A B σσσ+=+=+=+,()()()T T kA kA kA k A σσ===,所以σ是线性变换;(2)设λ是σ的特征值,A 为对应于λ的特征向量(某个非零矩阵),则()A A σλ=,22()()T T A A A A σλ===,于是21λ=,得1λ=±。
教学团队申请表 团队名称: 数学与应用数学专业代数课程 教学团队 团队
教学团队申请表
团队名称:数学与应用数学专业代数课程
教学团队
团队带头人:刘仲奎
所在单位:数学与信息科学学院(盖章)
所属学科门类:理学数学类
联系电话: 7971935 申报时间:2009年6月16日
西北师范大学教务处制
填表说明
1. 本表用A4纸直接打印,不要以剪贴代填。
填写应简洁、
美观。
2. 所填内容必须真实、可靠,如发现虚假信息,将取消该团
队参评校优秀教学团队的资格。
3. 表格中所涉及的项目、奖励、教材截止时间是评审当年6
月20日。
4. 如表格篇幅不够,可自行调整。
一、团队基本情况
4
5
二、团队带头人教学科研情况
三、团队教学、科研成效汇总表
说明:以上数据应与后表“教学情况”、“科研情况”相关项目保持一致。
四、教学情况
1.主要授课情况:(2005年以来)
2.教材建设情况:(主要教材的使用和编写情况)
3.教学成果获奖情况:
4.教学改革项目:(省部级以上,如教改立项、精品课程、教学基地等)
5.教学改革特色:(团队设置特色、专业特色、课程特色,切实可行的创新性改革措施、实验教学或实践性教学、资源建设、网络教学等)
6.教学改革成果应用推广情况:
7.具有代表性的教学改革论文(限15项)
8、团队成员近三年完成最低教学和科研工作量情况
9、团队成员近三年学生评教成绩
说明:以上表格,可根据内容自行调整表格高度、行数
五、培养青年教师工作
六、科研情况
七、团队建设及运行的制度保障
八、团队今后建设计划。
数学与统计学院数学基地班专业人才培养方案-兰州大学数学与统计学院
数学与统计学院数学基地班专业人才培养方案一、专业简介专业名称:数理基础科学专业代码:070103M为了贯彻“理科兰州会议”精神,全面加强基础科学研究和教学人才的培养,1990年建立了兰州大学“数学基础科学研究和教学人才培养基地”(简称数学基地),2008年,成为“甘肃省基础科学人才培养基地”。
数学基地始终坚持“强化数学基础,淡化专业界限,加强创新能力,提高整体素质”的培养思路,经过多年的努力和探索,数学基地得到了长足的发展,在学科建设、师资队伍建设、教学研究和改革等方面均取得了显著成绩,基地的软硬件设施有了明显改善,基地班学生培养质量有了很大提高,形成了具有兰大特色的人才培养模式。
数学学科具有数学一级学科博士点,具有从学士、硕士、博士到博士后的完整人才培养体系。
数学基地具有一支治学严谨、研究领域广泛、实力雄厚的师资队伍,在数学科学的研究上具有突出的专业优势。
本专业注重科研与教学相结合,坚持实行教授博导上讲台,聘请教学经验丰富、教学效果好的教师担纲重要的基础课教学;聘请优秀学者主讲特色课程,突出自身优势学科;聘请活跃的青年学者指导优秀学生研讨并提供给学生一些有益的科研创新经历和体验。
同时,坚持定期邀请国内外知名学者、专家为学生介绍其相关学科的基本概况及最新进展,使其了解当前数学领域的基本形势,为以后的数学理论研究与应用打下坚实的基础。
二、专业的人才培养定位与目标本专业培养具有良好的数学素养,掌握数学学科的基本理论和方法,受到科学研究初步训练的本学科及相关学科的研究生优质生源,并可到科研机构、学校机构及企事业单位等从事教学、科学研究、应用开发、工程计算、软件研制及管理工作。
三、专业的基本要求系统地掌握数学学科的基本理论、基本知识和基本方法,具有较好的科学素养与较强的适应能力和自学能力,具有勇于创新的科学精神。
应获得以下几方面的知识和能力:1、具有扎实的数学基础和较宽广的知识面,受到严格的科学思维训练,初步掌握数学科学的思想方法;2、具有初步从事科学研究和一定的教学工作能力;3、了解数学科学发展的历史概况以及当代数学的某些新发展和应用前景;4、具有应用数学知识解决实际问题,特别是建立数学模型的初步能力;5、具有熟练的计算机操作和编写应用程序的能力;6、掌握一门外国语,有较强的阅读能力、听说能力和写作能力;7、了解体育的基本知识,掌握科学训练身体的基本技能,达到国家规定的大学体育合格标准,身心健康。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x) 没有整数根。
三、 (20 分)A 为 m n 矩阵,如果 n m 矩阵 G 满足 AGA A ,则称 G 为 A 的广义逆。 设 m n 矩阵 A 的秩为 r,且设
E A P r 0 E G Q 1 r 和 n 阶可逆矩阵。证明 A 的全部广义逆为 0 B 1 P , 其中 B、 C、 D 分别为任意 r ( m n), ( n r ) r 和 ( m r ) ( n r ) D f 2 =秩 f 的充分必要条件
自然数 r 均有 ker(f 0 f )
m
ker(f 0 f ) m 1 , (f 0 f ) m V (f 0 f ) m 1V .
六、 (10 分)设 f 是复数域上 n 维线性空间 V 的线性变换, f 0 为 V 的恒等变换, 是 f 的 任意一个特征值。证明存在 自然数 m 使得
ker(f 0 f ) m ker(f 0 f ) m 1 , (f 0 f ) m V (f 0 f ) m 1V , 并且对任意的小于 m 的
兰州大学 2000 年硕士研究生考试试题——高等代数 一、 (20 分)已知空间三平面
x cy bz y az cx z bx ay
(1) 证明三平面至少交于一条直线的充分必要条件是 a b c 2abc 1 。
2 2 2
(2) 给出三平面恰好相交于一条直线的条件,并证明之。 二、 (20 分) (1) 设 f ( x) a 0 a1 x a n 1 x
n 1
a n x n 是数域 F 上的多项式,记
g ( x) a n a n 1 x a1 x n 1 a 0 x n 。证明: f ( x) 在 F 上不可约的充分必要条
件是 g ( x) 在 F 上不可约。 (2) 设 f ( x) 是整系数多项式满足对某一个整数 m, f ( m) 和 f ( m 1) 都是奇数。证明
四、 (15 分)设 f 为 n 维线性空间 V 上的线性变换。证明:秩 是 V f (V ) f
1
(0) 。
五、 (15 分)设 A 是 n 阶方阵。证明存在 n 阶正交矩阵 T1 和 T2 ,使得
a1 0 0 a 2 T1 AT2 0 0
0 0 成立,其中 a 2 , a 2 , a 2 为 A' A 的全部特征值。 1 2 n an