2010年普通高等学校联合招收华侨港澳地区台湾省学生入学考试数学真题

合集下载

2010年港澳台联考数学真题

2010年港澳台联考数学真题
专业,专注,专心,做最优秀的港澳台联考补习班 北京博飞教育中心
9
得分
评卷人 (27)(本题满分 15 分,理工农衣类考生不做)
设 f ( x) = ax − ln x ( x > 0) 在 x = x0 处所取得最小值 2
(Ⅰ)求 a 和 x0 的值;北京博飞教育中心
(Ⅱ)设 x1、x2 是任意正数,证明
f
( x1 ) +
f
( x2 )

2
f
⎛ ⎜⎝
x1
+ 2
x2
⎞ ⎟⎠
,
当且仅当
x1
=
x2
时,等号成立.
专业,专注,专心,做最优秀的港澳台联考补习班 北京博飞教育中心
10
数共有
(A)72 个 (B)144 个 (C)216 个 (D)288 个
【】
(10)一个口袋中,装有大小、轻重都无差别的 5 个红球和 4 个白球,每一次从袋中摸出两
个球,若颜色不同,则为中奖. 每次摸球后,都将摸出的球放回口袋中,则 3 次摸球恰有 1
次中奖的概率为
__________________.专业,专注,专心,做最优秀的港澳台联考补习班 北京博飞教育中心
(17)双曲线的焦点为 (−6, 0) 和 (6, 0) ,两条准线的距离为 8,则该双曲线的方程为_________.
(18)设多项式 p ( x) = x3 + 3x2 + ax + b 与 q ( x) = x4 + x3 + ax2 + 2x + b 有公因式 x + 3 ,则 p ( x) 与
设函数
f
(
x)

2010年普通高等学校招生全国统一考试数学理试题全国卷I

2010年普通高等学校招生全国统一考试数学理试题全国卷I

2010年普通高等学校招生全国统一考试数学理试题(全国卷I,含答案)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

......... 3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:A、B互斥,那么如果事件球的表面积公式2?R4S?)B?P(A)?P(P(A?B)A、B相互独立,那么其中R如果事件表示球的半径P(AB)?P(A)P(B)球的体积公式33?p RV?,那么如果事件A在一次试验中发生的概率是4n kA次的概率其中R次独立重复试验中事件表示球的半径恰好发生kkn?k(k?0,1,2,…np(k)?C(1?p))P nn一、选择题3?2i?复数(1)2?3i?iii (D) 12+13 (B) (C)12-13(A)i cos(?80?)?k tan100?? (2)记,那么22kk?11?kk A. B. - C. D. -kk22k1?k1?y?1,??x?y?0,yx,z?x?2y的最大值为则若变量(3)满足约束条件??x?y?2?0,?(A)4 (B)3 (C)2 (D)1aaaaaaaaaa=,则=105=})已知各项均为正数的等比数列(4{,,64978532n1 12524 (A) (B) 7 (C) 6 (D)533)?x?2x)(1(1的系数是中(5)x的展开式(A) -4 (B) -2 (C) 2 (D) 4门,若要求两类课程34门,一位同学从中共选3门,B类选择课(6)某校开设A类选修课中各至少选一门,则不同的选法共有种种 (D)48种 (B)35种 (C)42(A) 30DBDABC7)正方体ABCD-B所成角的余弦值为与平面AC中,(1111116232 AB C D33331?5log2,2,b=In2,c=(8)设a=则3A a<b<c Bb<c<a C c<a<b D c<b<a2201y?x?FFFF60P、为双曲线C:p,则C上,∠=的左、右焦点,点p在(9)已知2112轴的距离为到x6363 (B) (C) (A)(D) 22|x|lg(x)?f的取值范围是则a+2b若0<a<b,且f(a)=f(b),,(10)已知函数)2,????)[2(22,)[3,??(3,??) (C) (B) (D)(A)PB?PA的为俩切点,那么、PAPB为该圆的两条切线,A、B11()已知圆O的半径为1,最小值为2?222???2?332?4??4 (C) (B) (D)(A)的体积的ABCD四点,若AB=CD=2,则四面体BA、、C、D2(12)已知在半径为的球面上有最大值为33243832 (A)(B) (C) (D) 333绝密★启用前年普通高等学校招生全国统一考试20102理科数学(必修+选修II)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

2010年普通高等学校招生全国统一考试数学理试题(上海卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(上海卷,解析版)

2010年普通高等学校招生全国统一考试数学理试题(某某卷,解析版)考生注意:1.答卷前,考生务必在答题纸上将某某、高考某某号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分,考试时间120分钟.一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1、 不等式042>+-x x的解集为_______________; 【解析】20(4)(2)0(4)(2)0424xx x x x x x->⇔+->⇔+-<⇔-<<+,故答案为:)2,4(-.或由2020404x xx x ->⎧->⇔⎨+>+⎩或2040x x -<⎧⎨+<⎩,解得42x -<<,故答案为:)2,4(-. 【点评】本题考查分式不等式的解法,常规方法是化为整式不等式或不等式组求解. 2、 若复数12z i =-(i 为虚数单位),则=+⋅z z z _____________;【解析】∵12z i =-,∴(12)(12)1251262z z z i i i i i ⋅+=-++-=+-=-,故答案为:i 26-【点评】本题考查复数的基本概念与运算,属基础概念题.3、 若动点P 到点F (2,0)的距离与它到直线02=+x 的距离相等,则点P 的轨迹方程为_____________; 【解析】由抛物线定义知:P 的轨迹为抛物线,易知焦参数4p =,所以点P 的轨迹方程为x y 82=.【点评】本题考查抛物线定义和轨迹方程的求法之——直接法,属基础概念题.4、 行列式6cos3sin6sin 3cosππππ的值为_______________;【解析】cossin 36coscossinsincos()cos 03636362sincos36πππππππππππ=-=+==,答案为:0.【点评】本题考查二阶行列式的计算方法与和角的余弦公式以及特殊角的三角函数值,符合在知识交汇处命题原则,属基础题.5、 圆C :044222=+--+y x y x 的圆心到直线l :3440x y ++=的距离=d ________;【解析】由044222=+--+y x y x ,得22(1)(2)1x y -+-=,则圆心为(1,2),故22334d ==+,答案为:3.【点评】本题考查圆的标准方程、点到直线的距离公式以及计算能力,是课本习题的变式题.6、 随机变量ξ的概率分布率由下图给出:x 7 8 9 10 P(x =ξ)0.30.350.20.15则随机变量ξ的均值是__________;【解析】70.380.3590.2100.158.2E ξ=⨯+⨯+⨯+⨯=,故答案为:8.2. 【点评】本题考查随机变量ξ的概率分布和均值(期望)的计算,属常规题,无难度. 7、2010年某某世博会园区每天9:00开园,20:00停止入园。

【高考数学】2010年普通高等学校招生全国统一考试真题及解析-(广东卷)

【高考数学】2010年普通高等学校招生全国统一考试真题及解析-(广东卷)

绝密★启用前2010年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={1,2,4},则集合A B=A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0} 2.函数()lg(1)f x x =-的定义域是A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)3.若函数()33x x f x -=+与()33x xg x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数,()g x 为奇函数 4.已知数列{n a }为等比数列,n S 是它的前n 项和,若2·a a a 31=2,且4a 与72a 的等差中项为54,则S5=A .35B .33C .31D .295.若向量a =(1,1),b =(2,5),c =(3,x)满足条件 (8a -b )·c=30,则x =A .6B .5C .4D .36.若圆心在x 轴上、O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A.22(5x y += B.22(5x y += C .22(5)5x y -+= D .22(5)5x y ++= 7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是A . 45B .35C .25D .158.“x >0”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1,ABC∆为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,则多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,3x ,4x ,分别为1,1.5,1.5,2,则输出的结果s 为 _________.12.某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是_________,家庭年平均收入与年平均支出有_________线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a=1,A+C=2B ,则sinA= _________.(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=2a,点E,F分别为线段AB,AD的中点,则EF= .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin1ρθθ+=与()sin cos1ρθθ-=的交点的极坐标为_________.三、解答题:本大题共6小题,满分80分。

2010数学真题卷及答案

2010数学真题卷及答案

2010年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:每小题6分,共10小题,共60分.在每小题的四个选项中,只有一项是符合要求的.1.已知集合A ={x|x 2―1>0},B ={x|log 2x <0},则A ∩B 等于 ( )A .ØB .{x|x <-1}C .{x|x >1}D .{x|x <-1或x >1}2. 若不等式||x a -<1成立的充分条件是04<<x ,则实数a 的取值范围是( ) A. a ≥3B. a ≤3C. a ≥1D. a ≤13.函数)1(log 2-=x y 的反函数图像是 ( )A B4. 如图所示,∆OAB 是边长为2的等边三角形,直线x t =截这个三角形位于此直线左方的图形面积为y (见图中阴影部分)则函数y f t =()的大致图形为( )5.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π6椭圆22143x y +=的右焦点到直线y x =的距离是 ( )A.127. 过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A 、B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为A. 双曲线B. 抛物线C. 椭圆D. 以上都有可能 8.若αααααcos sin cos 3sin ,2tan +-=则的值是( )A .31-B .-35C .31 D .35 9.直线052)3(057)3()1(2=-+-=-+-++y x m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或10.已知1(2)2x f x x ++=+,则1(2)f x -+= ( ) A.12x x -+ B.11x -+ C.211x x +-- D.21x x +-+二、填空题:每小题5分,共8小题,共计40分.将答案填在题中的横线上。

2010年港澳台联考数学答案及解析

2010年港澳台联考数学答案及解析
3
θ − sin 3 θ = ( cos θ − sin θ ) ( cos2 θ + cos θ sin θ + sin 2 θ ) > sin θ − cosθ ,移项得
( cos θ − sin θ ) ( cos 2 θ + cosθ sin θ + sin 2 θ + 1) > 0 ,即 ( cos θ − sin θ )( 2 + cos θ sin θ ) > 0 ,
, an } 的子集个数共有 2n 个.
解析:由题意知 Q 中必须有 4,而 1、2、3 可有可无,相当于找 {1, 2,3} 的子集个个数,故有 8 个. 也可用列举法,把它一一写出来. 北京博飞教育中心
(2)若等差数列的前 4 项和 S 4 = (A)
25 6
(B)

专业,专注,专心,做最优秀的港澳台联考补习班
北京博飞教育中心

(9)用数字 1,2,3,4,5,6 组成的没有重复数字的 6 位数中,数字 1,2 相邻且 3,4 不相邻的 6 位数共有 (A)72 个 (B)144 个 (C)216 个 (D)288 个 【 点评:考查排列问题,相邻用捆绑法,不相邻用插孔法,理解透题意相对比较简单. 解析:把 1,2 看成一个“元素” ,与 5,6 共三个“元素”进行排列,有 A3 种,而 1,2 有次序有 A2 种;当 1,2,5,6 三个“元素”排好后有四个空,再把 3,4 插进去有 A4 种,故总共有 A3 • A2 • A4 = 144 种.
4
北京博飞教育中心

专业,专注,专心,做最优秀的港澳台联考补习班
北京博飞教育中心

点评:考查抽象函数及复合函数的导数,属于难题. 解析:因为 x, y 是两个无关的自变量,故对 x 求导时可视 y 为常数,求导得 f ′ ( x + y ) = f ′ ( x ) + 4 y ,利 用 f ′ (1) = 2 ,可令 x = 1 得 f ′ (1 + y ) = f ′ (1) + 4 y = 2 + 4 y ,令 f ′ (1 + y ) = 2 + 4 y = 0 得 y = −

2010年普通高等学校招生全国统一考试数学卷(湖北.文)含详解

2010年普通高等学校招生全国统一考试数学卷(湖北.文)含详解

绝密*启用前2010年普通高等学校招生全国统一考试(湖北卷)数 学本试题卷共4页,三大题21小题,全卷满分150分,考试用时120分钟。

*祝考试顺利*注意事项:1. 答题前,考生务必将自己的姓名、准考证号走宝在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A (或B )后的方框涂黑。

2. 选择题的作答:每小题迁出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后。

再选涂其他答案标号。

答在试题卷、草稿纸上无效。

3. 填空题和解答题用0.5毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

4. 考生必须保持答题卡的整洁,考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合M={1,2,4,8},N={x|x 是2的倍数},则M ∩N=A.{2,4}B.{1,2,4}C.{2,4,8} D{1,2,8}2.函数f(x)=sin(),24x x R π-∈的最小正周期为 A. 2π B.x C.2π D.4π 3.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = A.4B. 14C.-4 D-144.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .A. ①②B. ②③C. ①④D.③④。

2010年普通高等学校招生全国统一考试高考数学教师精校版含详解广东文

2010年普通高等学校招生全国统一考试高考数学教师精校版含详解广东文

2010年广东文一、选择题(共10小题;共50分)1. 若集合A=0,1,2,3,B=1,2,4,则集合A∪B= A. 0,1,2,3,4B. 1,2,3,4C. 1,2D. 02. 函数f x=lg x−1的定义域是 A. 2,+∞B. 1,+∞C. 1,+∞D. 2,+∞3. 若函数f x=3x+3−x与g x=3x−3−x的定义域均为R,则 A. f x与g x均为偶函数B. f x为奇函数,g x为偶函数C. f x与g x均为奇函数D. f x为偶函数,g x为奇函数4. 已知数列a n为等比数列,S n是它的前n项和,若a2⋅a3=2a1,且a4与2a7的等差中项为54,则S5= A. 35B. 33C. 31D. 295. 若向量a=1,1,b=2,5,c=3,x满足条件8a−b⋅c=30,则x = A. 6B. 5C. 4D. 36. 若圆心在x轴上、半径为5的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是 A. x−2+y2=5 B. x+52+y2=5C. x−52+y2=5D. x+52+y2=57. 若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 A. 45B. 35C. 25D. 158. " x>0 " 是 " x23>0 " 成立的 A. 充分非必要条件B. 必要非充分条件C. 非充分非必要条件D. 充要条件9. 如图,△ABC为正三角形,AAʹ∥BBʹ∥CCʹ,CCʹ⊥平面ABC,且3AAʹ=32BBʹ=CCʹ=AB,则多面体ABC−AʹBʹCʹ的正视图(也称主视图)是 A. B.C. D.10. 在集合a,b,c,d上定义两种运算⊕和⊗如下:⊕a b c da abc db b b b bc c b c bd d b b d ⊗a b c da a a a ab a bc dc a c c ad a d a d那么d⊗a⊕c= A. aB. bC. cD. d二、填空题(共5小题;共25分)11. 某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,x2,x3,x4(单位:吨).根据如图所示的程序框图,若x1、x2、x3、x4分别为1、1.5、1.5、2,则输出的结果s为.12. 某市居民2005−2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:年份20052006200720082009收入x11.512.11313.315支出Y 6.88.89.81012根据统计资料,居民家庭年平均收入的中位数是,家庭年平均收入与年平均支出有(填“正”或“负”)线性相关关系.13. 已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sin A=.14. 如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=a2,点E,F分别为线段AB,AD的中点,则EF=.15. 在极坐标系ρ,θ(0≤θ≤2π)中,曲线ρcosθ+sinθ=1与ρsinθ−cosθ=1的交点的极坐标为.三、解答题(共6小题;共78分)16.设函数f x=3sin ωx+π6,ω>0,x∈−∞,+∞,且以π2为最小正周期.(1)求f0;(2)求f x的解析式;(3)已知fα4+π12=95,求sinα的值.17. 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20到40岁401858大于40岁152742总计5545100(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.18. 如图,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a.(1)证明:EB⊥FD;(2)求点B到平面FED的距离.19. 已知函数f x对任意实数x均有f x=kf x+2,其中常数k为负数,且f x在区间0,2上有表达式f x=x x−2.(1)求f−1,f2.5的值;(2)写出f x在−3,3上的表达式,并讨论函数f x在−3,3上的单调性;(3)求出f x在−3,3上的最小值与最大值,并求出相应的自变量的取值.20. 已知曲线C n:y=nx2,点P n x n,y n x n>0,y n>0是曲线C n上的点n=1,2,⋯.(1)试写出曲线C n在点P n处的切线l n的方程,并求出l n与y轴的交点Q n的坐标;(2)若原点O0,0到l n的距离与线段P n Q n的长度之比取得最大值,试求点P n的坐标x n,y n;(3)设m与k为两个给定的不同的正整数,x n与y n是满足(2)中条件的点P n的坐标,证明:m+1x n2−k+1y nsn=1<ms−ks s=1,2,….21. 某营养师要为某个儿童预定午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?答案第一部分 1. A2. B3. D4. C【解析】a 2⋅a 3=a 1q ⋅a 1q 2=2a 1,a 1q 3=2,即a 4=2.又a 4与2a 7的等差中项为54,即a 4+2a 7=52,得a 7=14. 所以q =12,a 1=16.所以S 5=16 1−1251−12=31.5. C6. D【解析】由题意设圆的方程为 x −a 2+y 2=5 a <0 ,由于与直线x +2y =0相切,则5= 5得a =−5,∴圆的方程为 x +5 2+y 2=5.7. B【解析】由题意知,2⋅2b =2a +2c ,即2b =a +c ,即4 a 2−c 2 =4b 2= a +c 2,即5c 2+2ac −3a 2=0,即 5c −3a c +a =0,所以e =35. 8. A【解析】当x >0时,x 2>0,有 x 23>0,所以" x 2>0 "是" x 23>0 "成立的充分条件;x 23>0则x 2>0,所以x ≠0,所以" x >0 "是" x 23>0 "的不必要条件.综上" x >0 "是" x 23>0 "成立的充分非必要条件. 9. D 10. A【解析】由表易知,a ⊕c =c ,d ⊗c =a .第二部分 11. 1.5 12. 13,正 13. 12【解析】因为A +C =2B ,所以B =60∘,又由正弦定理得:asin A=b sin B,所以sin A =a sin B b=323=12.14. a2【解析】在直角梯形中,连结DE ,易知△ADE 为直角三角形,而F 为中点,则EF 为斜边AD 的一半,故EF =a2. 15. 1,π2【解析】 ρ cos θ+sin θ =1ρ sin θ−cos θ =1,整理得cos θ+sin θ=sin θ−cos θ,即cos θ=0.得θ=π2或32π.当θ=π2时,ρ=1cos θ+sin θ=1sin θ=1 .因为ρ>0,所以当θ=3π2时,极坐标也是 1,π2 . 第三部分16. (1)因为函数f x =3sin ωx +π6 ,所以f 0 =3sin ω×0+π6 =3sin π6=32.(2)因为函数f x=3sin ωx+π6,ω>0,x∈−∞,+∞,且以π2为最小正周期.所以ω=4,所以f x=3sin4x+π6.(3)因为fα4+π12=95,所以3sin4α4+π12+π6=95,所以sin α+π2=35,所以cosα=35,所以1−sin2α=925,所以sin2α=1625,所以sinα=±45.17. (1)由表中数据,年龄在20至40岁间收看新闻节目的观众所占的比例为1858,而年龄大于40岁的收看新闻节目的观众所占的比例为2742,这两个比例值相差比较大,所以收看新闻节目的观众与年龄有关.(2)根据分层抽样的特点,大于40岁的观众应抽取27×545=3(名).(3)由题意抽取的5名观众有3名大于40岁,用A,B,C表示,有2名年龄为20至40岁的,用a,b表示.在5名观众中任取2名共构成10个基本事件A,B,A,C,A,a,A,b,B,C,B,a,B,b,C,a,C,b,a,b.其中恰有1名观众的年龄为20岁至40岁的基本事件有6个.设“恰有1名观众的年龄为20岁至40岁”为事件D,根据古典概型的概率计算公式P D=610=35.18. (1)∵点E为AC的中点,且AB=BC,AC为直径,∴EB⊥AC.∵FC⊥平面BED,且BE⊂平面BED,∴FC⊥BE.∵FC∩AC=C,∴BE⊥平面FBD,∵FD⊂平面FBD,∴EB⊥FD.(2)∵FC⊥平面BED,且BD⊂平面BED,∴FC⊥BD,又∵BC=DC,∴FD=FB=5a,所以V F−EBD=1×S△FBD×EB=1×1×2a×5a2−a2×a=2a3 3,∵EB⊥平面BDF,且FB⊂平面BDF,所以EF=EB+FB=a+5a=6a,又因为EB⊥BD,所以ED=EB2+BD2=a2+4a2=5a,所以S△FED=1×6a×5a 2−6a =21a2,所以点B到平面FED的距离d=V F−EBD13×S△FED=421a.19. (1)由已知得f−1=kf−1+2=kf1=k×1×1−2=−k,又因为f0.5=kf2.5,所以f2.5=1kf0.5=1k−34=−34k.(2)设−2≤x<0,则0≤x+2<2,所以f x=kf x+2=k x+2x+2−2=kx x+2.设−3≤x<−2,则−1≤x+2<0,所以f x=kf x+2=k2x+2x+4.设2<x≤3,则0<x−2≤1,又因为f x−2=kf x,所以f x=1f x−2=1x−2x−4.由此f x=k2x+2x+4,−3≤x<−2, kx x+2,−2≤x<0, x x−2,0≤x≤2,1kx−2x−4,2<x≤3.因为k<0,所以由二次函数知识得f x在−3,−2上是增函数,在−2,−1上是增函数,在−1,0上是减函数,在0,1上是减函数,在1,2上是增函数,在2,3上是增函数.(3)由函数f x在−3,3上的单调性可知,f x在x=−3或x=1处取得最小值f−3=−k2 或 f1=−1,而在x=−1或x=3处取得最大值f−1=−k 或 f3=−1 .①k<−1时,而f x在x=−3处取得最小值f−3=−k2,在x=−1处取得最大值f−1=−k;②k=−1时,f x在x=−3与x=1处取得最小值f−3=f1=−1,在x=−1与x=3处取得最大值f−1=f3=1;③−1<k <0时,f x 在x =1处取得最小值f 1 =−1.在x =3处取得最大值f 3 =−1.20. (1)因为y =nx 2,所以yʹ=2nx .又P n x n ,nx n 2 ,所以曲线C n 在点P n x n ,nx n 2 处的切线l n 为y −nx n 2=2nx n x −x n ,即y =2nx n x −nx n 2.令x =0,得Q n 0,−nx n 2 .(2)直线l n 的一般式方程为y −2nx n x +nx n 2=0,原点到l n 的距离为d 1=n 21+4n 2x n2,线段P n Q n 的长度为d 2= x n 22n 4=x n 2n2. 所以d 1d 2=nx n 2x n 1+4n 2x n 2 =nx n1+4n 2x n2=n 1x n+4n 2x n ≤n 4n =14.当且仅当1x n=4n 2x n ,即x n =12n 时取等号,此时P n 12n ,14n .(3)由(2)知x n =12n,y n =14n,于是m +1 x n 2− k nsn =1= m +1− k +12 n s n =1=2 n m +1+ k +1 sn =1< m −k2 n m + k sn =1= m − k 12 n sn =1现证明: 2 ns n < s s =1,2,3,⋯ .因为12 n sn =1<1n + n −1sn =1= n − n −1sn =1=1+ 2−1 + 3− 2 +⋯+ s − s −1 = s ,故问题得证.21. 设为该儿童分别预订x 、y 个单位的午餐和晚餐,共花费z 元,则z =2.5x +4y , 且满足以下条件12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,x ,y ≥0,化简得3x +2y ≥16,x +y ≥7,3x +5y ≥27,x ,y ≥0,作出可行域如图,则z 在可行域的四个顶点A 9,0 ,B 4,3 ,C 2,5 ,D 0,8 处的值分别为z A =2.5×9+4×0=22.5,z B =2.5×4+4×3=22,z C =2.5×2+4×5=25,z D =2.5×0+4×8=32.比较之,z B 最小,因此应当为该儿童预定4个单位的午餐和3个单位的晚餐,就可以满足要求.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档