牛顿第二定律应用——滑块问题
人教版必修一 第四章牛顿第二定律-滑块类问题专题训练(无答案)

牛顿第二定律滑块类问题专题训练1.如图所示,质量为m1的足够长木板静止在水平面上,其上放一质量为m2的物块.物块与木板的接触面是光滑的.t =0时刻起,给木块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、物块的加速度和速度大小,图中符合运动情况的是()A.B.C.D.2.如图所示,在光滑的水平面上放着两块长度相等,质量分别为M1和M2的木板,在两木板的左端分别放有一个大小、形状、质量完全相同的物块.开始都处于静止状态,现分别对两物块施加水平恒力F1F2,当物块与木板分离后,两木板的速度分别为V1和V2.若已知v1>v2,且物块与木板之间的动摩擦因数相同,需要同时满足的条件是()A.F1=F2,且M1>M2 B.F1=F2,且Ml=M2 C.F1>F2,且M1=M2 D.F1<F2,且M1=M23.如图所示,质量为m的木块在质量为M的长木板上受到水平向右的拉力F的作用向右滑行,但长木板保持静止不动.已知木块与长木板之间的动摩擦因数为μ1,长木板与地面之间的动摩擦因数为μ2,下列说法正确的是()A.长木板受到地面的摩擦力的大小一定为μ1mg B.长木板受到地面的摩擦力的大小一定为μ2(m+M)gC.只要拉力F增大到足够大,长木板一定会与地面发生相对滑动D.无论拉力F增加到多大,长木板都不会与地面发生相对滑动4.如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦,现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块运动先向左再向右,所受摩擦力先向右再向左 B.物块一直向右运动,所受摩擦力向右,最后为零C.木板一直向右运动,所受摩擦力向左,最后为零D.木板和物块的速度都逐渐变小,直到为零5.如图所示,光滑水平面上放着质量为M的木板,木板的上表面粗糙且左端有一个质量为m的木块。现对木块施加一个水平向右的恒力F,木块与木板由静止开始运动,经过时间t分离。下列说法正确的是()A.若仅增大木板的质量M,则时间t增大B.若仅增大木块的质量m,则时间t增大C.若仅增大恒力F,则时间t增大D.若仅增大木块与木板间的动摩擦因数,则时间t增大6.如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上。
运用斜面滑块模型探究牛顿第二定律

测 量 (i gs 0一pcs: t n oO l t 2 t 1 2 口 序 号 / m ・ 一) /0 3 /0 3 /03 / m ・ 一 ( s 1—s 1—s 1—s ( s
1
2
O5 .
1 0 .
l . 7 3 4 2 5 0. 9 7 11 .5 6 .3 4 68 9
差, 左边 悬挂 的物体质 量 的 可调 整范 围很 小 , 测量 的 数 据 只能集 中在 一个 很小 的区域 . 由于数 据较 集 中 , 很难 看 出趋势 , 结规 律 很勉 强 . 际 实 验 中 , 总 实 由于
如 图 3假定 斜 面长 度为 A 倾 角 为 0 则有 , B, ,
t = a n = = () 2
Mg s O一/ O0 (i n / S) C
() 1
由() 可 知 , D边所 在 位置 就是 滑块 沿斜 面 2式 B
匀 速下 滑 的位置 .
如 图 4 取 A 的长度 L : 1m, , B 在确定 好 B 的 D
位 置后 , 插入 三 角板 E G, D取 米为 单位 , A 的 P A 把 D
O
用 中旋转 基板 6 来确定 图 3中 B 的位 置 , D 三角 斜 面 7的斜边 插 人上旋 导 轨 8在 三角斜 面 的斜边 上 , 标 出 (i0一 /cs )的整 体 数 值 , 成 一 个 关 于 s n  ̄oO 形
图 6 a一 , 图像
( ) 索 物 体 所 受 到 的拉 力 不 变 时 , 体 的加 4探 物 速 度与 其质 量 的关 系 .
没有传统实验 中实验原理不完善 的系统误差 . 实验
中也 可 以将 滑 块 改成 小 车 , 小 车 轮 子 的质 量 远 远 当 小 于车 子质 量 时 , 子 滚 动 时 受 到 的摩 擦 力 也 可 以 轮 写 成 , cs , u oO 只是相 当于 更小 了. Mg
牛顿第二定律-叠块

叠块问题一、叠放滑块的问题已知A 滑块和B 木板的质量分别为A m 和B m ,静止叠放在水平面上,A 和B 之间的动摩擦系数是1μ,B 与地面之间的动摩擦系数是2μ,设最大静摩擦力等于滑动摩擦力。
1.当水平作用力施加在下面的木板上的情况由图可知,滑块和木板之间的最大静摩擦力为11A f m g μ=,地面对木板的最大静摩擦力为22A B ()f m g m g μ=+。
物理过程分析:当F 较小时,A 和B 一起保持静止;当F 增加时,A 和B 保持相对静止,并且一起向右加速运动;当继续增加F 时,存在一个临界值(定义为1F ),A 相对于B 向左滑动, A 的加速度由滑块和木板之间的最大静摩擦力(11A f m g μ=)提供,此时,以A 和B 为研究对象时,可以计算12A B A B 1()()F m m g m m g μμ=+++(受力分析如图)。
滑块和木板的运动状态分类如下: (1)当水平拉力20F f <≤,A 和B 保持静止状态,且他们之间的静摩擦力为零。
(2)当水平拉力21f F F <≤时,A 和B 保持相对静止,一起向右加速运动,此时可以把A 和B 看成一个整体,对整体的受力分析可以计算出共同的加速度a=(3)当水平拉力1F F >,A 的加速度小于B 的角速度,A 相对于地面向右做匀加速运动(A 1a g μ=);而B 相对于地面也向右做匀加速运动a=知识点要点一牛顿第二定律-叠块2.当水平作用力施加在上面的木快上的情况当外力F 作用在上面的滑块时,需要考虑木板B 是否能不拉动,也主要取决于A 滑块对B 木板的摩擦力的大小。
滑块A 对木板B 的最大静摩擦力为11A f m g μ=,地面对木板的最大静摩擦力为22A B ()f m g m g μ=+。
下面对滑块和木板的运动状态分类讨论:(1)当12f f < ,则无伦多大的水平力作用在滑块上,都不能使木板B 动起来,B 始终处于静止状态,此时,滑块的A 的运动状态取决于F 的大小,当1F f ≤时,滑块A 处于静止,当1F f >时,滑块A 向右做加速运动。
高中物理斜面滑块专题

高中物理斜面滑块专题是一个重要的知识点,主要涉及力和运动的综合问题。
在解决斜面滑块问题时,需要注意以下几个方面:受力分析:对滑块进行受力分析,包括重力、支持力、摩擦力和可能存在的外力。
根据斜面的角度和滑块的运动状态,判断各力的方向和大小。
运动分析:根据题意分析滑块的运动状态,如静止、匀速直线运动、匀加速运动或匀减速运动。
同时要明确运动的方向和加速度的方向。
牛顿第二定律:如果滑块做匀变速运动,需要使用牛顿第二定律(F=ma)来分析力和运动的关系。
注意要分析沿斜面方向和垂直斜面方向的力,并根据需要选择正方向。
摩擦力分析:根据斜面的角度、滑块的运动状态和摩擦因数,判断摩擦力的方向和大小。
注意区分滑动摩擦力和静摩擦力,并注意滑动摩擦力公式f=μN中N的取值。
平衡条件:在某些情况下,滑块处于静止或匀速直线运动状态,需要使用平衡条件(如F=0,∑F=0)来解决问题。
功能关系:如果涉及到能量的转化或守恒,需要使用功能关系进行分析,如重力做功与重力势能变化的关系,动能定理等。
圆周运动和天体问题:在某些情况下,滑块可能做圆周运动或涉及天体问题,需要使用相应的公式和规律进行分析。
在解决斜面滑块问题时,需要注意多解问题和分类讨论,同时要善于运用图解法和正交分解法来解决问题。
通过多练习不同类型的题
目,可以逐步提高解决斜面滑块问题的能力。
专题8 应用动力学解决滑块-滑板模型问题 2021年高考物理二轮专题解读与训练(解析版)

专题8 应用动力学解决滑块-滑板模型问题1.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。
(3)通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是解决问题的突破口。
(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时,通常会用到系统能量守恒定律。
(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。
4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。
说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。
(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度; (2)画好运动草图,找出位移、速度、时间等物理量间的关系; (3)明确每一过程的末速度是下一过程的初速度。
例1.如图,质量为M 且足够长的倾角为θ的斜面体C 始终静止在水平面上,一质量为m 的长方形木板A 上表面光滑,木板A 获得初速度v 0后恰好能沿斜面匀速下滑,当木板A 匀速下滑时将一质量也为m 的滑块B 轻轻放在木板上,滑块B 在木板A 上下滑的过程中,下列说法正确的是( )A.A 与B 组成的系统在沿斜面的方向上动量不守恒B.A 的加速度大小为2g sin θC.A 的速度为012v 时B 的速度也是012v D.水平面对斜面体有向右的摩擦力 【答案】C【解析】A.因木板A 获得初速度v 0后恰好能沿斜面匀速下滑,即沿斜面方向受合力为零,可知sin cos mg mg θμθ=当放上木块B 后,对AB 系统沿斜面方向仍满足2sin 2cos mg mg θμθ=⋅可知系统沿斜面方向受到的合外力为零,则系统沿斜面方向动量守恒,选项A 错误;B.A 的加速度大小为sin 2cos sin A mg mg a g mθμθθ-⋅==-选项B 错误;C.由系统沿斜面方向动量守恒可知012v mv mmv =+ 解得12v v =选项C 正确;D.斜面体受到木板A 垂直斜面向下的正压力大小为2cos mg θ,A 对斜面体向下的摩擦力大小为2cos =2sin mg mg μθθ⋅,这两个力的合力竖直向下,可知斜面体水平方向受力为零,即水平面对斜面体没有摩擦力作用,选项D 错误。
牛顿运动定律的应用:牛顿运动定律的应用之“滑块—木板模型”

一、模型特征上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动,滑块-木板模型(如图所示),涉与摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中。
二、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
三、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f> f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
[名师点睛]1. 此类问题涉与两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。
求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
4.10《牛顿第二定律:滑块-滑板问题》

二、经典例题
【例1 】如图所示,平板A 长l = 10m, 质量M =4kg, 放在光滑的水平面上。在A 上最右端
放一物块B (大小可忽略),其质量m=2kg 。已知A 、B 间动摩擦因数μ = 0.4, 开始时A 、
B 都处于静止状态(取g=10m/s²) 。则
● (1) 要将A 从物块B 下抽出来,则加在平板A 上的水平恒力F 至少为多大?
B. F 拉动B, 则可能A 、B 、C 一起运动
C. F 拉动C, 则可能A 的加速度大于B 的加速度
D. F 拉动C, A 与B 的加速度大小总相等
)
8 .质量为2 kg 的木板B 静止在水平面上,可视为质点的物块A 从木板的左侧沿木板上表
面水平冲上木板,如图甲所示。A 和B 经过1 s 达到同一速度,之后共同减速直至静止,
板,在两木板的左端分别放有完全相同的物块,开始都处于静止状态。现分别对两物块施
加水平恒力1 、 2 ,经过时间 1 、 2 物块与木板分离后,两木板的速度大小分别为 1 和
2 , 已知物块与木板之间的动摩擦因数相同,则(
A . 若1 = 2 , 且1 > 2 , 则 1 < 2
数μ=
3
2
. 对木板施加沿斜面向上的恒力F, 使木板沿斜面由静止开始向上做匀加速直线运动,
假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g= 10 m/s².
(1)为使物块不滑离木板,求力F 应满足的条件;
(2) 若F=37.5N, 物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的
大的水平力
F = kt(k 是常数),木板和木块加速度的大小分别为 1 和 2 ,下列反映 1 和 2 变化的图
牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律滑块与传送带专题一“滑块—滑板”模型1.模型特点上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.2.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题思路处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系.(1) 加速度关系如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件.(2) 速度关系滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况.(3) 位移关系滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了.例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离.解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有F f1=μ1m A g ①F f2=μ1m B g ②F f3=μ2(m+m A+m B)g ③由牛顿第二定律得F f1=m A a A ④F f2=m B a B ⑤F f2-F f1-F f3=ma1 ⑥设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1=v0-a B t1 ⑦v1=a1t1 ⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得v1=1 m/s,方向与B的初速度方向相同⑨(2)在t1时间间隔内,B相对于地面移动的距离为s B=v0t1-12a B t21⑩设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有F f1+F f3=(m B+m)a2 ⑪由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2=v1-a2t2 ⑫对A有v2=-v1+a A t2 ⑬在t2时间间隔内,B(以及木板)相对地面移动的距离为s1=v1t2-12a2t22⑭在(t1+t2)时间间隔内,A相对地面移动的距离为s A=v0(t1+t2)-12a A(t1+t2)2 ⑮A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0=s A+s1+s B ⑯联立以上各式,并代入数据得s0=1.9 m.(也可用如图所示的速度-时间图线求解)答案:(1)1 m/s方向与B的初速度方向相同(2)1.9 m【题后反思】求解“滑块—滑板”模型问题的方法技巧(1)弄清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变.跟踪练习1. (水平面光滑的“滑块—滑板”模型)如图所示,质量M=8 kg的小车静止在光滑水平面上,在小车右端施加一水平拉力F=8 N.当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m=2 kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t=1.5 s 的时间,物体相对地面的位移为(g取10 m/s2)()A.1 m B.2.1 mC.2.25 m D.3.1 m解析:选B.放上物体后,物体的加速度a1=μg=2 m/s2,小车的加速度:a2=F-μmgM=0.5 m/s2,物体的速度达到与小车共速的时间为t1,则a1t1=v0+a2t1,解得t1=1 s;此过程中物体的位移:s1=12a1t21=1 m;共同速度为v=a1t1=2 m/s;当物体与小车相对静止时,共同加速度为a=FM+m=0.8 m/s2,再运动0.5 s的位移s2=vt′+12at′2=1.1 m,故从物体放上小车开始的1.5 s时间内,物体相对地面的位移为1 m+1.1 m=2.1 m,选项B正确.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的()解析:选A.放上小物块后,长木板受到小物块施加的向左的滑动摩擦力和地面向左的滑动摩擦力,在两力的共同作用下减速,小物块受到向右的滑动摩擦力作用,做匀加速运动,当两者速度相等后,可能以共同的加速度一起减速,直至速度为零,共同减速时的加速度小于两者相对运动时木板的加速度,故A 正确,B、C错误;由于水平面有摩擦,故两者不可能一起匀速运动,D错误.3.(多个板块的组合模型)如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6 N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1 m,木板A的质量m A=3 kg,小滑块及木板B的质量均为m=1 kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10 m/s2.求:(1)小滑块在木板A上运动的时间;(2)木板B获得的最大速度.解析:(1)小滑块对木板A的摩擦力F f1=μ1mg=4 N,木板A与B整体受到地面的最大静摩擦力F f2=μ2(2m+m A)g=5 N.F f1<F f2,小滑块滑上木板A后,木板A保持静止设小滑块滑动的加速度为a1,则:F-μ1mg=ma1,l=12a1t21,解得:t1=1 s.(2)设小滑块滑上B时,小滑块速度为v1,B的加速度为a2,经过时间t2滑块与B脱离,滑块的位移为x块,B的位移为x B,B的最大速度为v B,则:μ1mg-2μ2mg=ma2,v B=a2t2,x B=12a2t22,v1=a1t1,x块=v1t2+12a1t22,x块-x B=l,联立以上各式可得:v B=1 m/s.答案:(1)1 s(2)1 m/s4.(斜面上的“滑块—滑板”问题)如图所示,在足够长的光滑固定斜面底端放置一个长度L=2 m、质量M=4 kg 的木板,木板的最上端放置一质量m=1 kg 的小物块(可视为质点).现沿斜面向上对木板施加一个外力F使其由静止开始向上做匀加速直线运动.已知斜面倾角θ=30°,物块和木板间的动摩擦因数μ=3 2,g取10 m/s2.(1)当外力F=30 N时,物块和木板保持相对静止,求二者共同运动的加速度大小;(2)当外力F=53.5 N时,物块和木板之间将会相对滑动,则二者完全分离时的速度各为多大?解析:(1)物块和木板共同运动时,分析整体的受力情况,由牛顿第二定律得F-(M+m)g sin θ=(M+m)a解得a=1 m/s2.(2)设木板和物块的加速度分别为a1、a2,二者完全分离的时间为t,分离时速度分别为v1、v2,分析木板和物块的受力情况,由牛顿第二定律可得F-Mg sin θ-μmg cos θ=Ma1μmg cos θ-mg sin θ=ma2又L=12(a1-a2)t2v1=a1tv2=a2t联立解得v1=6.5 m/s,v2=2.5 m/s. 答案:(1)1 m/s2(2)6.5 m/s 2.5 m/s二、传送带模型(一)、水平传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v0水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断.物体的速度与传送带速度相等的时刻摩擦力发生突变.例1、水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,g取10 m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.解析:(1)行李所受滑动摩擦力大小F f=μmg=0.1×4×10 N=4 N,根据牛顿第二定律得F f=ma,加速度大小a=μg=0.1×10 m/s2=1 m/s2.(2)行李达到与传送带相同速率后不再加速,则v=at1,得t1=va=11s=1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a=1 m/s2,当行李到达右端时,有v2min=2aL,得v min=2aL=2×1×2 m/s=2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min=at min得行李最短运行时间t min=v mina=21s=2 s.答案:(1)4 N 1 m/s2(2)1 s(3)2 s 2 m/s(二)倾斜传送带问题1.情景特点分析项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速2.解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.例2、如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)解析:(1)设货物刚滑上传送带时加速度大小为a1,货物受力如图所示:根据牛顿第二定律得沿传送带方向:mg sin θ+F f=ma1,垂直传送带方向:mg cos θ=F N,又F f=μF N由以上三式得:a1=g(sin θ+μcos θ)=10×(0.6+0.5×0.8) m/s2=10 m/s2,方向沿传送带向下.(2)货物速度从v0减至传送带速度v所用时间设为t1,位移设为x1,则有:t1=v-v0-a1=1 s,x1=v0+v2t1=7 m.(3)当货物速度与传送带速度相等时,由于mg sin θ>μmg cos θ,此后货物所受摩擦力沿传送带向上,设货物加速度大小为a2,则有mg sin θ-μmg cos θ=ma2,得:a2=g(sin θ-μcos θ)=2 m/s2,方向沿传送带向下.设货物再经时间t2,速度减为零,则t2=0-v-a2=1 s.沿传送带向上滑的位移x2=v+02t2=1 m,则货物上滑的总距离为x=x1+x2=8 m.货物到达最高点后将沿传送带匀加速下滑,下滑加速度大小等于a2.设下滑时间为t3,则x=12a2t23,代入解得t3=2 2 s.所以货物从A端滑上传送带到再次滑回A端的总时间为t=t1+t2+t3=(2+22) s.答案:(1)10 m/s2,方向沿传送带向下(2)1 s7 m(3)(2+22) s【总结提升】解答传送带问题应注意的事项(1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目的是得到物块的加速度.(2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需判断μ与tan θ的关系才能决定物块以后的运动.(3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.跟踪练习1.(物块初速度不为零的倾斜传送带模型)(多选)如图所示,倾斜的传送带顺时针匀速转动,一物块从传送带上端A滑上传送带,滑上时速率为v1,传送带的速率为v2,且v2>v1.不计空气阻力,动摩擦因数一定.关于物块离开传送带的速率v和位置,下面哪个是可能的()A.从下端B离开,v>v1B.从下端B离开,v<v1C.从上端A离开,v=v1D.从上端A离开,v<v1解析:选ABC.物块从A端滑上传送带,在传送带上必先相对传送带向下运动,由于不确定物块与传送带间的摩擦力和物块的重力沿传送带下滑分力的大小关系和传送带的长度,若能从A端离开,由运动的对称性可知,必有v=v1,即选项C正确,D错误;若从B端离开,当摩擦力大于重力的分力时,则v<v1,选项B正确;当摩擦力小于重力的分力时,则v>v1,选项A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,v=v1,故本题应选A、B、C.2. (物块初速度为零的倾斜传送带模型)如图所示,传送带AB的长度为L=16 m,与水平面的夹角θ=37°,传送带以速度v0=10 m/s匀速运动,方向如图中箭头所示.在传送带最上端A处无初速度地放一个质量m=0.5 kg的小物体(可视为质点),它与传送带之间的动摩擦因数μ=0.5.g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)物体从A运动到底端B所用的时间;(2)物体与传送带的相对位移大小.解析:(1)开始阶段,设物体的加速度为a1,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,解得a1=10 m/s2.物体加速到与传送带的速度相等时的位移为:x1=v202a=5 m<16 m,即物体加速到10 m/s时,未达到B点,其时间t1=v0a1=1 s.由于mg sin θ=3 N>μmg cos θ=2 N,所以物体将继续做加速运动.设物体的加速度为a2,经历的时间为t2,由牛顿第二定律有mg sin θ-μmg cos θ=ma2,解得a2=2 m/s2.由位移公式L-x1=v0t2+12a2t22,解得时间t2=1 s,所以总时间t=t1+t2=2 s.(2)在传送带上取一点M.M点做匀速运动,物体一直做加速运动.法一:整体法整个过程物体的位移大小为x物=L=16 m,传送带位移大小为x传=v0t=20 m,故物体相对于传送带(M 点)的位移大小为: x =x 传-x 物=4 m.由于M 点的位移大于物体的位移,故全过程物体向后远离M 点4 m. 法二:v -t 图象法相对位移的大小为两个阴影三角形面积之差,即: x =10×12-1×(12-10)2=4(m).法三:分段法第一个过程:M 点的位移为v 0t 1=10 m , 所以物体与传送带间的相对位移大小 x 相对1=v 0t 1-x 1=5 m.由于M 点的速度大于物体的速度,故此过程物体在M 点后面5 m 处. 第二个过程:M 点的位移为v 0t 2=10 m , 物体的位移为L -x 1=11 m , 故相对位移大小为x 相对2=1 m. 此过程物体追M 点,并靠近M 点1 m.故相对位移大小x =x 相对1-x 相对2=4 m .即全过程物体向后远离M 点4 m. 答案:(1)2 s (2)4 m精选练习1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a 铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2La =2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:(1)小物块与传送带间的动摩擦因数为多大; (2)0~8 s 内小物块与传送带之间的划痕为多长. 解析:(1)根据v -t 图象的斜率表示加速度, a =Δv Δt =22m/s 2=1 m/s 2,由牛顿第二定律得μmg cos 37°-mg sin 37°=ma , 解得μ=78.(2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动0~6 s 内传送带匀速运动距离为:x 带=4×6 m =24 m .速度图象的“面积”大小等于位移,则0~2 s 内物块位移为:x 1=12×2×2 m =2 m ,方向沿斜面向下,2~6 s 内物块位移为:x 2=12×4×4 m =8 m ,方向沿斜面向上.所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m. 答案:(1)78(2)18 m4.如图所示,在光滑水平地面上停放着一质量为M =2 kg 的木板,木板足够长,某时刻一质量为m =1 kg 的小木块以某一速度v 0(未知)冲上木板,木板上表面粗糙,经过t =2 s 后二者共速,且木块相对地面的位移x =5 m ,g =10 m/s 2.求:(1)木块与木板间的动摩擦因数μ;(2)从木块开始运动到共速的过程中产生的热量Q .(结果可用分数表示) 解析:(1)设冲上木板后小木块的加速度大小为a 1, 对小木块,有μmg =ma 1,设木板开始运动的加速度大小为a 2,对木板, 有μmg =Ma 2,二者共速时,有v 共=a 2t =v 0-a 1t , 对小木块,有x =v 0t -12a 1t 2,联立得μ=18.(2)由(1)得a 2=58 m/s 2,得v 共=54m/s.木板发生的位移x ′=v 共2t =54m ,二者相对位移为Δx =x -x ′=154m , 产生的热量为Q =μmg ·Δx , 联立得Q =7516J. 答案:(1)18 (2)7516J5. (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为916.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑.小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.5,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.5 m/s 2C .经过 2 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为433m/s 解析:选AC .对小孩,由牛顿第二定律,加速度大小为a 1=mg sin 37°-μ1mg cos 37°m =2 m/s 2,同理对滑板,加速度大小为a 2=mg sin 37°+μ1mg cos 37°-2μ2mg cos 37°m =1 m/s2,选项A 正确,B 错误;要使小孩与滑板分离,12a 1t 2-12a 2t 2=L ,解得t = 2 s(另一解不符合,舍去),离开滑板时小孩的速度大小为v =a 1t =2 2 m/s ,选项C 正确,D 错误.6.如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin 37°=0.6,cos 37°=0.8,g=10 m/s2,则()A.传送带的速度为4 m/sB.传送带底端到顶端的距离为14 mC.物块与传送带间的动摩擦因数为1 8D.摩擦力方向一直与物块运动的方向相反解析:选A.如果v0小于v1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v0一定大于v1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s,选项A正确.传送带底端到顶端的距离等于v -t图线与横轴所围的面积,即12×(4+12)×1 m+12×1×4 m=10 m,选项B错误.0~1 s内,g sin θ+μg cos θ=8 m/s2,1~2 s内,g sin θ-μg cos θ=4 m/s2,解得μ=14,选项C错误;在1~2 s内,摩擦力方向与物块的运动方向相同,选项D错误.7.如图所示,倾角α=30°的足够长的光滑斜面固定在水平面上,斜面上放一长L=1.8 m,质量M=3 kg的薄木板,木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=32.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.(1)为使物块不滑离木板,求力F应满足的条件;(2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离.解析:(1)若整体恰好静止,则F =(M +m )g sin α=(3+1)×10×sin 30° N =20 N. 因要拉动木板,则F >20 N ,若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得 F -(M +m )g sin α=(M +m )a , 对物块有f -mg sin α=ma , 其中f ≤μmg cos α 代入数据解得F ≤30 N.向上加速的过程中为使物体不滑离木板,力F 应满足的条件为20 N<F ≤30 N.(2)当F =37.5 N>30 N 时,物块能滑离木板,由牛顿第二定律,对木板有F -μmg cos α-Mg sin α=Ma 1,对物块有μmg cos α-mg sin α=ma 2,设物块滑离木板所用的时间为t ,由运动学公式得 12a 1t 2-12a 2t 2=L , 代入数据解得t =1.2 s.物块滑离木板时的速度v =a 2t , 由-2g sin α·s =0-v 2, 代入数据解得s =0.9 m. 答案:见解析8.如图所示为车站使用的水平传送带模型,其A 、B 两端的距离L =8 m ,它与水平台面平滑连接.现有一物块以v 0=10 m/s 的初速度从A 端水平地滑上传送带.已知物块与传送带间的动摩擦因数为μ=0.6.求:(1)若传送带保持静止,物块滑到B 端时的速度大小;(2)若传送带顺时针匀速转动的速率恒为12 m/s ,物块到达B 端时的速度大小;(3)若传送带逆时针匀速转动的速率恒为4 m/s ,且物块初速度变为v 0′=6 m/s ,仍从A 端滑上传送带,物块从滑上传送带到离开传送带的总时间.解析:(1)设物块的加速度大小为a,由受力分析可知F N=mg,F f=ma,F f=μF N,得a=6 m/s2.传送带静止,物块从A到B做匀减速直线运动,又x=v202a=253m>L=8 m,则由v2B-v20=-2aL.得v B=2 m/s.(2)由题意知,传送带顺时针匀速转动的速率12 m/s>v0,物块所受的摩擦力沿传送带方向,即物块先加速到v1=12 m/s,由v21-v20=2ax1,得x1=113m<L=8 m.故物块先加速运动后匀速运动即物块到达B时的速度为v B′=v1=12 m/s.(3)当物块初速度v0′=6 m/s时,物块速度减为零时的位移x2=v0′22a=3 m<L,所以物块先向右减速后向左加速由v2=v0′-at1,得t1=1 s;当物块向左加速到v3=4 m/s时由v23-v22=2ax3得x3=43m<x2=3 m,故物块向左先加速运动后匀速运动由v3=v2+at2,得t2=23s;当物块向左匀速运动v4=v3=4 m/s,x4=x2-x3=53m.由x4=v4t3,得t3=512s,故t=t1+t2+t3=25 12s.答案:(1)2 m/s(2)12 m/s(3)25 12s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 如图4所示,放在斜面上的长木板B 的上表面是光滑的,
给B 一个沿斜面向下的初速度v0,B 沿斜面匀速下滑.在B
下滑的过程中,在B 的上端轻轻地放上物体A ,若两物体的
质量均为m ,斜面倾角为θ,则B 的加速度大小为____,方
向为_____;当A 的速度为
(设该时A 没有脱离B ,
B 也没有到达斜面底端),B 的速度为______.
2叠放在一起的A 、B 两物体在水平力F 的作用下,沿水平面以某一速度匀速运动,现突然将作用在B 上的力F 改为作用在A 上,并保持大小和方向不变,如图3-3-1所示.则A 、B 运动状态将可能为 ( )
A .一起匀速运动
B .一起加速运动
C .A 加速、B 减速
D .A 加速、B 匀速
3如图3-3-4所示,用水平力F 拉着三个物体A 、B 、C 在光滑的水平面上一起运动.现在中间物体上另置一小物体,且拉力不变,那么中间物体两端绳的拉力大小T a 和T b 的变化情况是 ( )
A .T a 增大,T b 减小
B .T a 增大,T b 增大
C .T a 减小,T b 增大
D .T a 减小,T b 减小 4物体B 放在物体A 上,A 、B 的上下表面均与斜面平行(如图29所
示),当两者以相同的初速度靠惯性沿光滑固定斜面C 向上做匀减速运动时,下列说法正确的是:
A .A 受到
B 的摩擦力沿斜面方向向上。
B .A 受到B 的摩擦力沿斜面方向向下 。
C .A 、B 之间的摩擦力为零。
D .A 、B 之间是否存在摩擦力取决于A 、B 表面的性质。
51如图所示,在水平板左端有一固定挡板,挡板上连接一轻质弹簧,紧贴弹簧放一质量为
的滑块,此时弹簧处于自然长度。
已知滑块与板间滑动摩擦因数为,可认为最大静摩擦力与滑动摩擦力相等。
现将板的右端缓慢抬起使板与水平面间的夹角为,最后直到板竖直。
此过程中弹簧弹力的大小
随夹角的变化规律可能是下图中的 ( )
图
3-3-1 图
3-3-4
6如图所示,在水平桌面上叠放着质量相等的A、B两块木板,在
木板A上放着一个物块C,木板和物块均处于静止状态.已知物
块C的质量为m,A、B、C之间以及B与地面之间的动摩擦因数
均为μ.用水平恒力F向右拉动木板A使之做匀加速运动,物块
C始终与木板A保持相对静止.设最大静摩擦力与滑动摩擦力大小相等,重力加速度为g.则以下判断正确的是()
A.A、C之间的摩擦力可能为零
B.A、B之间的摩擦力不为零,大小可能等于μmg
C.A、B之间的摩擦力大小一定小于F
D.木板B一定保持静止
如图所示,一高度为h=0.8m粗糙的水平面在B点处与一倾角为θ=30°光滑的斜面BC连接,一小滑块从水平面上的A点以v0=3m/s的速度在粗糙的水平面上向右运动。
运动到B点时小滑块恰能沿光滑斜面下滑。
已知AB间的距离s=5m,求:
(1)小滑块与水平面间的动摩擦因数;
(2)小滑块从A点运动到地面所需的时间;
7(2013全国新课标I)图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图,实验步骤如下:
①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d.用米尺测量两光电门之间的距离s;
②调整轻滑轮,使细线水平;
③让物块从光电门A的左侧由静止释放,
用数字毫秒计分别测出遮光片经过光电门A和光
电门B所用的时间△t A和△t B,求出加速度a:
④多次重复步骤③.求a的平均值ā
⑤根据上述实验数据求出动摩擦因数µ
(2)物块的加速度a可用d、s.和△t A和△t B
表示为a= 。
(3)动摩擦因数µ可用M、m、ā和重力加速度g表示为µ= 。
7[2012·山东卷]为测定木块与桌面之间的动摩擦因数,小亮设计了如图所示的装置进行实验. 实验中,当木块A 位于水平桌面上的O 点时,重物B刚好接触地面. 将A 拉到P 点,待B 稳定后静止释放,A 最终滑到Q 点. 分别测量OP、OQ 的长度h 和s. 改变h,重复上述实验,分别记录几组实验数据.
(1)实验开始时,发现A 释放后会撞到滑轮. 请提出两个解决方法.
(2)请根据下表的实验数据作出s-h 关系的图象.
(3)实验测得A、B 的质量分别为m = 0. 40 kg、M =0. 50 kg.根据s -h 图象可计算出A 块与桌面间的动摩擦因数= _________. (结果保留一位有效数字)
(4)实验中,滑轮轴的摩擦会导致滋的测量结果 _________(选填“偏大”或“偏小”).
8一长木板在水平地面上运动,在t=0时刻将一相对于地面精致的物块轻放到木板上,以后木板运动的速度-时间图像如图所示。
己知物块与木板的质量相等,物块与木板间及木板与地面间均有靡攘.物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
取重力加速度的大小g=10m/s2求:
(1) 物块与木板间;木板与地面间的动摩擦因数: (2) 从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.。