研究生矩阵论课后习题答案(全)习题二

合集下载

矩阵论简明教程习题答案

矩阵论简明教程习题答案
1 , 0) T , 5 2 4 5 T , , e 3 =( ) . 令 3 5 3 5 3 5 1 2 2 5 3 5 3 10 1 4 2 1 U= , 则 U AU = 1 . 3 5 3 5 1 5 2 0 3 3 5
1 p1 = 4 , 0
1 p 2 = 0 4
=-1 所对应的方程组 (I+A)x=0 有解向量 1 p 3 = 0 0

7.
3 0 1 1 1 0 1 1 P=(p 1 , p 2, p 3 )= 4 0 0 , 则 P = 4 1 4 . 于是有 12 0 4 1 16 4 4 2100 4 2100 2100 1 2100 1 1 2100 0 3 2100 0 A 100 =P P 1 = . 3 100 100 100 1 2 1 4 2 1 4 4 2 2 (1) I A = ( 1) =D 3 ( ), I-A 有 2 阶子式
1 3 2 3 2 T ) . 3
2 1 2 2 1 2 4 ~ 0 0 0 2 4 2 4 4 0 0 0
当 =1 时, 对应的齐次线性方程组 (I-A)x=0 的系数矩阵
由此求出特征向量 p 2 =(-2, 1, 0) T , p 3 =(2, 0, 1) T . 单位化后得

d1 1, d 2 1,
d 3 ( 1)( 2)
1 A~J= 1 2
因为 A 可对角化,可分别求出特征值-1,2 所对应的三个线性无关 的特征向量: 当 =-1 时,解方程组 ( I A) x 0, 求得两个线性无关的特征向量

矩阵论习题课答案

矩阵论习题课答案

习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。

(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数 ()b A 的所有特征值为非负数()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。

(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。

5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得T Q BQ A =依题意有011003121003111003A -⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1T X =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛⎫= ⎝.把向量3X单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。

矩阵论习题课答案

矩阵论习题课答案

习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。

(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数()b A 的所有特征值为非负数 ()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。

(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。

5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1T Tαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得TQ BQ A = 依题意有011003121003111003A -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1TX =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛= ⎝.把向量3X 单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。

研究生矩阵论课后习题答案(全)习题一

研究生矩阵论课后习题答案(全)习题一

任取该集合中的三个元素,设为 α = (a, b), β = (c, d ), γ = ( f , g ) ,以及任意实 数 k , l ,则有 ① α ⊕ β = ( a + c, b + d + ac ) = β + α ; ② (α ⊕ β ) ⊕ γ = (a + c, b + d + ac) ⊕ γ
2
⑤ 1 o (a, b) = (1a,1b +
⑥ k o (l o α ) = k o (l o ( a, b)) = k o (la, lb +
l (l − 1) 2 a ) 2 l (l − 1) 2 k (k − 1) = (k (la ), k (lb + a )+ (la ) 2 ) 2 2 kl (kl − 1) 2 = (kla, (kl )b + a ) = (kl ) o (a, b) = (kl ) o α ; 2 (k + l )((k + l ) − 1) 2 ⑦ (k + l ) o α = (k + l ) o (a, b) = ((k + l )a, (k + l )b + a ) 2 k (k − 1) 2 l (l − 1) 2 = (ka + la, (kb + a ) + (lb + a ) + (ka)(la)) 2 2 k (k − 1) 2 l (l − 1) 2 = (ka, kb + a ) ⊕ (la, lb + a ) 2 2

= (k o α ) ⊕ (k o β ) .
(4)是.对任意 a,b∈R+,有 a ⊕ b = ab ∈ R ;又对任意 k ∈ R 和 a ∈ R , 有 k o a = a ∈ R ,即 R+对所定义的加法与数乘运算封闭。

研究生矩阵理论课后答案矩阵分析所有习题

研究生矩阵理论课后答案矩阵分析所有习题

#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P*)-1BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,和det(A-1-B)=0的根全为实数(见例 3.9.1的相关证明)
习题3-1已知ACnn是正定Hermite矩阵, ,Cn.定义内积 (,)=A*.①试证它 是内积;②写出相应的C-S不等式
①: , A * ( A * )T ( A * )* A * , ; (k , ) k A * k ( , );
习题3-25
#3-25:A*=-A(ASHnn) U=(A+E)(A-E)-1Unn. (ASHnnAE的特征值全不为0,从而AE可逆)
解: U*=U-1 ((A-E)*)-1(A+E)*=(A-E)(A+E)-1 (-A-E)-1(-A+E)=(A-E)(A+E)-1 (A+E)-1(A-E)=(A-E)(A+E)-1 (A-E)(A+E)=(A+E)(A-E) A2-E=A2-E
( , ) ( ) A * A * A * ( , ) ( , );
( , ) 0; ( , ) A 0, 0 (因A正定).
*
②:Cauchy-Schwarz不等式: | (, ) |

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2

2 2 2 2
( ) 2( , ) ,

于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n

矩阵论课后题答案(研究生用书)改

矩阵论课后题答案(研究生用书)改

⎞ ⎠

A
P
⎞ ⎠
⎠ ⎞
P

− 1
A

A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E

A
A A E
A

f A
A
A
A
A
A
E
A
E
E
A A


A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E


⎞ ⎠
f A E
E

A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F

研究生矩阵论课后习题答案(全)习题二

研究生矩阵论课后习题答案(全)习题二

习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ⎡⎤-⎢⎥-⎢⎥⎢⎥+-⎣⎦; (2)22220000000(1)00000λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (3)2222232321234353234421λλλλλλλλλλλλλλ⎡⎤+--+-⎢⎥+--+-⎢⎥⎢⎥+---⎣⎦;(4)23014360220620101003312200λλλλλλλλλλλλλλ⎡⎤⎢⎥++⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦. 解:(1)对矩阵作初等变换133122222222111001100(1)c c r r λλλλλλλλλλλλλλλλλλλλλ+-⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥-−−−→-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+---+⎣⎦⎣⎦⎣⎦23221311(1)1010000000(1)00(1)c c c c c c r λλλλλλλλλ+--⨯-⎡⎤⎡⎤⎢⎥⎢⎥−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥-++⎣⎦⎣⎦,则该矩阵为Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+)1(1λλλ; (2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=,从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦;(3)对矩阵作初等变换1332212132132222222222242322(2)2(2)323212332212435323443322421221762450110221c c c c r r r r c c c λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ-------⎡⎤⎡⎤+--+----⎢⎥⎢⎥+--+-−−−→---⎢⎥⎢⎥⎢⎥⎢⎥+-----⎣⎦⎣⎦⎡⎤-+--++-⎢⎥−−−−→--⎢⎥⎢⎥--⎣⎦3122131211342322(2)3232(1)32(5)(1)27624501100011245001000110010001001000100(1)(c c c r r r r r c c λλλλλλλλλλλλλλλλλλλλλλλλλ---+↔+--⨯-↔⎡⎤-+--++-⎢⎥−−−−−→--⎢⎥⎢⎥⎣⎦⎡⎤-+---++-⎢⎥−−−−→-⎢⎥⎢⎥⎣⎦⎡⎤--+⎢⎥−−−−−→-−−−→-⎢⎥⎢⎥-⎣⎦1)⎡⎤⎢⎥⎢⎥⎢⎥+⎣⎦故该矩阵的Smith 标准型为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--)1()1(112λλλ; (4)对矩阵作初等变换152323230100014360220002206200020101001010033122003312200c c c c λλλλλλλλλλλλλλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥+++⎢⎥⎢⎥⎢⎥⎢⎥−−−→⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦12213231322000100010002200000020002010100100000100001000c c r r c c c c λλλλλλλλλλλλλλ+-+-⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦2143145425222000101000000000000000000001000000010010000001r r c c c c c c c c λλλλλλλλλλ--↔-↔⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===,于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ--⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦;(2)10010000λαββλαλαββλα+⎡⎤⎢⎥-+⎢⎥⎢⎥+⎢⎥-+⎣⎦; (3)100100015432λλλλ-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥+⎣⎦; (4)0012012012002000λλλλ+⎡⎤⎢⎥+⎢⎥⎢⎥+⎢⎥+⎣⎦. 解:(1)该λ-矩阵的右上角的2阶子式为1,故12()()1,D D λλ==而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故123()()()1,D D D λλλ===而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ⎡⎤++⎢⎥--+--+⎣⎦; (2)3223222212122122λλλλλλλλλλ⎡⎤-+--+⎢⎥-+--⎣⎦. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为12()1,()(1)(1),d d λλλλλ=-=+-因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687⎡⎤⎢⎥---⎢⎥⎢⎥---⎣⎦;(2)452221111-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(3)3732524103-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)111333222-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦;(5)03318621410⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦;(6)1234012300120001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (2)设该矩阵为A ,则310001000(1)E A λλ⎡⎤⎢⎥-→⎢⎥⎢⎥-⎣⎦,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥-+⎣⎦,故A 的初等因子为1,,,i i λλλ-+-从而A 的Jordan 标准形为1000000i i ⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦; (4)设该矩阵为A ,则21000000E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥⎣⎦,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)设该矩阵为A ,则210001000(1)E A λλλ⎡⎤⎢⎥-→⎢⎥⎢⎥+⎣⎦,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (6)设该矩阵为A ,则1234012300120001E A λλλλλ----⎡⎤⎢⎥---⎢⎥-=⎢⎥--⎢⎥-⎣⎦, 该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 5.设矩阵142034043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦,100050005⎡⎤⎢⎥Λ=⎢⎥⎢⎥⎣⎦,则1A P P -=Λ.,故4455144441453510354504535A P P -⎡⎤⨯⨯-⎢⎥=Λ=-⨯⨯⎢⎥⎢⎥⨯⨯⎣⎦. 6.设矩阵211212112A --⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ-⎡⎤⎡⎤⎢⎥⎢⎥-=-+→-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x -⎡⎤⎛⎫⎪⎢⎥-= ⎪⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭解之,得12100,111X X ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.其通解为1122k X k X +=1212k k k k ⎛⎫⎪⎪ ⎪-⎝⎭,其中21,k k 为任意常数.考虑方程组1122312111222,111x k x k x k k -⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥---⎣⎦⎝⎭⎝⎭11212121211111122200021110002k k k k k k k k k --⎡⎤⎡⎤⎢⎥⎢⎥-→-+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ⎛⎫⎪= ⎪ ⎪⎝⎭.则相似变换矩阵123100[,,]010111P X X X ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦.7.设矩阵102011010A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --⎡⎤⎢⎥-+=-⎢⎥⎢⎥-⎣⎦.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++,则12121n n n n n A a A a A a A a I O ---+++++=,即123121()n n n n n A A a A a A a I a I ----++++=-,因为A 可逆,故(1)0nn a A =-≠,则11231211()n n n n nA A a A a A a I a -----=-++++9.设矩阵2113A -⎡⎤=⎢⎥⎣⎦,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I ----⎡⎤⎡⎤-++-=-==⎢⎥⎢⎥-⎣⎦⎣⎦. 10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2nA 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得21,1,422.n a b c a b c a b c ++=⎧⎪--=⎨⎪++=⎩解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)422575674-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a ⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥--⎣⎦. 解:(1) 设311020111A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 231110002002011100(2)I A λλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥-=-→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,则 2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生矩阵论课后习题答案(全)习题二习题二1.化下列矩阵为Smith 标准型:(1)222211λλλλλλλλλ??-??-+-??; (2)22220000000(1)00000λλλλλλ-?-??-??; (3)2222232321234353234421λλλλλλλλλλλλλλ??+--+-??+--+-+---??;(4)23014360220620101003312200λλλλλλλλλλλλλλ++?? -----??. 解:(1)对矩阵作初等变换23221311(1)10010000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-→-→?-++,则该矩阵为Smith 标准型为+)1(1λλλ;(2)矩阵的各阶行列式因子为44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为222341234123()()()()1,()(1),()(1),()(1)()()()D D D d d d d D D D λλλλλλλλλλλλλλλλ===-==-==-故该矩阵的Smith 标准型为2210000(1)0000(1)0000(1)λλλλλλ??--??-??;(3)对矩阵作初等变换故该矩阵的Smith 标准型为+--)1()1(112λλλ; (4)对矩阵作初等变换在最后的形式中,可求得行列式因子3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为2541234534()()()()()1,()(1),()(1)()()D D d d d d d D D λλλλλλλλλλλλλ=====-==-故该矩阵的Smith 标准形为2100000100000100000(1)00000(1)λλλλ-??-??. 2.求下列λ-矩阵的不变因子:(1)210021002λλλ-----??;(2)1001000λαββλαλαββλα+-+?+??-+??;(3)100100015432λλλλ--?-??+??;(4)0012012012002000λλλλ+++??+??. 解:(1)该λ-矩阵的右上角的2阶子式为1,故而33()(2)D λλ=-,所以该λ-矩阵的不变因子为2123()()1,()(2)d d d λλλλ===-;(2)当0β=时,由于4243()(),()()D D λλαλλα=+=+,21()()1D D λλ==,故不变因子为12()()1d d λλ==,2234()(),()()d d λλαλλα=+=+当0β≠时,由于224()[()]D λλαβ=++,且该λ-矩阵中右上角的3阶子式为2(),βλα-+且4(2(),())1D βλαλ-+=,则3()1D λ=,故21()()1D D λλ==,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===224()[()]d λλαβ=++;(3)该λ-矩阵的右上角的3阶子式为1-,故而4324()2345D λλλλλ=++++,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ=== 4324()2345d λλλλλ=++++;(4)该λ-矩阵的行列式因子为123()()()1,D D D λλλ===44()(2)D λλ=+,所以该λ-矩阵的不变因子为123()()()1,d d d λλλ===44()(2)d λλ=+.3.求下列λ-矩阵的初等因子:(1)333232212322λλλλλλλλ??++??--+--+??;(2)322322 2212122122λλλλλλλλλλ??-+--+??-+--??. 解:(1)该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλ==+-,故初等因子为21,(1)λλ+-;(2) 该λ-矩阵的行列式因子为212()1,()(1)(1)D D λλλλλ=-=+-,故不变因子为因此,初等因子为1,1,1λλλ+--.4.求下列矩阵的Jordan 标准形:(1)131616576687------??;(2)452221111-----??;(3)3732524103---??--??;(4)111333222-----??;(5)***********????-????--??;(6)1234012300120001??. 解:(1)设该矩阵为A ,则210001000(1)(3)E A λλλ??-→??-+??,故A 的初等因子为2(1)(3)λλ-+,则A 的Jordan 标准形为300011001-;(2)设该矩阵为A ,则310001000(1)E A λλ-→??-??,故A 的初等因子为3(1)λ-,从而A 的Jordan 标准形为110011001;(3)设该矩阵为A ,则210001000(1)(1)E A λλλ?? -→??-+??,故A 的初等因子为从而A 的Jordan 标准形为1000000i i -?? ; (4)设该矩阵为A ,则21000000E A λλλ??-→??,故A 的初等因子为2,λλ,从而A 的Jordan 标准形为000001000; (5)设该矩阵为A ,则210001000(1)E A λλλ??-→??+??,故A 的初等因子为2,(1)λλ+,从而A 的Jordan 标准形为000011001--??; (6)设该矩阵为A ,则1234012300120001E A λλλλλ-------??-=??--??-?? ,该λ-矩阵的各阶行列式因子为123()()()1,D D D λλλ===44()(1)D λλ=-,则不变因子为123()()()1,d d d λλλ===44()(1)d λλ=-,故初等因子为4(1)λ-,则A 的Jordan 标准形为1100011000110001. 5.设矩阵142034043A ??=--??,求5A .解:矩阵A 的特征多项式为2()(1)(5)A f I A λλλλ=-=--,故A 的特征值为11λ=,235λλ==.属于特征值11λ=的特征向量为1(1,0,0)Tη=,属于235λλ==的特征向量为23(2,1,2),(1,2,1)T Tηη==-.设123121[,,]012021P ηηη==-,100050005?? Λ=??,则1A P P -=Λ.,故4455144441453510354504535A P P -??-?=Λ=-. 6.设矩阵211212112A --=--??-??,求A 的Jordan 标准形J ,并求相似变换矩阵P ,使得1 P AP J -=.解:(1) 求A 的Jordan 标准形J .221110021201011200(1)I A λλλλλλ--=-+→- ---,故其初等因子为21,(1)λλ--,故A 的Jordan 标准形100011001J ??=??.(2)求相似变换矩阵P .考虑方程组()0,I A X -=即1231112220,111x x x --= ?--??解之,得12100,111X X== ? ? ? ?-.其通解为1122k X k X +=1212k k k k ?? ?-??,其中21,k k 为任意常数.考虑方程组11212121211111122200021110002k k k k k k k k k -- -→-+----,故当1220k k -=时,方程组有解.取121,2k k ==,解此方程组,得3001X ??= ? ???.则相似变换矩阵123100[,,]010111P X X X ??==??-??.7.设矩阵102011010A ??=-??,试计算8542234A A A A I -++-. 解: 矩阵A 的特征多项式为3()21A f I A λλλλ=-=-+,由于8542320234(21)()(243710)f λλλλλλλλλ-++-=-++-+,其中532()245914f λλλλλ=+-+-. 且32A A I O -+=,故8542234A A A A I -++-=2348262437100956106134A A I --??-+=--??.8.证明:任意可逆矩阵A 的逆矩阵1A -可以表示为A 的多项式. 证明:设矩阵A 的特征多项式为12121()n n n A n n f I A a a a a λλλλλλ---=-=+++++L ,则12121n n n n n A a A a A a A a I O ---+++++=L ,即123121()n n n n n A A a A a A a I a I ----++++=-L ,因为A 可逆,故(1)0nn a A =-≠,则9.设矩阵2113A -??=,试计算4321(5668)A A A A I --++-.解: 矩阵A 的特征多项式为2()57A f I A λλλλ=-=-+,则227A A I O -+=,而432225668(57)(1)1λλλλλλλλ-++-=-+-+-,故14321111211(5668)()12113A A A A I A I -----++-=-==-.10.已知3阶矩阵A 的三个特征值为1,-1,2,试将2n A 表示为A 的二次式. 解: 矩阵A 的特征多项式为()(1)(1)(2)A f I A λλλλλ=-=-+-,则设22()()n f g a b c λλλλλ=+++,由(1)0,(1)0,(2)0,f f f =-==得解之,得2211(21),0,(24)33n n a b c =-==--,因此2222211(21)(24)33n n n A aA bA cI A I =++=---.11.求下列矩阵的最小多项式:(1)311020111-;(2)422575674-??----??;(3)n 阶单位阵n I ;(4)n 阶方阵A ,其元素均为1;(5)0123103223013210a a a a a a a a B a a a a a a a a --?=??--??--??. 解:(1) 设311020111A -=??,则231110002002011100(2)I A λλλλλλ---=-→-----,故该矩阵的最小多项式为2(2)λ-.(2) 设422575674A -=----??,则2(2)(511)I A λλλλ-=--+,故该矩阵有三个不同的特征值,因此其最小多项式为2(2)(511)λλλ--+(3) n 阶单位阵n I 的最小多项式为()1m λλ=-. (4) 因为1()n I A n λλλ--=-,又2A nA =,即2A nA O -=,故该矩阵的最小多项式为()n λλ-.(5)因为22222200123[2()]I B a a a a a λλλ-=-++++,而2222200123()2()m a a a a a λλλ=-++++是I B λ-的因子,经检验知()m λ是矩阵B 的最小多项式.。

相关文档
最新文档