有关弹簧的动量问题
动量守恒实验技巧与常见问题解析

动量守恒实验技巧与常见问题解析动量守恒是物理学中一个重要的概念,它描述了在没有外力作用下,系统的总动量维持不变。
为了验证动量守恒定律,实验是必不可少的一个手段。
本文将介绍一些动量守恒实验的技巧,并解析常见问题,帮助读者更好地理解和掌握这一概念。
一、弹球实验弹球实验是最常见的演示动量守恒的实验之一。
一般来说,实验中会使用两个弹性小球,并将它们进行碰撞。
在进行实验前,我们需要注意以下几个技巧:1. 预热:弹性小球需要预热,这可以通过频繁地将它们进行弹跳来实现。
预热后的小球能够更好地发挥它们的弹性,从而减小能量损失。
2. 预留空间:在进行碰撞时,需要确保两个小球之间有足够的空间。
这样,当两个小球碰撞时,它们能够自由地弹开,避免碰撞过程中的干扰。
3. 观察角度:为了更好地观察碰撞过程,我们可以选择一个合适的观察角度。
通常来说,与小球碰撞平面垂直的方向是一个较好的选择。
在实验过程中,我们通常会遇到一些常见问题,下面将对其进行解析。
1. 能量损失:在实际实验中,我们会观察到部分动能的损失。
这是由于实验中存在着各种摩擦力和空气阻尼等非理想因素。
为了减小能量损失,我们可以选择使用较为理想的小球材料,如金属弹球。
2. 弹球的质量和速度:在进行弹球实验时,我们可以调节小球的质量和速度。
当两个小球质量相同并具有相同的速度时,碰撞后它们的速度也将相同。
而当两个小球质量不同或速度不同时,碰撞后会出现不同的速度分布。
二、弹簧实验弹簧实验是实验动量守恒的另一种常见方法。
在弹簧实验中,我们通常会使用一个弹簧和几个小球。
下面是一些技巧和常见问题的解析。
1. 弹簧的弹性系数:在进行弹簧实验时,我们需要选择合适的弹簧。
弹簧的弹性系数越大,它对物体的弹性力就越大,从而更容易观察到碰撞的效果。
2. 弹簧的固定:在使用弹簧时,我们需要确保它被牢固地固定在一个平稳的位置上,以保证实验的可靠性和准确性。
3. 弹簧的伸缩长度:在进行实验时,我们可以改变弹簧的伸缩长度。
动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.如图甲所示,一轻弹簧的两端与质量分别为m 1和m 2的两物块A ,B 相连接,静止在光滑水平地面上,现使A 瞬时获得水平向右的速度3m/s ,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,下列说法正确的是( )A .物块A 在t 1和t 3两个时刻的加速度大小相等B .从开始计时到t 4这段时间内,物块A ,B 在t 2时刻相距最远C .t 1到t 3这段时间内弹簧长度一直在增大D .12:1:2m m2.如图所示,足够长的光滑细杆PQ 水平固定,质量为2m 的物块A 穿在杆上,可沿杆无摩擦滑动,质量为0.99m 的物块B 通过长度为L 的轻质细绳竖直悬挂在A 上,整个装置处于静止状态,A 、B 可视为质点。
若把A 固定,让质量为0.01m 的子弹以v 0水平射入物块B (时间极短,子弹未穿出)后,物块B 恰好能在竖直面内做圆周运动,且B 不会撞到轻杆。
则( )A .在子弹射入物块B 的过程中,子弹和物块B 构成的系统,其动量和机械能都守恒 B .子弹射入物块B 的初速度v 05gLC .若物块A 不固定,子弹仍以v 0射入时,物块上摆的初速度将小于原来物块A 固定时的上摆初速度D .若物块A 不固定,子弹仍以v 0射入,当物块B 摆到与PQ 等高时,物块A 的速率为5gL 3.水上飞行运动使用的是一种叫“喷射式悬浮飞行器”的装置,也称为“喷水飞行背包”,它通过向下喷射高压水柱的方式将操控者托举在水面 上空,利用脚上喷水装置产生的反冲动力,让你可以在水面之上腾空而起,另外配备有手动控 制的喷嘴,用于稳定空中飞行姿态.如图所示运动员在水上做飞行运动表演.他操控喷射式悬浮飞行器将水带竖直送上来的水反转180°后向下喷出,令自己悬停在空中.已知运动员与装备的总质量为100 kg ,两个圆管喷嘴的直径均为10cm ,已知重力加速度大小g =10m/s 2,水的密度ρ=1.0×103kg/cm 3,则喷嘴处喷水的速度大约为A .3.0 m/sB .5.4 m/sC .8.0 m/sD .10.2 m/s4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为03v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 25.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m +D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M m +6.如图所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m =2M 的小物块.现使木箱瞬间获得一个水平向左、大小为v 0的初速度,下列说法正确的是A .最终小物块和木箱都将静止B .最终小物块和木箱组成的系统损失机械能为203Mv C .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 7.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl8.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F =时间内,P 、Q 的总动量守恒 C .4mv t F=时,Q 的动量为3mvD .3mv t F =时,P 的动量为32mv 9.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,一轻杆两端分别固定a 、b 两个半径相等的光滑金属球,a 球质量大于b 球质量.整个装置放在光滑的水平面上,将此装置从图示位置由静止释放,则( )A .在b 球落地前瞬间,a 球的速度方向向右B .在b 球落地前瞬间,a 球的速度方向向左C .在b 球落地前的整个过程中,轻杆对b 球的冲量为零D .在b 球落地前的整个过程中,轻杆对b 球做的功为零11.如图所示,质量为m = 245 g 的物块(可视为质点)放在质量为M = 0.5 kg 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ = 0.4,质量为 m 0 = 5 g 的子弹以速度v 0 = 300 m/s 沿水平方向射入物块并留在其中(时间极短),g = 10 m/s 2,则在整个过程中A .物块和木板组成的系统动量守恒B .子弹的末动量大小为0.01kg·m/sC .子弹对物块的冲量大小为0.49N·sD .物块相对木板滑行的时间为1s12.如图所示,一质量为m 0=0.05 kg 的子弹以水平初速度v 0=200 m/s 打中一放在水平地面上A 点的质量为m =0.95 kg 的物块,并留在物块内(时间极短,可忽略),随后物块从A 点沿AB 方向运动,与距离A 点L =5 m 的B 处的墙壁碰撞前瞬间的速度为v 1=8 m/s,碰后以v 2=6 m/s 的速度反向运动直至静止,测得物块与墙碰撞的时间为t =0.05 s,g 取10 m/s 2,则A .物块从A 点开始沿水平面运动的初速度v =10 m/sB .物块与水平地面间的动摩擦因数μ=0.36C .物块与墙碰撞时受到的平均作用力大小F =266 ND .物块在反向运动过程中产生的摩擦热Q =18 J13.如图所示,一个质量为m 、半径足够大的1/4光滑圆弧体,静止放在光滑水平面上.有一个质量也为m 的小球,以v 0的初速度从最低点冲上圆弧体到又滑回到最低点的过程中,下列结论正确的是(已知重力加速度为g )( )A .整个过程中,圆弧体的速度先增大后减小B .小球能上升的最大高度为204v gC .圆弧体所获得的最大速度为v 0D .在整个作用的过程中,小球对圆弧体的冲量大于mv 014.光滑水平面上有一静止木块,质量为m 的子弹水平射入木块后木穿出,子惮与木块运动的速度图象如图所示。
动量之弹簧类问题

教师姓名唐斌学生姓名填写时间年级高三学科物理上课时间阶段基础()提高(√)强化()课时计划第()次课共()次课教学过程动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x0。
一物体从钢板正上方距离为3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。
今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。
图3==2,例4. 在光滑水平面内,有A、B两个质量相等的木块,mm k gA B中间用轻质弹簧相连。
现对B施一水平恒力F,如图4所示,经过一段时间,A、B的速度等于5m/s时恰好一起做匀加速直线运动,此过程恒力做功为100J,当A、B恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A的最小速度。
高中物理模块六动量与动量守恒定律考点2.2.1类碰撞模型之“滑块+弹簧+滑块”试题

考点2.2.1 类碰撞模型之“滑块+弹簧+滑块〞1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.2.整个过程涉及到弹性势能、动能、内能、重力势能转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短时,弹簧连接两物体速度相等,此时弹簧弹性势能最大.例4 两物块A 、B 用轻弹簧相连,质量均为2kg ,初始时弹簧处于原长,A 、B 两物块都以v =6m/s 速度在光滑水平地面上运动,质量为4kg 物块C 静止在前方,如图4所示.B 与C 碰撞后二者会粘在一起运动.那么在以后运动中:(1)当弹簧弹性势能最大时,物块A 速度为多大?(2)系统中弹性势能最大值是多少?【解析】(1)当A 、B 、C 三者速度相等时弹簧弹性势能最大.由A 、B 、C 三者组成系统动量守恒,(m A +m B )v =(m A +m B +m C )·v ABC ,解得v ABC =2+2×62+2+4m/s =3 m/s. (2)B 、C 碰撞时B 、C 组成系统动量守恒,设碰后瞬间B 、C 两者速度为v BC ,那么m B v =(m B +m C )v BC ,v BC =2×62+4m/s =2 m/s ,设物块A 、B 、C 速度一样时弹簧弹性势能最大为E p ,根据能量守恒E p =12(m B +m C )v 2BC +12m A v 2-12(m A +m B +m C )v 2ABC =12×(2+4)×22J +12×2×62J -12×(2+2+4)×32J =12J. 【答案】(1)3m/s (2)12J1. (多项选择)光滑水平地面上,A 、B 两物体质量都为m ,A 以速度v 向右运动,B 原来静止,左端有一轻弹簧,如下图,当A 撞上弹簧,弹簧被压缩最短时( AD )A .A 、B 系统总动量仍然为mvB .A 动量变为零C .B 动量到达最大值D .A 、B 速度相等2. 如下图,质量相等两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止滑块N 与挡板P 相连接,弹簧与挡板质量均不计;滑块M 以初速度v 0向右运动,它与档板P 碰撞〔不粘连〕后开场压缩弹簧,最后滑块N 以速度v 0向右运动。
高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
弹簧模型(原卷版)—动量守恒的十种模型解读和针对性训练

动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。
A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。
同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。
A 、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。
的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。
A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。
现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。
动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
动量守恒定律的应用弹簧问题

A.P的速度恰好为零
B.P与Q具有相同速度
C.Q刚开始运动
D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。动量守恒定律的应 Nhomakorabea(弹簧问题)
5
4.质量分别为3m和m的两个物体, 用一根细线相连,中 间夹着一个被压缩的轻质弹簧,整个系统原来在光滑 水平地面上以速度v0向右匀速运动,如图所示.后来细 线断裂,质量为m的物体离开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度
(1)当弹簧的弹性势能最大时,物体A的速度是多大? (2)弹性势能最大值是多少?
v
AB
C
动量守恒定律的应用(弹簧问题)
7
2
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧
压缩,当撤去外力后,下列说法正确的是(BC)
A.a尚未离开墙壁前,a和b组成的系统动量守恒
B.a尚未离开墙壁前,a和b组成的系统动量不守恒
C.a离开墙壁后,a和b组成的系统动量守恒
B、C组成系统的动量守恒
C.若A、B所受的摩擦力大小相等,A、B、C组成系
统的动量守恒
D.若平板车足够长,
A
B
最终A、B、C将静止。
动量守恒定律的应用(弹簧问题)
4
题型二、两个物体的问题
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
D.a离开墙壁后,a和b组成的系统动量不守恒
a
动量守恒定律的应用(弹簧问题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:1)从开始压缩到最短达共同速度V共,弹性势能达最大, 由动量守恒得 mV0+0=2m V共 V共=V0/2
2 2 2 1 1 由能量守恒得: 最大 EP 1 mV . 2 m . V mV 0 0 共 2 2 4
2)从开始压缩到恢复原长时,速度分别为VA,VB
由动量守恒得 mV0+0 =mVA+mVB 由能量守恒得
E车
2 m 2 gR M 2 Mm
5.如图所示,在足够长的光滑水平轨道上静止三个小 木块A,B,C,质量分别为mA=1kg,mB=1kg, mC=2kg,其中B与C用一个轻弹簧固定连接,开始时 整个装置处于静止状态;A和B之间有少许塑胶炸药, A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程 没有能量损失)。现在引爆塑胶炸药,若炸药爆炸产 生的能量有E=9J转化为A和B沿轨道方向的动能,A和 B分开后,A恰好在BC之间的弹簧第一次恢复到原长 时追上B,并且在碰撞后和B粘到一起。求: (1)在A追上B之前弹簧弹性势能的最大值; (2)A与B相碰以后弹簧弹性势能的最大值。
1 2 2 1 2
V`=0
2
mgS mV MV 0
因S>L/2,所以B先向右滑行L/4后再返回Q点左方
S-L/4=0.17m处.
8.质量为m的钢板与直立的轻弹簧的上端相连,弹簧下 端固定在地上,平衡时弹簧的压缩量为x0。如图所示, 一个物块从钢板正上方距离为3 x0的A处自由落下,打 在钢板上并与钢板一起向下运动,但不粘连,它们到达 最低点后又向上运动,已知物块质量也为m时,它们恰 能回到O点;若物块的质量为2m时,仍从A处自由落下, 它们到达最低点后又向上运动,在通过O点时它们依然 具有向上的速度 (1)试分析质量为2m物块与钢板在何处分离,它们分 离时的速度分别是多大? (2)物块向上运动到达的最高点与O的距离是多大?
EP=12J
3)当A减速到0时,设BC速度为V2,由动量守恒得 (mA+mB+mC)V共=0+(mB+mC)V2 V2=4m/s 此时系统总能量为 若A反向,则V2>4m/s, 系统总能量E`>48J
2 E` 0 1 ( m m ) V B C 2 48J 2
而B与C碰后总能量为
2 2 1 E1 m V ( m m ) V A B C 1 48J 2 2
1 2 2 2 1 mV02 0 1 m V m V A B 2 2
解得: VA=V0 VB=0
2.已知A、B、C质量均为m,C的初速度为v0,碰撞后 B、C粘在一起,地面光滑。求弹簧的最大弹性势能EP
解:C与B碰撞动量守恒 mV0=2mV1
碰后到压缩弹簧到最短达共同速度V2,弹性势能达最大EP.
6.如图,轻弹簧的一端固定,另一端与滑块B相连,B 静止在水平导轨上的O点,此时弹簧处于原长。另一质 量与B相同的滑块A从导轨上的P点以初速度v0向B滑行, 当A滑过距离l时,与B相碰。碰撞时间极短,碰后A、 B粘在一起运动。设滑块A和B均可视为质点,与导轨 的动摩擦因数均为μ 。重力加速度为g。求: (1)碰后瞬间,A、B共同的速度大小; (2)若A、B压缩弹簧后恰能返回到O点并停止,求弹 簧的最大压缩量。
由能量守恒可知,E`≤E,因而A不可能反向.
4.质量为M 的小车置于光滑水平面上, 小车的上表面由 光滑的1/4 圆弧和光滑平面组成, 圆弧半径为R , 车的 右端固定有一不计质量的弹簧.现有一质量为m 的滑块 从圆弧最高处无初速下滑(如图) ,与弹簧相接触并压缩 弹簧, 求: (1) 弹簧具有的最大的弹性势能; (2) 当滑块与弹簧分离时小车速度. Ep=mgR
A
m
v0
B
2m
分析与解:⑴当A球与弹簧接触以后,在弹力作用下减速运 动,而B球在弹力作用下加速运动,弹簧势能增加,当A、B速 度相同时,弹簧的势能最大。 设A、B的共同速度为v,弹簧的最大势能为E,则A、B 系统动量守恒: mv (m 2m)v
0
由机械能守恒:
联立两式得: E 1 mv 02 3
有关弹簧类的动量问题 学习目标: 1)压缩到最短(或拉伸到最长)达共同速度: (1)动量守恒 (2)最大弹性势能 2)再次恢复原长时——弹性碰撞? (1)动量碰撞 (2)能量守恒
1.如图质量为m的物块A静止在光滑水平面上,有一轻 弹簧固定在上面,与A质量相同的物块B,以速度V0向 A撞击,求 1)弹簧的最大弹性势能是多少? 2)恢复到原长时A,B的速度各是多少?
而当弹簧恢复原长时相碰,vB有最大值vBm,则: 联立以上两式得:vBm=2V0/3 2 0 v v0 即vB的取值范围为: B 3
1 2 mv 当vB=V0/4时 Em有最大值为: 2 0
1 2 mv 0 当vB=2V0/3时,Em有最小值为: 27
2 2 1 1 mgL mV mV A向左匀减速到碰前: 1 0 2 2
A碰B前后:
mV1=2mV2
V2
2 2
V02 2 gL 2
AB一起压弹簧到X,后再返回O点
Q .2m.g.2x 1 V 2 .2m.
x
V02 2 gL 16 g
7.在光滑的水平面上有一质量M = 2kg的木板A,其右 端挡板上固定一根轻质弹簧,在靠近木板左端的P处有 一大小忽略不计质量m = 2kg的滑块B。木板上Q处的 左侧粗糙,右侧光滑。且PQ间距离L = 2m,如图所示。 某时刻木板A以VA = 1m/s的速度向左滑行,同时滑块 B以VB = 5m/s的速度向右滑行,当滑块B与P处相距 3L/4时,二者刚好处于相对静止状态,若在二者共同 运动方向的前方有一障碍物,木板A与它碰后以原速率 反弹(碰后立即撤去该障碍物)。求B与A的粗糙面之 间的动摩擦因数μ和滑块B最终停在木板A上的位置。 (g取10m/s2)
解:从开始压缩到最短达共同速度V 动量守恒 mVB - MVA=(m+M)V V=2m/s
能量守恒
2 2 2 1 1 1 mg. 3 L mV MV ( m M ) V B A 4 2 2 2
0.6
撞板反弹后到第二次达共同速度V`,相对位移为S 动量守恒 mV-MV=(m+M)V` 能量守恒
1 1 2 mv 0 (m 2m)v 2 E 2 2
m
Av0B源自2m⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。 系统动量守恒: mv0 mvA 2mvB
mvA 2mvB 3mv共 B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同 (设为v共)时,弹簧势能最大,为Em,则: 1 2 1 2 mv 0 3mv 共 Em 2 2 2 v0 4v B v0 2 3v0 8m v共 Em [ (v B ) ] 3 3 4 16
解:1)B与C碰撞动量守恒,设一起速度为V1 mBV=(mB+mC)V1 V1=2m/s ABC从碰前到压缩到最短达V共,弹性势能最大. (mA+mB)V=(mA+mB+mC)V共 V共=3m/s 此时A的速度等于V共=3m/s. 2)最大弹性势能EP
2 2 2 1 1 EP 1 m V ( m m ) V ( m m m ) V A B C 1 A B C 共 2 2 2
9. 如右图所示,光滑水平面上,质量为2m的小球B连接 着轻质弹簧,处于静止. 质量为m的小球A以初速度v0向 右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时 间,A与弹簧分离。(弹簧始终处于弹性限度以内) (1)在上述过程中,弹簧的最大弹性势能是多大; (2)若开始时在B球的右侧某位置固定一块挡板(图中 未画出),在A 球与弹簧分离之前使B球与挡板发生碰撞, 并在碰后立刻将挡板撤走。设B球与固定挡板的碰撞时 间极短,碰后B球的速度大小不变但方向相反。试求出 此后弹簧的弹性势能最大值的范围。
由动量守恒得 2mV1=3mV2
2 2 1 1 E 2 mV 3 mV 由能量守恒得 P 1 2 2 2
解得
1 EP 12 mV02
3.用轻弹簧相连的质量均为2kg的A、B两物块都以 v=6m/s的速度在光滑的水平地面上运动,弹簧处于原 长,质量为4kg的物体C静止在前方,如图所示,B与C 碰撞后二者粘在一起运动。在以后的运动中,求: (1)当弹簧的弹性势能最大时物体A的速度多大? (2)弹性势能的最大值是多大? (3)A的速度有可能向左吗?为什么?