第3章:光纤的传输特性

合集下载

第03章 光波系统中光信号的传输特性

第03章  光波系统中光信号的传输特性

23

(2) β3的影响。 当β3≠0,即高阶色散的影响不能忽略时, 经严格分析发现,高斯脉冲在传输过程中不 再保持原高斯脉冲形状,而是形成了一种振 荡 结 构 的 尾 部 。 这 种 脉 冲 就 不 能 用 T0 或 TFWHM 来确切描述其宽度,而通常用均方根 脉宽来描述,它定义为 σ=[<T2>-<T>2]1/2 角括号<>代表对强度分布的平均。
高斯形光脉冲的脉宽与谱宽光波通信系统中大都采用半导体激光器作为光源一般它产生的光脉冲信号是高斯形的而且均伴随不同程度的啁瞅分量可写为exp022100ttjcata?11啁啾?是通信技术有关编码脉冲技术中的一种术语是指对脉冲进行编码时其载频在脉冲持续时间内线性地增加当将脉冲变到音频地会发出一种声音听起来像鸟叫的啁啾声故名啁啾

20
图3-2啁啾高斯脉冲展宽因子T1/T0随传输距离z/ LD的变化曲线。(LD=T02/|β2|称为色散长度)。
21


对非啁啾脉冲,C=O,脉宽随 [1+(z/LD)2]1/2 成比例展宽,在z=LD处展宽为初始输入脉宽的√2 倍。 对C≠0的啁啾脉冲,在传输过程中,有可能展宽。 亦有可能压窄,这取决于β2与C是同号还是异号。
33
为防止色散展宽导致相邻脉冲重叠,展宽脉冲 应限制在所分配的比特时隙(TB)内,而TB =1/B, B为比特率,根据这一准则可求得σ与B的关系。 通常规定: σ≤TB/4或4Bσ≤1,这样至少有95% 的脉冲能量被限制在比特时隙内。 因此极限比特率为 B≤1/(4σ) 对于很窄的输入脉冲,σ≈σD=|D|Lσλ,则有 B≤l/(4L| D|σλ)
3
3A t
3
0

光纤通信知识点归纳

光纤通信知识点归纳

第1章概述1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。

光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。

对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。

2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。

该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。

1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。

2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。

3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。

特性参数:灵敏度4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。

组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。

(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。

(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。

(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。

(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)不能远距离传输;2)传输过程易发生色散。

光纤通信原理-(全套)课件

光纤通信原理-(全套)课件

1.2 光纤通信的主要特性
1.2.1 光纤通信的优点
1. 光纤的容量大
光纤通信是以光纤为传输媒介,光波为载 波的通信系统,其载波—光波具有很高的 频率(约1014Hz),因此光纤具有很大的通信 容量。
2. 损耗低、中继距离长
目前,实用的光纤通信系统使用的光 纤多为石英光纤,此类光纤在1.55μm波长 区的损耗可低到0.18dB/km,比已知的其他 通信线路的损耗都低得多,因此,由其组 成的光纤通信系统的中继距离也较其它介 质构成的系统长得多。
光纤通信原理
1
第一章 概 述
1.1 光纤通信的发展与现状 1.2 光纤通信的主要特性 1.3 光纤通信系统的组成和分类
1.1 光纤通信的发展与现状
1.1.1 早期的光通信
到了1880年,贝尔发明了第一个光电 话,这一大胆的尝试,可以说是现代光通 信的开端。
在这里,将弧光灯的恒定光束投射在 话筒的音膜上,随声音的振动而得到强弱 变化的反射光束,这个过程就是调制。
式中:R、T都是复数,包括大小及相
位。其模值分别表示反射波、传递波与入
射波幅度的大小之比;2Ф1、2Ф2是R和T的
相角,分别表示在介质分界面上反射波、 传递波比入射波超前的相位。
3. 平面波的全反射
全反射是一种重要的物理现象,当光 波从光密介质射入光疏介质,且入射角大 于临界角时才能产生全反射,即全反射必
1. 子午射线在阶跃型光纤中的传播
阶跃型光纤是由半径为a、折射率为常 数n 1的纤芯和折射率为常数n2的包层组 成,并且n1>n2,如图2.6所示。
图2.6 光线在阶跃型光纤中的传播
2. 子午射线在渐变型光纤中的传播
渐变型光纤与阶跃型光纤的区别在于 其纤芯的折射率不是常数,而是随半径的 增加而递减直到等于包层的折射率。

【精选】光纤通信课后习题解答第3章习题参考答案

【精选】光纤通信课后习题解答第3章习题参考答案

第三章 光纤的传输特性1.简述石英系光纤损耗产生的原因,光纤损耗的理论极限值是由什么决定的?答:(1)(2)光纤损耗的理论极限值是由紫外吸收损耗、红外吸收损耗和瑞利散射决定的。

2.当光在一段长为10km 光纤中传输时,输出端的光功率减小至输入端光功率的一半。

求:光纤的损耗系数α。

解:设输入端光功率为P 1,输出端的光功率为P 2。

则P 1=2P 2光纤的损耗系数()km dB P P km P P L /3.02lg 1010lg 102221===α 3.光纤色散产生的原因有哪些?对数字光纤通信系统有何危害?答:(1)按照色散产生的原因,光纤的色散主要分为:模式(模间)色散、材料色散、波导色散和极化色散。

(2)在数字光纤通信系统中,色散会引起光脉冲展宽,严重时前后脉冲将相互重叠,形成码间干扰,增加误码率,影响了光纤的传输带宽。

因此,色散会限制光纤通信系统的传输容量和中继距离。

4.为什么单模光纤的带宽比多模光纤的带宽大得多?答:光纤的带宽特性是在频域中的表现形式,而色散特性是在时域中的表现形式,即色散越大,带宽越窄。

由于光纤中存在着模式色散、材料色散、波导色散和极化色散四种,并且模式色散>>材料色散>波导色散>极化色散。

由于极化色散很小,一般忽略不计。

在多模光纤中,主要存在模式色散、材料色散和波导色散;单模光纤中不存在模式色散,而只存在材料色散和波导色散。

因此,多模光纤的色散比单模光纤的色散大得多,也就是单模光纤的带宽比多模光纤宽得多。

光纤损耗吸收损耗本征吸收杂质吸收原子缺陷吸收紫外吸收 红外吸收氢氧根(OH -)吸收 过渡金属离子吸收散射损耗弯曲损耗5.均匀光纤纤芯和包层的折射率分别为n 1=1.50,n 2=1.45,光纤的长度L=10km 。

试求:(1)子午光线的最大时延差;(2)若将光纤的包层和涂敷层去掉,求子午光线的最大时延差。

解:(1) 1sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 1.72145.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km (2)若将光纤的包层和涂敷层去掉,则n 2=1.01sin 21111⎪⎪⎭⎫ ⎝⎛-=-=n n C Ln n C L n CL c M θτ () s 5210.150.110350.1105μ=⎪⎭⎫⎝⎛-⨯⨯=km km 6.一制造长度为2km 的阶跃型多模光纤,纤芯和包层的折射率分别为n 1=1.47,n 2=1.45,使用工作波长为1.31μm ,光源的谱线宽度Δλ=3nm ,材料色散系数D m =6ps/nm·km ,波导色散τw =0,光纤的带宽距离指数γ=0.8。

综合布线系统 第三章 通道传输特性及其主要技术指标

综合布线系统 第三章 通道传输特性及其主要技术指标
链路级别 最大环路 电阻 A 560 B 170 C 40 D 40
2. 特性阻抗 指链路在规定工作频率范围内对通过的信号 的阻碍能力,单位为欧姆。 与一对电线之间的距离及绝缘体的电气特性有 关,根据信号传输的物理特性,形成对信号的 阻碍作用。 包括电阻及工作频率1~100MHz内的电感阻 抗及电容阻抗。 所有铜质电缆都有一个确定的特性阻抗指 标,大小取决于电缆的导线直径和覆盖在导线 外面的绝缘材料的电介质常数,与长度无关。
第3章 通道传输特性及其主要技术指标
主要教学内容: 主要教学内容: 3.1 通道传输特性 3.2 电缆传输通道性能指标 3.3 光缆传输通道性能指标 3.4学时讲解
教学目标: 教学目标: 掌握: 掌握:电缆传输通道性能指标 了解:光纤传输通道性能指标,以及提高通道传输质量的措 了解:光纤传输通道性能指标, 施
数据传输速率 通信线路用来传输数字信号时数字通道的最重要的 指标。 指单位时间内线路中传输的二进制位的数量,是一 个表征速率的物理量,以bit/s来度量。 带宽取决于所用传输介质的质量、每一种传输介质的 精确长度及传输技术 传输速率描述的是在特定带宽下对信息进行传输的能 力 二者之间有一定的关系,这种关系与编码方式等技术 有关,不一定是一对一的关系。 在计算机网络领域,广泛使用的是数据传输速率
在计算机网络领域广泛使用的是数据传输速率电磁干扰与电磁兼容性电磁干扰emielectromagneticinterference也称为噪声指由电磁场引起的铜导线中的电噪声铜缆线网络和设备会产生电磁干扰同时铜质通信电缆中传输的信号易受电磁干扰的影响电磁干扰可以通过电感传导欧化等方式中的任何一种进入通信电缆导致信号损失光纤通信系统不易受此影响电磁兼容性emcelectromagneticcompatibility指系统发出的最小辐射和系统能经受的最大外部噪声即设备或设备系统在正常情况下运行而不会产生干扰或者扰乱其他在湘潭空间或者环境中的设备或者系统的电信号能力有两个方面

光纤的传输特性

光纤的传输特性

光纤的传输特性光纤的传输特性主要包括光纤的损耗特性,色散特性和非线性效应。

光纤的损耗特性*************************************************************概念:光波在光纤中传输,随着传输距离的增加光功率逐渐下降。

衡量光纤损耗特性的参数:光纤的衰减系数〔损耗系数〕,定义为单位长度光纤引起的光功率衰减,单位为dB/km。

其表达式为:式中求得波长在λ 处的衰减系数; Pi 表示输入光纤的功率, Po 表示输出光功率, L 为光纤的长度。

(1)光纤的损耗特性曲线•μμm的损耗为0.2dB/km以下,接近了光纤损耗的理论极限。

总的损耗随波长变化的曲线,叫做光纤的损耗特性曲线—损耗谱。

•从图中可以看到三个低损耗“窗口”:850nm波段—短波长波段、1310nm波段和1550nm波段—长波长波段。

目前光纤通信系统主要工作在1310nm波段和1550nm波段上。

(2)光纤的损耗因素光纤损耗的原因主要有吸收损耗和散射损耗,还有来自光纤结构的不完善。

这些损耗又可以归纳以下几种:1、光纤的吸收损耗光纤材料和杂质对光能的吸收而引起的,把光能以热能的形式消耗于光纤中,是光纤损耗中重要的损耗。

包括:本征吸收损耗;杂质离子引起的损耗;原子缺陷吸收损耗。

2、光纤的散射损耗光纤内部的散射,会减小传输的功率,产生损耗。

散射中最重要的是瑞利散射,它是由光纤材料内部的密度和成份变化而引起的。

物质的密度不均匀,进而使折射率不均匀,这种不均匀在冷却过程中被固定下来,它的尺寸比光波波长要小。

光在传输时遇到这些比光波波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生散射,引起损耗。

另外,光纤中含有的氧化物浓度不均匀以及掺杂不均匀也会引起散射,产生损耗。

3、波导散射损耗交界面随机的畸变或粗糙引起的模式转换或模式耦合所产生的散射。

在光纤中传输的各种模式衰减不同,长距离的模式变换过程中,衰减小的模式变成衰减大的模式,连续的变换和反变换后,虽然各模式的损失会平衡起来,但模式总体产生额外的损耗,即由于模式的转换产生了附加损耗,这种附加的损耗就是波导散射损耗。

光纤-光缆及其传输特性

光纤-光缆及其传输特性

光纤\光缆及其传输特性摘要:在广播电视传输网中,同轴电缆传输系统具有设备简单投资少,接入用户方便,因此它在广播电视传输网的接入网部分和小区域的用户中得到了广泛的应用。

但对于远距离传输而言,同轴电缆传输系统就曝露出致命的弱点。

而光纤的出现恰好弥补了这一缺陷,由于光信号在光缆中的传输衰减极小,很小的光功率便可以在光缆中将其传到很远的地方。

因此光纤在现代社会中被广泛应用。

现就光纤、光缆的概念及其传输特性做一介绍。

关键词:光纤、光缆、传输损耗、传输带宽、光纤性能参数1、光纤光纤是用于传导光的介质光波导。

为了能对光信号进行远距离传输,光纤必须具有两个功能:(1)必须具有较低损耗。

(2)必须满足光波导条件。

为了实现这一功能,光纤通常由纤芯和包层两个二氧化硅层组成,包层的折射率必须小于纤芯的折射率,这样在包层与限制你的临界面便形成一个封闭的全反射面,保证了从纤芯向外射出的光能被完全反射回纤芯。

光纤按其传输光波的模式,可分为多模光纤和单模光纤。

光信号是一种特殊的电磁波,它在光纤中传播与电磁波在电波导中传输一样,同样存在着模式的问题。

多模光纤可以允许光信号以多模式传播,而单模光纤只允许光以基模一种模式传播。

多模光纤中,由于多种模式的光信号传播速度不同,而引起时域脉冲展宽,使其信道带宽受到限制。

由于单模光纤只能传输一种单一模式,所以具有很大的信道带宽。

因此,单模光纤被广泛应用于现代通讯系统中。

2、光缆若将若干根光纤并行使用把它们以一定的形式组合到一起,在其外部加以各种保护套便形成了光缆。

通常使用的架空和直埋式光缆有两种结构形式:中心束管式和层绞式。

中心束管式光缆,使用于光纤芯数较少的场合。

通常12 芯以下光缆使用这种结构形式。

中心束光缆就是将所需数量的光纤并行装入充满纤膏的束管内,形成中心束管。

束管内的光纤可以在纤膏内活动,这样的结构称为松套式结构。

3、光纤的传输特性光纤的传输特性包括传输损耗、光纤的传输带宽以及光纤传输性能参数。

光纤思考题

光纤思考题

光纤通信第一章:1、什么是光纤通信:光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式2、光纤的主要作用是什么?引导光在光纤内沿直线或弯曲的途径传播。

Or(单模光纤的纤芯直径为4μm~10μm,适用于高速长途通信系统。

多模光纤的纤芯直径为50μm,适用于低速短距离通信系统)3、与电缆或微波等通信方式相比,光纤通信有何优缺点?光纤通信有何优点:容许频带很宽,传输容量很大 损耗很小,中继距离很长且误码率很小重量轻、体积小丶抗电磁干扰性能好泄漏小,保密性能好 节约金属材料,有利于资源合理使用or与电缆或微波等电通信方式相比,光纤通信的优点如下:(1)传输频带极宽,通信容量很大(2)由于光纤衰减小,无中继设备,故传输距离远;(3)串扰小,信号传输质量高;(4)光纤抗电磁干扰,保密性好;(5)光纤尺寸小,重量轻,便于传输和铺设;(6)耐化学腐蚀;(7)光纤是石英玻璃拉制成形原材料来源丰富4、为什么说使用光纤通信可以节省大量有色金属?5、为什么说光纤通信具有传输频带宽,通信容量大?光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一堆光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输3000多路电话,频带宽对于各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。

6、可见光是人眼能看见的光,其波长范围是多少?0.39~0.76μm7、红外线是人眼能看见的光,其波长范围是多少?0.76~300μm8、近红外区:其波长范围是多少?0.76~1.5μm9、光纤通信所用光波的波长范围是多少?0.8~1.6μm10、光纤通信中常用的三个低损耗的窗口的中心波长分别是多少?0.85,1.30,1.55μm第二章:1、典型光纤由几部分组成?各部分的作用是什么?光纤由纤芯、包层和涂覆层3部分组成。

其中纤芯:纤芯位于光纤的中心部位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
20
D Dm
10
0
Dw
-10 1.2 1.3 1.55 1.65
DSF和NZ-DSF
D
G.652(常规SM)
G.653(DSF)
G.655 (NZ-DSF)
1310
1550
(nm)
色散对带宽限制的估算

光源谱宽限制

非零色散点: BL|D| 1
2 零色散点附近: BL s 1
-6
光纤的材料色散系数
波导色散
波导色散项
2 1.5 1 0.5 0
n1 n2 d 2 bV DW V 0 2 c dV
d bV dV
b
d 2 bV V dV 2
-0.50
0.5
1
1.5
2
2.5
3
单模光纤的色散系数
D( ) Dm ( ) DW ( )
检偏器
基本结构单元
光时钟 OTDM信号 其它支路输出 进下一节 解复用单元 与光时钟 同相位的 支路输出
OTDM的 解复用器
FWM



FWM(Four Wave Mixing),由光纤介质的三阶非线性极化引起,存 在于DWDM系统中,影响较大 DWDM中,由于纤芯细,光载波数量多,纤芯内总的功率密度高, 容易引起明显的非线性效应 DWDM中,光载波频率规则分布,三阶非线性产生的新频率f1+f2-f3、 f2+f3-f1、f1-f2+f3很可能会落在第四个光载波上,从而对其产生串扰 克服办法

减小信息速率,增大光脉冲间隔 减少传输距离,降低脉冲展宽程度 光纤的色散直接影响其传输带宽距离积 色散越大,带宽距离积越小

归纳:

光纤色散的种类

模式色散

多模色散 偏振模色散 材料色散 单模光纤 中依然存在

波长色散


波导色散
多模色散

对阶跃光纤的特征方程求解,可知不同的模式,即使 光波频率相同,其传播速度也存在差异
在非相干检测时,XPM将造成信号脉冲出现畸变 在相干检测时,XPM引入相位噪声,将降低系统的灵敏度

有益应用

非线性光纤光开关
非线性光纤环路镜(NOLM)

NOLM:Non-linear Optical Loop Mirror
波长变换
输入光信号1 新的光载波2 输出光信号2
极化控制
控制光信号

有益应用

如果工作在光纤的反常色散区,SPM对光信号脉冲有相反的效果,即减 轻了脉冲展宽,极端情况下甚至能够压缩光脉冲宽度 取得平衡时,可获得光孤子传输

光孤子通信

孤子(soliton):非线性波动方程的不弥散解。

1834年英国物理学家Scott Russell在发现孤立波;1965年正式 命名为孤子(soliton);1973年在理论上孤子被证明可以在光纤 中传播;1980年光纤孤子为实验证实
折射率
n2 1 1 2 E 3 E 2


光纤的非线性折射率
n 2 1 1 2 E 3 E 2


石英SiO2具有反演对称的分子结构,故其二阶非线性
极化率,此外,忽略高阶项,可得
石英光纤的折射率: n 1
2
1
2
式中i分子谐振的第i个谐振频率 Bi与第i个谐振频率对应的强度 石英材料: B1=0.6961 B2=0.4079 B3=0.8974 1=0.0684m 2=0.1162m 3=9.8962m
6
4
2
0 -8 10
10
-7
10
-6
10
-5
10
-4
石英折射率随波长的变化
30 20 10 0 -10 -20 1.2 1.3 1.4 1.5 1.6 1.7 x 10
模式色散可形象地解释为因光线多径传播导致的色散


模式色散影响机理

信号光入射进光纤,可激励起多种模式(理论上无穷多) 多模光纤中若干携带光信号能量的模式均可传播,且速度各 不相同 时延差导致信号脉冲展宽,影响光纤的带宽距离积


显然,多模光纤中能够传播的模式越多,模式色散就 越严重,其带宽距离积就越小 消除方法:单模传输

多模光纤中可存在模式噪声,单模光纤中噪声可忽略不计

损耗
外部串扰,可忽略不计 色散造成的信号畸变 内部串扰,来源于光纤的非线性

非线性损伤

光纤非线性造成的信号畸变 乘性噪声,可忽略不计
3.2 光纤的损耗特性
问题

如何表示光纤损耗?
光纤损耗的种类及其产生原因是什么? 如何才能降低光纤的损耗? 光纤的微弯损耗和宏弯损耗机理是什么? 光纤在各工作波长段的典型损耗特性如何? 光纤使用过程中损耗会增大吗?为什么? 单模光纤的损耗大还是多模光纤的损耗大?为什么? 光纤的损耗能够更低吗?如何实现? 光纤的损耗如何测量?

超纯原料

降低过渡金属离子浓度
减小不均匀性 减小OH-离子的引入

生产工艺


光纤保护
微弯损耗和宏弯损耗机理

宏弯损耗

宏弯引起截止波长变短,功率因子下降

微弯损耗

微弯产生模式耦合,一些能量转移到了不能 传输的高阶模上,造成损耗
光纤的典型损耗特性

890nm

3dB/km 0.5dB/km(典型值为0.35dB/km)
2

1
3 E 2

n n1 n2 E 2
n1 1

1 1 2

光的克尔效应
3 3 n2 xxxx 8n1
几种典型的非线性效应

自相位调制 (SPM)
交叉相位调制(XPM)
四波混频(FWM)
受激拉曼散射(SRS)

受激布里渊散射(SBS)
色散系数(单位波长间隔的群时延差):
d d d D ( ) ( ) d d d d
2 1 d d 2 (2 ) 2 2c d d k0 d 2 c dk 0 2
d g
波长色散的组成

光纤的波长色散组成

材料色散 波导色散 折射率剖面色散

误差来源:

除上述误差这外,还引入了活动连接器误差

背向散射法

误差来源:

背向散射的不均匀性
3.3 光纤的色散
色散的含义

色散的原义:

Separation of visible light into colors by refraction or diffraction;可见光通过折射或衍射而分散成多种颜色[美国传 统辞典(双解)] 不同频率的光波其速度不同

1310nm


1550nm

0.3dB/km(典型值为0.2dB/km)
0.154dB/km
使用过程中光纤的损耗变化

变化趋势

损耗增大 热胀冷缩 油膏特性变差 光纤受水分侵蚀


原因

OH-吸收损耗增大 光纤分子缺陷增多
单模与多模光纤损耗对比

单模光纤损耗要小一些
原因包括以下几点:
P 0 ( 1 E 2 E 2 3 E 3 )
极化的非线性
P PL PNL
PL 0 1 E
PNL 0 2 : EE 0 3 EEE
各阶电极化率张量间的关系
1 2 Eat 2 Eat 2
第三章 光纤的传输特性
本章内容

光纤中信号的劣化
光纤的损耗特性
光纤的色散特性
单模光纤的非线性
3.1 光纤中信号的劣化
信号的损伤

任何传输信道均会对信号造成损伤

线性损伤

损耗


加性噪声
外部串扰 信道内部串扰

非线性损伤

信号畸变 乘性噪声
光纤中信号的损伤

线性损伤

加性噪声
其中, Eat
e 40 a
2
是原子内部的库仑场
通常外加电场E<<Eat,所以|PNL|<<|PL|,电介质的非线性不显著
极化强度与折射率
极化强度 P t 0 1 E 0 2 E 2 0 3 E 3
1 2 2 3 3 电位移矢量 D 0 E P 0 ( E 0 E 0 E )
最低损耗窗口在2550nm附近 最低损耗低达 0.01~0.001dB/km

难度

超纯原料 微晶体化
光纤损耗的测量

测量方法:截断法、插入损耗法、背向散射法 截断法

截断的目的:保证注入的一致性 误差来源

高阶模功率、近端和远端出射率的不同、光源的稳定性和光功率 计的线性

插入损耗法
k0 dN1 N1 N 2 d 2 (Vb) D ( ) V c dk0 c dV 2 Dm ( ) DW ( )
材料色散
光波与材料分子谐振子互作用,材料的极化过程的 滞后效应导致其电极化率与频率有关。也就是说其折射 率与频率有关,一般可表示为:
Bi n n 1 2 2 i 1 i
相关文档
最新文档