弹簧问题中的能量与动量
高中物理弹性势能和弹性碰撞的计算方法

高中物理弹性势能和弹性碰撞的计算方法在高中物理学中,弹性势能和弹性碰撞是重要的概念和计算方法。
掌握这些知识点对于解决与力学相关的问题至关重要。
本文将重点介绍弹性势能和弹性碰撞的计算方法,并通过具体题目举例,解析考点和解题技巧。
一、弹性势能的计算方法弹性势能是指物体由于形变而具有的储存能量。
当物体发生形变时,它的弹性势能会增加。
弹性势能的计算公式为:E = 1/2kx²其中,E表示弹性势能,k表示弹簧的劲度系数,x表示形变的位移。
举例来说,假设有一个质量为2kg的物体,通过一根劲度系数为100N/m的弹簧连接到固定支架上。
当物体受到一个力为10N的拉力,使得弹簧伸长了0.2m时,我们可以计算出该物体的弹性势能。
根据公式E = 1/2kx²,代入k = 100N/m和x = 0.2m,计算得到:E = 1/2 * 100N/m * (0.2m)² = 2J因此,该物体的弹性势能为2焦耳。
在解题过程中,需要注意单位的一致性。
劲度系数k的单位是牛顿/米,位移x的单位是米,因此弹性势能的单位是焦耳。
二、弹性碰撞的计算方法弹性碰撞是指碰撞过程中物体之间没有能量损失的碰撞。
在弹性碰撞中,动量和能量都得到了保持。
根据动量守恒定律和能量守恒定律,我们可以计算出碰撞前后物体的速度。
考虑一个简单的弹性碰撞问题,有两个质量分别为m1和m2的物体,它们在碰撞前的速度分别为v1和v2,碰撞后的速度分别为v1'和v2'。
假设碰撞前物体1的速度大于物体2的速度,即v1 > v2。
根据动量守恒定律,我们可以得到以下公式:m1v1 + m2v2 = m1v1' + m2v2'根据能量守恒定律,我们可以得到以下公式:1/2m1v1² + 1/2m2v2² = 1/2m1v1'² + 1/2m2v2'²通过解这组方程,可以计算出碰撞后物体的速度。
高中物理弹簧模型经典题型汇总

弹簧专题1、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.例1、如图3-7-15所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b、对质点的作用力均为F,则弹簧c对质点作用力的大小可能为( )A、0B、F mg+C、F mg-D、mg F-2、轻弹簧高中物理中描述一类物体时常在其前面加上限定词“轻”,如“轻结点”、“轻绳”、“轻弹簧”、“轻杆”、“轻滑轮”等.“轻"主要可以理解为物体质量对所研究的物理问题影响很小,可以忽略不计,它是一种理想化的物理模型。
根据牛顿第二定律F = ma知,由于“轻物体”质量为零,无论其加速度多大,所受合外力必然为零,与物体的运动状态无关.这也是它与常规物体的最大区别.例2、如图4所示,4个完全相同的轻质弹簧都处于水平位置,他们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以L1、L2、L3、L4依次表示4个弹簧的伸长量.则有()3、质量不可忽略的弹簧例3、如图所示,一质量为M、长为L的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.答案解析Fx=FLx图3-7-154、三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是轻质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变,即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变。
例4、如图甲所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.求解下列问题:(1)现将线L2剪断,求剪断L2的瞬间物体的加速度.(2)若将图甲中的细线L1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L2的瞬间物体的加速度.例5、如图所示,一光滑圆环竖直固定在地面上,三个完全相同的质量均为m的小球穿在圆环上,其中小球A位于圆环最高点,小球B、C位于同一高度,小球A与小球B之间、小球A与小球C间用等长的轻质细绳相连,小球B与小球C用轻弹簧相连。
动量守恒和能量守恒联立公式的解

动量守恒和能量守恒联立公式的解动量守恒和能量守恒联立公式的解一、引言在物理学中,动量守恒和能量守恒是两个非常重要的基本原理。
动量守恒指的是系统总动量在任何时刻都保持不变,而能量守恒则是系统总能量在任何时刻也都保持不变。
这两个原理在物理学和工程学中都有着非常广泛的应用,而它们联立的公式的解则能够帮助我们更加深入地理解这两个原理的关系和应用。
二、动量守恒和能量守恒的关系1. 动量守恒的概念和公式让我们先来了解一下动量守恒的概念和公式。
动量守恒是指在一个封闭系统中,如果没有外力作用,系统的动量保持不变。
动量的守恒可以用数学公式来表示:ΣPi = ΣPf,即系统初态总动量等于系统末态总动量。
2. 能量守恒的概念和公式我们再来了解一下能量守恒的概念和公式。
能量守恒是指在一个封闭系统中,能量不会凭空消失,也不会凭空增加,能量只能从一种形式转换为另一种形式。
能量守恒可以用数学公式来表示:ΣEi = ΣEf,即系统初态总能量等于系统末态总能量。
3. 联立公式的解当动量守恒和能量守恒同时发生时,我们可以联立这两个公式来解决问题。
假设有一个系统,在某个过程中既满足动量守恒又满足能量守恒,那么我们可以得到如下的联立公式:ΣPi = ΣPfΣEi = ΣEf这样,我们就可以利用这两个联立公式来解决一些复杂的物理问题,尤其是在动能、动量和碰撞等方面有重要的应用。
三、实例分析为了更好地理解动量守恒和能量守恒联立公式的解,我们来看一个具体的例子:弹簧振子的能量转换。
假设有一个弹簧振子系统,开始时速度为v1,弹簧的劲度系数为k,质量为m。
当振子通过平衡位置时,动能转化为弹性势能;当振子最大位移时,弹性势能转化为动能。
这个过程既满足动量守恒又满足能量守恒。
根据动量守恒和能量守恒的原理,我们可以列出联立动量和能量守恒方程:1/2 * mv1^2 = 1/2 * k * x^2mv1 = mv2其中,v1为振子开始时的速度,x为振子最大位移,v2为振子最大位移时的速度。
高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
力学中的动量与能量的守恒

力学中的动量与能量的守恒力学是物理学的一个重要分支,研究物体的运动和受力情况。
动量和能量是力学中两个基本的物理量,它们在物体运动过程中起着至关重要的作用。
本文将从动量守恒和能量守恒的角度来探讨力学中这两个关键概念的原理和应用。
1. 动量守恒原理动量是描述物体运动状态的物理量,它等于物体质量乘以速度。
动量的守恒原理指的是一个系统中的总动量在没有受到外力作用时保持不变。
动量守恒定律可以简述为:对于一个封闭系统中的物体,总动量在时间内保持恒定。
这意味着在没有外界力的情况下,物体的动量不会发生改变。
例如,打击一个静止的球,当球受到撞击后,动量在球体内部重新分配,但整个系统的总动量保持不变。
2. 动量守恒的应用动量守恒原理在实际生活中有着广泛的应用。
其中一个典型例子是汽车碰撞。
在车辆碰撞事故中,当两辆车相撞时,它们的动量发生改变。
根据动量守恒原理,车辆碰撞前后的总动量应该保持不变。
因此,根据碰撞前后的速度和质量,我们可以计算出碰撞后车辆运动的状态。
此外,动量守恒原理还可以应用于火箭推进系统、弹道学和运动力学的研究中。
这些应用进一步验证了动量守恒原理的重要性,并为人们提供了基础的物体运动描述和预测能力。
3. 能量守恒原理能量是物体所具有的做功能力,它是物体的物理属性。
能量守恒原理是指在一个封闭系统中,总能量在一个过程中保持不变。
根据能量守恒原理,能量可以相互转化,但总能量的大小始终保持不变。
一个典型的例子是弹簧。
当弹簧压缩时,机械能转化为弹性势能。
而当弹簧释放时,弹性势能转化为机械能。
无论是在机械领域还是其他领域,总能量守恒原理都是一个普遍适用的规律。
4. 能量守恒的应用能量守恒原理在能源领域有着重要的应用。
例如,在水电站中,流动的水通过水轮机进行转化,将水的动能转换为机械能。
而机械能通过电机转化为电能,最终为人们提供可靠的电力。
此外,能量守恒也应用于热力学、核能研究以及光学等领域。
通过总结能量的转化规律,科学家们能够深入理解不同领域中的物理过程,并应用于实际应用中。
动量能量---弹簧类问题

我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。
已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。
初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。
已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。
二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。
已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。
若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。
动量守恒定律的应用弹簧问题

理解:弹簧被压缩至最短时的临界条件。
4.质量分别为3m和m的两个物体, 用一根细线
相连,中间夹着一个被压缩的轻质弹簧,整个系
统原来在光滑水平地面上以速度v0向右匀速运
动,如图所示.后来细线断裂,质量为m的物体离 开弹簧时的速度变为2v0. 求(1)质量为3m的物体离开弹簧时的速度 (2)弹簧的这个过程中做的总功.
1.注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化。 2.弹簧连接两种形式:连接或不连接。
连接:可以表现为拉力和压力。
不连接:只表现为压力。
3.动量问题:动量守恒。
4.能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间转化.
题型一、判断动量是否守恒
1.木块a和b用一轻弹簧连接,放在光滑水平面上, a紧靠在墙壁上,在b上施加向左的水平力使弹簧 压缩,当撤去外力后,下列说法正确的是( ) BC A.a尚未离开墙壁前,a和b组成的系统动量守恒 B.a尚未离开墙壁前,a和b组成的系统动量不守恒 C.a离开墙壁后,a和b组成的系统动量守恒 D.a离开墙壁后,a和b组成的系统动量不守恒
mA m, mB m, mC 3m,
求:(1)滑块A与滑块B碰 撞结束瞬间的速度; (2)被压缩弹簧的最大弹 性势能;
例:如图所示,A,B,C三个木块的质量 均为m。置于光滑的水平面上,B,C之间 有一轻质弹簧,弹簧的两端与木块接触而 不固连,将弹簧压紧到不能再压缩时用细 线把B和C紧连,使弹簧不能伸展,以至于 B,C可视为一个整体,现A以初速v0沿B, C的连线方向朝B运动,与B相碰并黏合在 一起,以后细线突然断开,弹簧伸展,从 而使C与A,B分离,已知C离开弹簧后的 速度恰为v0,求弹簧释放的势能。
题型二、两个物体的问题
动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧问题中的能量与动量
教学目的:
1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;
2.物理答题规范的培养与指导;
3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。
教学重难点:
1.物理情景的分析方法
2.分析过程中突出的物理问题中的“三变” 教学方法:
讲授、讨论、多媒体演示 教学过程:
在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。
在力学主干知识的考查中,能量与动量又永远是考查的重中之重。
一.弹簧基础知识 弹簧类弹力:
大小:F=kx (在弹性限度以内);
方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析
请学生看物理教材(必修加选修)第二册第10页“思
考与讨论”:
在如图1所示的装置中,木块B 与水平桌面间的接触
是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。
若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒机械能是否守恒说明理由。
例1:如图1所示,若木块的质量为M ,子弹的质量为m ,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。
求弹簧可能具有的最大弹性势能。
图1
分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。
运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。
对子弹A 和木块B 构成的系统,在子弹A 射入木块B 的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:
10)(v m M mv += ①
对子弹A 、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:
()21max 2
1
v m M E P +=
② 联立①②两式得:弹簧具有的最大弹性势能为()
m M v m E P +=220
2max 小结:
例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
另一质量与B 相同滑块A ,从导轨上的P 点以某一初速
度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后B 紧贴在一起运动,但互不粘连。
已知最后A 恰好返回出发点P 并停止。
滑块A 和B 与导轨的滑动摩擦因数都为μ,运动过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。
(2004年广东卷)
分析:此变式的物理情景较复杂,注意分析物理过程,再针对不同的过程选择恰当的规律列式。
过程一:对滑块A ,从P 到与B 碰撞之前做匀减速直线运动,设滑块A 与B 碰撞前瞬间的速度为1v ,由动能定理得
2
02112
121mv mv mgl -=
-μ ① 过程二:滑块A 与滑块B 发生碰撞,由于碰撞时间极短,内力远大于外力,A 、B 构成的系统动量守恒,设A 、B 碰撞后的速度为2v ,由动量守恒定律,得
图2
21)(v m m mv += ②
过程三:A 和B 一起压缩弹簧直到A 、B 速度变为零,然后A 、B 在弹簧弹力的作用下一起返回,直到弹簧恢复原长。
设当弹簧恢复原长时,A 、B 的速度为3v ,在这一过程中,弹簧的弹性势能始末两态都为零,对A 、B 和弹簧,由能量守恒定律得
()()()()223222222
1221
l g m v m v m μ=- ③ 过程四:当弹簧恢复原长时,滑块A 、B 分离(为什么学生讨论),A 单独向右滑到P 点停下;以后只需分析滑块A 的运动情况。
对滑块A ,在A 、B 分离之后,在滑动摩擦力的作用下匀减速运动到P 处停止。
由动能定理得
2
3
12
10mv mgl -=-μ ④ 联立①—④,得:)1610(210l l g v +=μ
小结:
例3:质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。
平衡时,弹簧的压缩量为0x 如图3所示。
一物块从钢板正上方距离为
03x 的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。
它们到达最底点后又向上运动。
已知物块质量也为m 时,它们恰能回到O
点。
若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度。
求物块向上运动到达的最高点与O 点的距离。
(1997年全国卷第25题)
分析:本题涉及两个物理过程,第一过程就是m 下落与钢板的作用过程,第二过程就是2m 下落与钢板的作用过程。
第一过程包括:自由落体、碰撞、振动3个过程;第二过程包括:自由落体、碰撞、振动、竖直上抛4个过程。
此题涉及的物理过程有4个,用到的物理规律和公式有4个,它将动量守恒和机械能守恒完美地统一在一起,交替使用,可以说是一道考查考生能力的好试题。
设物块与钢板碰撞时的速度为0v ,对物块,在下落过程中,由自由落体公式,得
02
032x g v •= ①
设1v 表示质量为m 的物块、钢板碰撞后一起向下运动的速度,因碰撞时间极短,系统
图3
所受外力远小于相互作用的内力,符合动量守恒,对质量为m 的物块和钢板,由动量守恒定律得
102mv mv = ②
设刚碰完时弹簧的弹性势能为P E ,当它们一起回到O 点时,弹簧无形变,弹簧势能为零,根据题意,由机械能守恒得
0212)2(2
1
mgx v m E P =+ ③
设2v 表示质量为2m 的物块与钢板碰后开始一起向下运动的速度,由动量守恒,则有
2032mv mv = ④
设刚碰完时弹簧势能为P
E ',它们回到O 点时,弹性势能为零,但它们仍继续向上运动,设此时速度为2v ,则由机械能守恒定律得
202
2)3(2
13)3(21v m mgx v m E P +=+' ⑤
在上述两种情况下,弹簧的初始压缩量都是0x ,故有
P P
E E =' ⑥ 当质量为2m 的物块与钢板一起回到O 点时,弹簧的弹力为零,物块与钢板只受到重力的作用,加速度为g ,一过O 点,钢板受到弹簧向下的拉力作用,加速度大于g ,由于物块与钢板不粘连,物块不可能受到钢板的拉力,其加速度仍为g ,方向向下,故在O 点物块与钢板分离。
分离后,物块以速度v 竖直上升,由竖直上抛最大位移公式得
g
v h 220
= ⑦
联立①—⑦式得:2
x L =
即物块向上运动到达的最高点距O 点的距离2
x L =。
小结:
课后思考与讨论:在光滑水平导轨上放置着质量
均为m 滑块B 和C ,B 和C 用轻质弹簧拴接,且都处于静止状态。
在B 的右端有一质量也为m 的滑块A 以速度0v 向左运动,与滑块B 碰撞的碰撞时间极短,碰后粘连在一起,如图4所示,求弹簧可能具有的最大弹性势能和滑块C 可能达到的最大速度。
分析:首先A 与B 发生碰撞,系统的动能损失一部分;C 在弹簧弹力的作用下加速,A 、B 在弹力的作用下减速,但A 、B 的速度大于C 的速度,故弹簧继续被压缩,直到A 、B 和C 的速度相等,弹簧的压缩量达到最大,此时弹簧的弹性势能最大。
此后,C 继续被加速,A 、B 减速,当弹簧第一次恢复原长时,C 的速度达到最大,同时A 、B 分离。
设A 、B 碰撞之后达到的共同速度为1v ,A 、B 、C 三者达到的共同速度为2v ,当弹簧第一次恢复原长时,A 、B 的速度为3v ,C 的速度为4v .
对A 、B ,在A 与B 的碰撞过程中,动量守恒,由动量守恒定律得
10)(v m m mv += ①
对A 、B 、C ,在压缩弹簧直至三者速度相等的过程中,动量守恒,由动量守恒定律得
21)()(v m m m v m m ++=+ ②
A 、
B 、
C 系统的能量守恒,有
max 2221)(2
1)(21P E v m m m v m m +++=+ ③ 联立以上三式得2
max 12
1mv E P = 对A 、B 、C 弹簧组成的系统,从A 、B 碰撞后到弹簧再次恢复原长的过程中,动量、能量守恒,有:
43122mv mv mv += ④
24
2
3212
1221221mv mv mv += ⑤ 联立④⑤得C 的最大速度为043
2
v v =
三.弹簧专题总结: 1.关键:物理情景的分析 2.突出一个字——“变”: “变”:变换研究对象
“变”:变换研究过程
“变”:变换物理规律
力争做到灵活选择对象,灵活选用规律,快速准确求解。
3.常用规律:
①力的观点:牛顿运动定律
②动量的观点:动量定理、动量守恒定律
③能量的观点:动能定理、机械能守恒定律、能量守恒定律。