七年级第十讲行程问题经典例题
初一行程问题应用题1

初一行程问题应用题1初一行程问题应用题基本数量关系:相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。
相背而行的公式:相背距离=速度和×时间(甲的速度×时间+乙的速度×时间=相背距离)同向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差。
若在环形跑道上,(速度快的在前,慢的在后)追及距离=速度差×时间。
流水问题公式:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间【练巩固】1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。
两地相距多少千米?3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?4、一只汽船飞行于甲、乙两地之间,逆水用3小时,逆水比逆水多30分钟,已知汽船在静水中速率是每小时26千米,求水流的速率.5、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?6、一队学生去校外加入劳动,以4千米/时的速率步行前往.走了半小时,学校有紧急通知要传给队长,通信员骑自行车以14千米/时的速率按原路追上去.通信员要几何分才能追上学生部队?针对练:1.甲、乙两车同时从相距960千米的A、B两地相向开出,8小时后相遇。
已知甲车每小时比乙车快4千米,求甲车的速度是多少?相遇时乙车行驶了多少千米?。
行程问题7大经典题型归纳总结拓展

例题10甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而上。相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B地、乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米。如果从第一次相遇到第二次相遇时间相隔1小时20分,那么河水的流速为每小时多少千米。
行程问题7大经典题型归纳总结拓展
简单地将行程问题分类:
(1)直线上的相遇、追及问题(含多次往返类型的相遇、追及)
(2)火车过人、过桥和错车问题
(3)多个对象间的行程问题
(4)环形问题与时钟问题
(5)流水、行船问题
(6)变速问题
一些习惯性的解题方法:
(1)利用设数法、设份数处理
(2)利用速度变化情况进行分段处理
例题6.有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。那么,东、西两村之间的距离是多少米?
例题7有甲乙丙三人在300m环形跑道上行走,甲每分钟行走120m,乙每分钟行
走100m,丙每分钟行走70m,如果3个人同时同向出发,那么几分钟后又可以相遇?(这道题也是环形问题,与公倍数的只是联系紧密)
11某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。
12甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来。7.2时后乙轮船与自漂水流测试仪相遇。已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。
七年级数学培优竞赛讲座第10讲--列方程解应用题——有趣的行程问题

第十讲 列方程解应用题——有趣的行程问题数学是一门具有广泛应用性的科学,我国著名数学家华罗庚先生曾说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学”.数学应用题的类型很多,比较简单的是方程应用题,又以一元一次方程应用题最为基础,方程应用题种类繁多,以行程问题最为有趣而又多变.行程问题的三要素是:距离(s)、速度(v)、时间(t),行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.熟悉相遇问题、追及问题等基本类型的等量关系是解行程问题的基础;而恰当设元、恰当借助直线图辅助分析是解行程问题的技巧.例题【例1】 某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A 、C 两地的距离为10千米,则A 、B 两地的距离为 千米. (重庆市竞赛题)思路点拨 等量关系明显,关键是考虑C 地所处的位置.注: 列方程的方法为解应用题提供—般的解题步骤和规范的计算方法,使问题“化难为易”,充分显示了字母代数的优越性,它是算术方法解应用题在字母代数础上的发展.【例2】 如图,某人沿着边长为90米的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次迫上甲时在正方形的( ).A .AB 边上 B .DA 边上C .BC 边上D .CD 边上 (安徽省竞赛题)思路点拨:本例是一个特殊的环形的追及问题,注意甲实际在乙的前面3×90=270(米)处.【例3】 父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑?步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时开始跑.问父亲能否在100米的终点处超过儿子?并说明理由.(重庆市竞赛题)思路点拨 把问题转化为追及问题,即比较父亲追上儿子时,儿子跑的路程与50的大小,为了理顺步长、路程的关系,需增设未知数,这是解题的关键.【例4】 钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分? (湖北省数学竞赛选拔赛试题)思路点拨 先画钟表示意图,运用秒针分别与时针、分针所成的角相等建立等量关系,关键是要熟悉与钟表相关的知识.注: 明确要求将数学开放性问题作为考试的试题,是近一二年的事情,开放题是相对于常规的封闭题而言,封闭题往往条件充分,结论确定,而开放题常常是条件不充分或结论不确定,思维多向.解钟表上的行程问题,常用到以下知识:(1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如与角度联系起来,每一小格对应6°;(2)分针走一周,时针走121周,即分针的速度是时针速度的12倍.【例5】 七年级93个同学在4位老师的带领下准备到离学校32千米处的某地进行社会调查,可是只有一辆能坐25人的汽车.为了让大家尽快地到达目的地,决定采用步行与乘车相结合的办法。
初中数学行程问题类题目及答案(完美版)

行程问题归纳1 •小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的丄倍原路步行回家.由于时间关系小明拿到作业后同样以之2前跑步的速度赶往学校,并在从家岀发后23分钟到校(小刚被爸爸追上时交流时间忽略不计)・两人之间相距的路程y (米)与小刚从家出发到学榜的减柠射问r (0轴)问的函豹i A米关系如图所示,则小刚家到学校的路程为2960 X,【解答】解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17- 15=2 (分钟),•••爸爸追上小刚后以原速的丄倍原路步行回家,2•••小刚打完电话到与爸爸相遇用的时间为1分钟,Y由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,•••小刚和爸爸相遇之后跑步的1分和爸爸2分钟上的路程是720米,•••小刚后来的速度为:1040 - 720=320 (米份钟)则小刚家到学校的路程为:1040+(23 - 17)×320=l040+6X320= 1040+1920=2960(•米), 故答案为:2960.2•已知A.B.C三地顺次在同一直线上,甲、乙两人均骑车从A地岀发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲.乙同时从B地以各自原速继续向C地行驶•当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A4地,而甲也立即提速为原速的号■倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y3(米)与甲出发的时间/(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;C两地相距7200米:③甲从A地到C地共用时2614 H甲乙两人刚开始的速度之差为:9∞÷ (23-14) =IOO (米/分),设甲刚开始的速度为X米/分,乙刚开始的速度为(x+100)米/分,IZV= (14-5)× (x+100),解得,X= 300,则丹IOo=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A> B两地之间的距离为:300X12 = 3600 (米),A. (7两地之间的距离为:400× (23 - 5) =7200 (米),故②正确:•••当乙到达C地后,乙立即掉头并提速为原速的色倍按原路返回A地,而甲也立即提速4为原速的垒倍继续向C地行驶,3.•・后来乙的速度为:400×-∣-=5∞ (米/分),甲的速度为300×-⅛-=400 (米/分),•••甲从A地到C地共用时:23+(7200 - (23 - 2) X300)÷400=25^ (分钟),故③错误;4.∙.当甲到达C地时,乙距A地:7200- (25丄-23)×500=6075 (米),故④正确.4综上所述,正确的有①②④.3.尊老助老是中华民族的传统美徳,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福.当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来.3分钟后,爸爸在家找到了(/盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即耙速度提髙到之前的1.5倍跑回敬老院, 这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离y (米)与小艾从敬老院出发的时间X (分)之间的关系如图所小艾的原来的速度为:180÷ (11-9)÷ 1.5=60 (米/分钟),爸爸的速度为:(990- 60×3)÷ (9 - 3) - 60=75 (米/分钟),9分钟的时候,小艾离敬老院的距离为:60X9=540 (米),小艾最后回到敬老院的时间为:9+540÷ (60X1.5) =15 (分钟),当小艾回到敬老院时,爸爸离敬老院还有:540- (15 - 11)×75=240 (米),故答案为:240.4•甲、乙分別骑摩托车同时沿同一条路线从A地岀发B地,已知爪B两地相距280亦,他们出发2小时的时候乙的摩托车坏了,乙立即开始修车,甲车继续行驶,当甲第一次与乙相遇时,乙还在修车,乙修好车继续按原速前往B地.乙到达B地5小时后,甲车到达B地.整4个过程中,两人均保持各自的速度匀速行驶,甲、乙两人相距的路程y(千米)与甲出发的时间X(小时)之间的关系如图所示,则当乙车修好时,甲车距B地的路程为130千米.【解答】解:Y甲车速度=—=40千米/时,T•••甲车走完全程时间=型=7小时,40•••乙车速度=40+ 5严! =70千米耐,7—4 4设乙车修了兀小时,由题意可得:70 ・40X丄殳=20, ∙∙∙x=工,4 4 4•••当乙车修好时,甲车距B地的路程=280-40× (2+2.) =I30千米,45.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一泄的速度匀速前往铁山坪体验“飞越丛林”・出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车.取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的仝倍匀速按原路赶往铁山坪,由3于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y (千米)与乙车行驶时间X (小时)之间的部分图象如图所示,则乙车岀发—郑小时到达目的地.【解答】解:设甲车的速度为“千米/小时,乙车回家时即加=5, ∙'∙α=40, b=45, 设/小时两车相距3千米,(4)×45X∣=⅞÷3÷ (-∣-⅛) ×40,尸舒,6.小亮和妈妈从家岀发到长嘉汇观看国庆灯光秀,妈妈先出发,2分钟后小亮沿同一路线岀发去追妈妈,当小亮追上妈妈时发现相机落在途中了,妈妈立即返回找相机,小亮继续 前往长嘉汇,当小亮到达长嘉汇时,妈妈刚好找到了相机并立即前往长嘉汇(妈妈找相 所以家到长嘉汇的距离为:60X (18 - 2) =960 (米), 由(18・12=6分钟)可知妈妈返回找到相机行走路程为6X50=300 (米),此时设小亮在长嘉汇等妈妈的时间为f 分钟,由图象知小亮与妈妈会合所用时间为27 -18=9分钟可建立方程如下:60X (9 -/) +50X9—960- (600- 300),解得 /=5.5(分钟),•••小亮开始返回时,妈妈离家的距离为:50X (18+5.5 - 6X2) =575 (米)・设 a=Sm f b=9m (m>0),由图象得乙车行畔小时两边相碍千米, ×8ι机的时间不计),小亮在长嘉汇等了一会,没有等到妈妈,就沿同一路线返回接妈妈,最可知是小亮到达长嘉汇所经历的时间, (分)7•甲、乙两人开车分别从A、B两地同时岀发到AB之间的C地办事(A、B、C三地在一条直线上)已知甲出发0.5小时时发现忘给乙带重要文件,于是立刻返回A地,拿文件后马上向C地赶去(中间拿文件的时间忽略不计).乙得知情况后决泄先见到甲拿到文件再返回C 地办事.两人分别在C地用了10分钟办完事后各自回出发地.已知甲、乙的速度始终保持不变,两人之间的距离y (单位:千米)与甲出发的时间X (单位:小时)的部分数关系如图所示,则当甲办完事再次返回到A地时乙距B地50千米.【解答】解:乙的速度为:460- 360=100 (千米耐),甲的速度为:(460-370- 100X0.5)÷O.5=8O (千米/时),甲从出发到两人相遇所用时间为:(460-100)÷ (8O+146°4J(千米)•••A、C两地距离为:80× (3- D + (100 - 80)÷(^370360甲从A地到C地的时间为:220÷80=2.75 (小时),甲从出发到返回所需时间为十.75+⅛=护小时),当甲办完事再次返回到A地时,乙与B地的距离为「00X (f- 护=5° (米故答案为:50.&某周末,大海和大成两家人同时开车从国奥村岀发,以一泄的速度匀速前往渝北统景镇风景区参加蹦极勇敢者挑战.出发15分钟后,大海发现忘带身份证,便掉头以另一速度匀速回国奥村去取(大海掉头.取身份证的时间忽略不计),大成仍以原速继续前行.大海回家取了身份证后,立即以返回速度畤倍匀速按原路赶往统景镇,在大海以加速后的速度匀速赶往统景镇期间,大成在途中TB伽司的距离【解答】解:设两家出发时,速度是“千米/小时,大海返回国奥村时速度是b 千米/小时, 由图象得:~~y t=("~~609"=8b, — z>^∙∙b 9(∕n>0)>设X 小时,两车的距离是辿千米,9根据题意得:45X 空任丄)=込40 (厂丄)Q, f=53,312 ; 3 12 9 36则国奥村与统景镇相距:(⅛-⅛) × 45X4=60 (千米),36 3639•暑假假期,小明和小亮两家相约自驾车从重庆出发前往相距172千米的景区游玩两家人同时同地出发,以各自的速度匀速行驶,出发一段时间后,小明家因故停下来休息了 15分钟, 为了尽快追上小亮家,小明家提高速度后仍保持匀速行驶(加速的时间忽略不讣),小明家小亮的速度为:-^^=80 (千米/小时),^60^•••小明家的速度是90千米/小时,设小明加速后的速度为m 千米/小时, 根据题意得: —36 ^ 6O )⅛-⅛- ⅛⅛ 4,9Ir=V追上小亮家后以提髙后的速度直到景区,小亮家保持原速,如图是小明家、小亮家两车之间×8O= (-51- 1.05)加+0.8X90,20 20加=IoO, lf,2-0. 8×90 , k05f =O l(小时),=6 (分),80 100即小明家比小亮家早到景区6分钟.10•华师大一附中是各地中学生游学的向往之地,现有一组游学小分队从武汉站下车,计划骑自行车从武汉站到华中师大一附中,出发一段时间后,发现有贵重物品落在了武汉站,于是安排小李骑自行车以原速返回,剩下的成员速度不变向华中师大一附中前进.小李取回物后,改乘出租车追赶车队(取物品、等车时间忽略不计),小李在追赶上自行车队后仍乘坐出租车•再行驶10分钟后遭遇堵车,在此期间,自行车队反超出租车・拥堵30分钟后交通恢复正常,出租车以原速开往华中师大一附中,最终出租车和自行车队同时到达设自行车队和小李行驶时间为t分钟,与武汉站距禽5千米,S与/ AX kt m相遇到出租车堵车结朿,经过了22.5分钟.【解答】解:自行车速度8÷30=^ (千米/分钟), 15自行车到达终点用时为:20÷县=75 (分钟),15出租车到达洪崖洞用时75 - 3O- 30=15 (分钟);出租车速度20÷15=寻(千米/分钟),设自行车出发X分钟第一次相遇,根据题意得寻∙2Z∙∣∙(∕-30)'解得= 37.5’设第二次相遇时间为y,则(37. 5+10-30),15 3解得y=52.5, 75 - 52 - 5=22.5 (分钟)・所以第二次相遇后,出租车还经过了22.5分钟到达.。
第十讲(列方程解复杂的行程问题)

精典专题:列方程解复杂的行程问题 (第十讲)二、专题要点很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。
列方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟悉的数量关系。
因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知数,根据自己最熟悉的等量关系列出方程,方便解题。
三、典型例题及变式练习【例1】一辆汽车从甲地开往乙地,平均每小时行20千米。
到乙地后又以每小时30千米的速度返回甲地,往返一次共用7.5小时。
求甲、乙两地间的路程。
变式练习1、一架飞机所带的燃料最多可用9小时,飞机去时顺风,每小时可飞1500千米;返回时逆风,每小时可飞1200千米。
这架飞机最多飞多少千米就要往回飞?【例2】一个通讯员骑自行车需要在规定的时间内把信件送到某地,如果他每小时走15千米可早到0.4小时,如果他每小时走12千米就要迟到0.25小时,他去某地的路程有多远?变式练习2、小李由乡里到县里办事,每小时行4千米,到预定到达的时间里,离县城还有1.5千米。
如果小李每小时走5.5千米,到预定到达的时间时,又会多走4.5千米。
乡里距县城多少千米?【例3】东、西两地相距5400米,甲、乙二人从东地、丙从西地同时出发,相向而行。
甲每分钟行55米,乙每分钟行60米,丙每分钟行70米。
多少分钟后乙正好走到甲、丙两人之间的中点处?变式练习3、A、B、C三地在一条直线上,如图所示:A、B两地相距2千米,甲、乙两人分别从A、B两地同时向C地行走,甲每分钟走35米,乙每分钟走45米。
经过几分钟B地在甲、乙两人之间的中点处?【例4】快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。
途中快车因故停留3小时,结果两车同时到达B地。
求A、B两地间的距离。
变式练习4、甲每分钟行120米,乙每分钟行80米。
二人同时从A地出发去B地,当乙到达B地时,甲已在B地停留了2分钟。
(完整版)七年级数学应用题专题---行程问题【精】整理版

行程问题1:甲、乙两地相距416千米,一辆汽车从甲地开往乙地,每小时行32千米,汽车开出半小时后,一辆摩托车从乙地开往甲地,速度是汽车的1.5倍,问摩托车开出几小时后才能与汽车相遇?2:甲、乙两人相距80千米,甲骑自行车每小时行20千米,乙骑摩托车每小时行60千米,摩托车在自行车后面,两人同时出发,同向行驶,问乙经过多少时间追上甲。
3:一只轮船,在甲、乙两地之间航行,顺水用8小时,逆水比顺水多30分钟,已知轮船在静水中速度是每小时26千米,求水流的速度。
4:自行车环城赛,一圈12千米,已知甲的速度是乙的5/7,两人同时同地出发后2小时30分相遇,问乙比甲每分钟快多少千米?5:一条山路,从山下到山顶,走了1小时还差1千米,从山顶到册下,50分钟可以走完,已知下山速度是上山速度的1.5倍,上山、下山每小时各走了多少千米?这条山路有多少千米?6:一架飞机在两个城市之间飞行,顺风时需要5小时30分钟,逆风时需要6小时,已知风速是每小时24千米,求两城市之间的距离?7:甲、乙两人骑自行车从相距75千米的两地相向而行,3小时后相遇,若甲比乙每小时多走2千米,求甲、乙的速度及各自所走的距离?8:一条环形跑道长400米,甲骑车,平均速度为550米/分,乙跑步平均速度为250米/分。
⑴两人同时同向从同地出发经过多少分钟两人再相遇。
⑵两人同时同地背向出发经过多少分钟相遇?9:甲、乙两人沿一公路自西向东前进,速度分别为3千米/小时和5千米/小时,甲于中午12时经过A地,乙于下午2时经过A地,则乙追上甲时离A地多远10:若敌我相距15千米,且敌军于1小时前以每小时4千米的速度逃跑,现我军以每小时7千米的速度追击,问几小时可以追上?11:甲骑自行车从A地出发,以每小时12千米的速度驶向B地,经过15分钟后,乙骑自行车从B地出发,以每小时14千米的速度驶向A地,两人相遇时,乙已超过中点1.5千米,求A、B两地距离。
12:一个学生用每小时5千米的速度前进,可以及时从家里返回学校,走了全程度的1/3,他搭上了速度是每小时20千米的公共汽车,因此比规定时间早2小时到达学校。
行程问题讲解

【题目1】某校学生分乘两辆大轿车去某地参观,第一辆以每小时50千米的速度由学校开往参观地点,第二辆以每小时60千米的速度由学校开往参观地点。
第二辆比第一辆晚开12分钟,结果两车同时到达。
求学校到参观地点有多远?【题目2】一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?【题目3】一只小船静水中速度为每小时 30 千米 . 在 176 千米长河中逆水而行用了 11 个小时 . 求返回原处需用几个小时。
【题目4】一只船每小时行 14 千米,水流速度为每小时 6 千米,问这只船逆水航行 112 千米,需要几小时?【题目5】一只船顺水每小时航行 12 千米,逆水每小时航行 8 千米,问这只船在静水中的速度和水流速度各是多少?【题目6】甲、乙两码头相距 72 千米,一艘轮船顺水行需要 6 小时,逆水行需要 9 小时,求船在静水中的速度和水流速度。
【题目7】静水中,甲船速度是每小时 22 千米,乙船速度是每小时 18 千米,乙船先从某港开出顺水航行, 2 小时后,甲船同地同方向开出,若水流速度为每小时 4 千米,求甲船几小时可以追上乙船?【题目8】一条大河有 A 、 B 两个港口,水从 A 流向 B ,水流速度为每小时4 千米,甲、乙同时由 A 向 B 行驶,各自不停的在 A 、 B 间往返航行,甲船在静水中的速度是每小时 28 千米,乙船在静水中的速度为每小时 20 千米,已知两船第二次迎面相遇的地点与甲船第二次追上乙船的地点相距 40 千米,求A 、B 两港之间的距离。
【题目9】甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
【题目10】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【题目11】甲、乙两港相距360千米,一轮船往返两港需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【题目12】小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要多少时间?【题目13】甲、乙两船在静水中速度分别为每小时24千米和每小时32千米,两船从某河相距336千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?【题目14】A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,求两船在静水中的速度。
第十讲:火车行程问题

第十讲:火车行程问题知识要点:通常,在行程问题中所涉及的运动物体是不考虑本身的长度的,课时当考虑火车的行程问题时,火车的长度是不能忽略不计的,今天我们就来学习火车的行程问题。
基本公式:1、错车问题:两个车身长之和÷速度和=错车时间2、超车问题:头对尾:两个车身长之和÷速度差=超车时间头对齐:快车车长÷速度差=超车时间尾对齐:慢车车长÷速度差=超车时间基本概念:错车:从两车车头相遇到车尾相离超车:头对尾超车:从快车头追上慢车尾(追上),到快车尾离开慢车头(超过)头对齐超车:开始两车头对齐,同时,同向行驶,到快车尾对慢车头尾对齐超车:开始两车尾对齐,同时,同向行驶,到快车尾对慢车头例题精讲:例1:长150米的火车以每秒15米的速度穿越一条300米的隧道,问火车穿越对到(从进入隧道直至完全离开)要用多长时间模仿练习:长130米的列车,以每秒16米的速度行驶,通过一条隧道用了48秒,问这条隧道长多少米?例2:甲乙两列火车相向而行,甲车长400米,每秒行驶20米,乙车长300米,每秒行15米。
两车在平行的轨道上错车,从车头相遇到车尾相离需要多少时间?模仿练习:在平行的轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?例3:甲乙两城之间的双轨铁路上,一列长145米,慢车以每秒钟15米的速度从甲城向乙城开去;另一列长185米的特快列车以每秒20米的速度从后面追来,那么这列快车从追上慢车开始到完全超过慢车需几秒?模仿练习:一列快车长150米,每秒行22米;一列慢车长100米,每秒行17米。
快车从后面追上慢车道超过慢车,共需几秒钟?例4:铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度是3.6千米/时,骑车人的速度是10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?模仿练习:铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度是1.2米/秒,骑车人的速度是4米/秒,这时有一列火车从他们背后开过来,火车通过行人用15秒,通过骑车人用18秒,这列火车的车身总长是多少?例5:模仿练习:1、一列火车长360米,每秒行18米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲:行程问题分类例析主讲:何老师行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了xh ,则乙车行使了h x )(6025-.(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回?分析:列方程求解行程问题中的顺风逆风问题.顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回.依题意,有642557525575.=-++x x 解得:x=1320.答:这架飞机最远飞出1320km 就应返回.解法二: 设飞机顺风飞行时间为th.依题意,有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回.图1说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题.解答:(1)设经过xh 两人首次相遇.依题意,得(21+14)x=42,解得:x=1.2.因此,经过1.2小时两人首次相遇.(3) 设经过xh 两人第二次相遇.依题意,得21x-14x=42×2,解得:x=12.因此,经过12h 两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解: 出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A 点出发,乙从C 点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
当甲第一次追上乙时,甲跑了多少圈?(第二届希望杯试题)分析与解:这是一道环形路上追及问题。
在追及问题问题中有一个基本关系式:追击路程=速度差×追及时间。
追及路程:10+6=16(米)速度差:5-4.5=0.5(米)追击时间:16÷0.5=32(秒)甲跑了5×32÷[(10+6)×2]=5(圈)答:甲跑了5圈。
例3、一列货车早晨6时从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,中午12时两车同时经过途中某站,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?分析与解:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时(45+15)千米;中午12点两车相遇时,货车已行了(12—6)小时,而客车已行(12—6-2)小时,这样就可求出甲、乙两地之间的路程.最后,再来求当客车行完全程到达甲地时,货车离乙地的距离.解:①甲、乙两地之间的距离是:45×(12—6)+(45+15)×(12—6—2)=45×6+60×4=510(千米).②客车行完全程所需的时间是:510÷(45+15)=510÷60=8.5(小时).③客车到甲地时,货车离乙地的距离:510—45×(8.5+2)=510-472.5=37.5(千米).答:客车到甲地时,货车离乙地还有37.5千米.例4、两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长?分析与解:首先应统一单位:甲车的速度是每秒钟36000÷3600=10(米),乙车的速度是每秒钟54000÷3600=15(米).本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟10米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大(10+15)米,因此,14秒结束时,车头与乘客之间的距离为(10+15)×14=350(米).又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14秒内所走的路程之和.解:(10+15)×14=350(米)答:乙车的车长为350米.例5、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止.因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和.因此,错车时间就等于车长之和除以速度之和。
列车通过250米的隧道用25秒,通过210米长的隧道用23秒,所以列车行驶的路程为(250—210)米时,所用的时间为(25—23)秒.由此可求得列车的车速为(250—210)÷(25—23)=20(米/秒).再根据前面的分析可知:列车在25秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25—250=250(米),从而可求出错车时间。
解:根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米)两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).答:错车时间为10秒.例6、甲、乙两人分别从相距260千米的A、B两地同时沿笔直的公路乘车相向而行,各自前往B地、A地。
甲每小时行32千米,乙每小时行48千米。
甲、乙各有一个对讲机,当他们之间的距离小于20千米时,两人可用对讲机联络。
问:(1)两人出发后多久可以开始用对讲机联络?(2)他们用对讲机联络后,经过多长时间相遇?(3)他们可用对讲机联络多长时间?(第四届希望杯试题)分析与解:(1)(260-20)÷(32+48)=3(小时)。
(2)20÷(32+48)=0.25(小时)。
(3)从甲、乙相遇到他们第二次相距20千米也用0.25小时.所以他们一共可用对讲机联络0.25+0.25=0.5(小时)。
例7、甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?分析与解:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程.解:①AB间的距离是64×3-48=192-48=144(千米).②两次相遇点的距离为144—48-64=32(千米).答:两次相遇点的距离为32千米.※例8赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又回沿原路返回,假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?(第五届希望杯试题)分析与解:赵伯伯上山和下山走的路程相同,上山速度为3千米,下山速度为6千米,上山与下山的平均速度是多少?(这是一个易错题)可以通过“设数”的方法让四年级同学明白。
设上山路程为6千米,(想一想为什么设6千米?还可以设几千米?)上山时间为:6÷3=2(时)下山时间为:6÷6=1(时)上下山的平均速度为:(6+6)÷(2+1)=4千米又因为平路的速度也为4千米/小时,所以赵伯伯每天锻炼走的路程为:4×3=12千米。
【挑战自我】1、小明、小华和小新三人家在同一条街道上,小明家在小华家西300米处,小新家在小明家东400米处,则小华家和小新家相距多少米?(第三届希望杯试题)答案:画图得100米。
2、小明家离学校2千米,小光家离学校3千米,小明和小光的家相距多少千米?(第一届希望杯试题)答案:1千米与5千米之间。