2012年高考真题汇编理科数学(解析版)7:立体几何

合集下载

2012年高考真题理科数学解析汇编:立体几何 2

2012年高考真题理科数学解析汇编:立体几何 2

2012年高考真题理科数学解析汇编:立体几何一、选择题错误!未指定书签。

.(2012年高考(新课标理))已知三棱锥S A B C -的所有顶点都在球O 的求面上,A B C ∆是边长为1的正三角形,S C 为球O 的直径,且2SC =;则此棱锥的体积为 ( )A.6B.6C.3D.2错误!未指定书签。

.(2012年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .18错误!未指定书签。

.(2012年高考(浙江理))已知矩形ABCD ,AB =1,BC将∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中, A .存在某个位置,使得直线AC 与直线BD 垂直 B .存在某个位置,使得直线AB 与直线CD 垂直 C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直错误!未指定书签。

.(2012年高考(重庆理))设四面体的六条棱的长分别为和a ,且长为a 的棱异面,则a 的取值范围是 ( )A .(0,B .(0,C .D .错误!未指定书签。

.(2012年高考(四川理))如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径C D 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A .arccos 4R B .4Rπ C .arccos3R D .3Rπ错误!未指定书签。

.(2012年高考(四川理))下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行错误!未指定书签。

2012年高考真题理科数学解析汇编立体几何参考答案2

2012年高考真题理科数学解析汇编立体几何参考答案2

2012年高考真题理科数学解析汇编:立体几何参考答案2则B (2, 0, 0),C (2, 22,0),E (1, 2, 1),)1,2,1(=AE ,)0,22,0(=BC设AE 与BC 的夹角为θ,则222224||||cos ===⨯⋅BC AE BC AE θ,θ=4π.由此可知,异面直线BC 与AE 所成的角的大小是4π [解法二]取PB 中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角在AEF ∆中,由EF =2、AF =2、AE =2 知AEF ∆是等腰直角三角形, 所以∠AEF =4π。

因此异面直线BC 与AE 所成的角的大小是4π1.解(1)1111224ABC S ∆=⨯⨯=,又1CC 为三棱锥1C MBC-的高,11111123346C MBC ABC V S CC -∆∴=⋅=⨯⨯= (2)//CD AB ,所以1C MB ∠或其补角为导面直线CD 与1MC 所成的角.连接1,BC AB ⊥平面11,BCC B AB BC ∴⊥,在1Rt MBC ∆中,11415,2BC MB =+==15tan 2512C MB ∠==,故1arctan 25C MB ∴∠=,即异面直线CD 与1MC 所成的角为arctan 252.解析:(1)证法一 如图,过直线b 上任一点作平面π的垂线n ,设直线,,,a b c n 的方向向量分别是,,,a b c n ,则,,b c n 共面,根据平面向量基本定理,存在实数,λμ使得c b n λμ=+ABCD P EF则()()()a c a b n a b a n λμλμ⋅=⋅+=⋅+⋅ 因为a b ⊥,所以0a b ⋅= 又因为aπ,n π⊥,所以0a n ⋅=故0a c ⋅=,从而a c ⊥证法二 如图,记c b A ⊥=,P 为直线b 上异于点A 的任意一点,过P 作PO π⊥,垂足为O ,则O c ∈ ∵PO π⊥,a π,∴直线PO a ⊥又a b ⊥,b平面PAO ,POb P =∴a ⊥平面PAO ,又c 平面PAO ,∴a c ⊥(2)逆命题:a 是平面π内一条直线,b 是π外的一条直线(b 不垂直于π),c 是直线b 在π上的投影,若a c ⊥,则a b ⊥. 逆命题为真命题. 3. 解析:(Ⅰ)在等腰梯形ABCD 中,AB∥CD,∠DAB=60°,CB=CD,由余弦定理可知202223)180cos(2CD DAB CB CD CB CD BD =∠-⋅⋅-+=,即AD CD BD 33==,在ABD ∆中,∠DAB=60°,AD BD 3=,则ABD ∆为直角三角形,且DB AD ⊥.又AE⊥BD,⊂AD 平面AED ,⊂AE 平面AED ,且A AE AD = ,故BD⊥平面AED ; (Ⅱ)由(Ⅰ)可知CB AC ⊥,设1=CB ,则3==BD CA ,建立如图所示的空间直角坐标系,)0,21,23(),0,1,0(),01,0(-D B F ,向量)1,0,0(=n 为平面BDC 的一个法向量.设向量),,(z y x m =为平面BDF 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00FB m BD m ,即⎪⎩⎪⎨⎧=-=-002323z y y x , 取1=y ,则1,3==z x ,则)1,1,3(=m 为平面BDF 的一个法向量.zx y5551,cos ==⋅>=<nm n m n m ,而二面角F —BD —C 的平面角为锐角,则 二面角F-BD-C 的余弦值为55. 解法二:取BD 的中点G ,连接1,CG FG ,由于CB CD =,因此CG BD ⊥, 又FC ⊥平面ABCD ,BD ⊂平面ABCD ,所以FC BD ⊥ 由于,,FC CG C FC CG ⋂=⊂平面FCG ,所以BD ⊥平面FCG故BD FG ⊥,所以FGC ∠为二面角F BD C --的平面角.在等腰三角形BCD 中,由于120BCD ∠=︒,因为12CG CB=,又CB CF=,所以225GF CG CF CG =+=,故5cos 5FGC ∠=,因此二面角F BD C --的余弦值为55。

2012年高考真题——数学理全国卷解析版

2012年高考真题——数学理全国卷解析版

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。

2012年高考真题——理科数学(新课标卷)解析版及试题与答案

2012年高考真题——理科数学(新课标卷)解析版及试题与答案

绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ()A 23,p p ()B 12,p p ()C ,p p 24()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】选C ∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考真题汇编——理科数学:7:立体几何

2012年高考真题汇编——理科数学:7:立体几何

1. 如图,直三棱柱///ABC A B C -,90BAC ∠=,/,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点。

(Ⅰ)证明:MN ∥平面//A ACC ;(Ⅱ)若二面角/A MN C --为直二面角,求λ的值。

【答案】-2 -2. 如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠=(如图2所示). (Ⅰ)当BD 的长为多少时,三棱锥A BCD -的体积最大;(Ⅱ)当三棱锥A BCD -的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在 棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.第19题图【答案】(Ⅰ)同解法1,得321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=-+. 令321()(69)6f x x x x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<.所以当1x =时,()f x 取得最大值.故当1BD =时, 三棱锥A BCD -的体积最大. (Ⅱ)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==. 于是可得(0,0,0)D ,(1,0,0)B ,(0,2,0)C ,(0,0,2)A ,(0,1,1)M ,1(,1,0)2E ,且(1,1,1)BM =-.设(0,,0)N λ,则1(,1,0)2EN λ=--. 因为EN BM ⊥等价于0EN BM ⋅=,即11(,1,0)(1,1,1)1022λλ--⋅-=+-=,故12λ=,1(0,,0)2N . 所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.DABCACDB图2图1 M E. ·设平面BMN 的一个法向量为(,,)x y z =n ,由,,BN BM ⎧⊥⎪⎨⊥⎪⎩n n 及1(1,,0)2BN =-,得2,.y x z x =⎧⎨=-⎩ 可取(1,2,1)=-n . 设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =--,(1,2,1)=-n ,可得|sin cos(90)||||EN EN θθ-⋅=-===⋅n n 60θ=.故EN 与平面BMN 所成角的大小为60.3. 如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC 。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

2012高考真题分类汇编数学文立体几何

2012高考真题分类汇编数学文立体几何

2012高考真题分类汇编数 学 文—立体几何一、选择题 1.【2012高考新课标文7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】选B 由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B . 2.【2012高考新课标文8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π【答案】B【解析】球半径3)2(12=+=r ,所以球的体积为ππ34)3(343=⨯,选B .3.【2012高考全国文8】已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B (C (D )1 【答案】D【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选D .4.【2012高考陕西文8】将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 ( )【答案】B .【解析】根据.空间几何体的三视图的概念易知左视图1AD 是实线C B 1是虚线,故选B . 5.【2012高考江西文7】若一个几何体的三视图如图所示,则此几何体的体积为A .112B .5C .4D .92【答案】D【解析】由三视图可知这是一个高为1的直六棱柱。

底面为六边形的面积为421231=⨯⨯+)(,所以直六棱柱的体积为414=⨯,选D . 易错提示:本题容易把底面六边形看成是边长为1的正六边形,其实只有上下两个边长是1. 6.【2012高考湖南文4】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不.可能..是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年来热点题型.7.【2012高考广东文7】某几何体的三视图如图1所示,它的体积为A . 72π B. 48π C . 30πD . 24π 【答案】C【解析】该几何体是圆锥和半球体的组合体,则它的体积图1正视图 俯视图侧视图2311434330323V V V πππ=+=⋅⋅+⋅⋅=圆锥半球体.8.【2102高考福建文4】一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A . 球B . 三棱锥C . 正方体D . 圆柱 【答案】D .【解析】球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.9.【2012高考重庆文9】设四面体的六条棱的长分别为1,1,1,1a 且长为a 的棱的棱异面,则a 的取值范围是(A ) (B )(C )(D )(1【答案】A 【解析】因为22211)22(12=-=-=BE 则BE BF <,222=<=BE BF AB ,选A ,10.【2012高考浙江文3】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是A . 1cm 3B . 2cm 3C . 3cm 3D . 6cm 3 【答案】C【解析】由题意判断出,底面是一个直角三角形,两个直角边分别为1和2,整个棱锥的高由侧视图可得为3,所以三棱锥的体积为11123132⨯⨯⨯⨯=. 11.【2012高考浙江文5】 设l 是直线,a ,β是两个不同的平面 A . 若l ∥a ,l ∥β,则a ∥β B . 若l ∥a ,l ⊥β,则a ⊥β C . 若a ⊥β,l ⊥a ,则l ⊥β D . 若a ⊥β, l ∥a ,则l ⊥β【答案】B【解析】利用排除法可得选项B 是正确的,∵l ∥a ,l ⊥β,则a ⊥β.如选项A :l ∥a ,l ∥β时,a ⊥β或a ∥β;选项C :若a ⊥β,l ⊥a ,l ∥β或l β⊂;选项D :若若a ⊥β, l ⊥a ,l ∥β或l ⊥β.12.【2012高考四川文6】下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 【答案】C【解析】A .两直线可能平行,相交,异面故A 不正确;B .两平面平行或相交;C .正确;D .这两个平面平行或相交. 13.【2012高考四川文10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A .arccos4R B .4Rπ C .arccos3R D .3Rπ【答案】A【解析】根据题意,易知平面AOB ⊥平面CBD,BOP AOB AOP ∠⋅∠=∠∴cos cos cos422122=⋅=,42arccos =∠∴AOP ,由弧长公式易得,A 、P 两点间的球面距离为arccos4R 14.【2102高考北京文7】某三棱锥的三视图如图所示,该三棱锥的表面积是(A )28+(B )30+(C )56+(D )60+【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。

2012年.火热上线的高考真题数学试题(理)解答题汇编--立体几何 解答题

2012年.火热上线的高考真题数学试题(理)解答题汇编--立体几何 解答题

2012年高考真题数学试题(理)解答题汇编--立体几何(18)(2012安徽理科卷)(本小题满分12分)平面图形111ABB AC C 如图4所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==,1111A B A C ==BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答 下列问题。

(Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长; (Ⅲ)求二面角1A BC A --的余弦值。

16.(2012北京卷理)(本小题共14分)如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图2. (I)求证:A 1C ⊥平面BCDE ;(II)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (III)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由1. (2012福建卷理科)(本小题满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点。

(Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由。

(Ⅲ)若二面角11A A B A --的大小为030,求AB 的长。

18.(2012广东卷理科)(本小题满分13分)如图5所示,在四棱锥P ABCD-中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若1AD=,求二面角B PC APA=,2--的正切值.19.(2012湖北卷理科)(本小题满分12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC 上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC 的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小18. (2012湖南卷理科)(本小题满分12分)如图5,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E 是CD 的中点. (Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P-ABCD 的体积.(18) (2012辽宁卷理科) (本小题满分12分)如图,直三棱柱///ABC A B C -,90BAC ∠= ,/,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012高考真题分类汇编:立体几何一、选择题1.【2012高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B. 2.【2012高考真题浙江理10】已知矩形ABCD,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的、3.【2012高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 6 ()B 6 ()C 3 ()D 2【答案】A【解析】ABC ∆的外接圆的半径r =点O 到面ABC 的距离d ==,SC 为球O 的直径⇒点S 到面ABC的距离为2d =此棱锥的体积为11233ABC V S d ∆=⨯==另:1236ABC V S R ∆<⨯=排除,,B C D ,选A. 4.【2012高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】A.两直线可能平行,相交,异面故A 不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交.5.【2012高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A 、arccos 4RB 、4R πC 、RD 、3R π【答案】A【解析】根据题意,易知平面AOB ⊥平面CBD,BOP AOB AOP ∠⋅∠=∠∴cos cos cos422122=⋅=,42arccos =∠∴AOP ,由弧长公式易得,A 、P 两点间的球面距离为R . 6.【2012高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为()A.C. D. 355.【答案】A.【解析】设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A ,),2,0(),,2,2(11a a a a a -=-=∴,55||||,cos 111111=>=<∴BC AB BC AB ,故选A. 7.【2012高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 8.【2012高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A 、8π3B 、3πC 、10π3D 、6π 【答案】B【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 9.【2012高考真题广东理6】某几何体的三视图如图所示,它的体积为A 、12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V 、故选C 、10.【2012高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱 【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC,故选D、11.【2012高考真题重庆理9】设四面体的六条棱的长分别为a ,且长为a 棱异面,则a 的取值范围是(A ) (B ) (C ) (D )(1 【答案】A【解析】因为22211)22(12=-=-=BE 则BE BF <,222=<=BE BF AB ,选A,12.【2012高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如图所示,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。

本题所求表面积应为三棱锥四个面的面积之和,利用垂直关系和三角形面积公式,可得:10=底S ,10=后S ,10=右S ,56=左S ,因此该几何体表面积5630+=+++=左右后底S S S S S ,故选B 。

13.【2012高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2BCD 1【答案】D【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选D.二、填空题14.【2012高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】1【解析】观察三视图知该三棱锥的底面为一直角三角形,右侧面也是一直角三角形、故体积等于11312123⨯⨯⨯⨯=、 15.【2012高考真题四川理14】如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

NA 1【答案】2π【命题立意】本题主要考查空间中直线与直线,直线与平面的位置关系,以及异面直线所成角的求法. 【解析】本题有两种方法,一、几何法:连接1MD ,则DN MD ⊥1,又DN D A ⊥11,易知11MD A DN 面⊥,所以1A M 与DN 所成角的大小是2π;二、坐标法:建立空间直角坐标系,利用向量的夹角公式计算得异面直线1A M 与DN所成角的大小是2π.16.【2012高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。

【答案】38【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为2(344131)211238ππ⨯+⨯+⨯+⨯⨯-=【点评】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题。

本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积。

17.【2012高考真题山东理14】如图,正方体1111ABCD A B C D -的棱长为1,,E F 分别为线段11,AA B C 上的点,则三棱锥1D EDF -的体积为____________.【答案】61【解析】法一:因为E 点在线段1AA 上,所以2111211=⨯⨯=∆DED S ,又因为F 点在线段C B 1上,所以点F 到平面1DED 的距离为1,即1=h ,所以611213131111=⨯⨯=⨯⨯==∆--h S V V DED DED F EDF D . 法二:使用特殊点的位置进行求解,不失一般性令E 点在A 点处,F 点在C 点处,则61111213131111=⨯⨯⨯⨯=⨯⨯==∆--DD S V V ADC ADC D EDF D 。

18.【2012高考真题辽宁理16】已知正三棱锥P -ABC ,点P ,A ,B ,C ,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________。

【解析】因为在正三棱锥P -ABC 中,PA ,PB ,PC 两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点。

球心到截面ABC 的距离为球的半径减去正三棱锥P -ABC 在面ABC 上的所以正方体的棱长为2,可求得正三棱锥P -ABC 在面ABC 所以球心到截面ABC =【点评】本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。

该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱 19.【2012高考真题上海理8】若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

【答案】π33 【解析】因为半圆面的面积为ππ2212=l ,所以42=l ,即2=l ,即圆锥的母线为2=l ,底面圆的周长πππ22==l r ,所以圆锥的底面半径1=r ,所以圆锥的高322=-=r l h ,所以圆锥的体积为πππ33331313=⨯=h r 。

相关文档
最新文档