五年级行程问题经典例题
五年级行程问题应用题100道

五年级行程问题应用题100道及答案(1)两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
(2)一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
14时10分时火车追上这位工人,15秒后离开。
14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。
问:工人与学生将在何时相遇?(3)在双轨铁道上,速度为千米/小时的货车时到达铁桥,时分秒完全通过铁桥,后来一列速度为千米/小时的列车,时分到达铁桥,时分秒完全通过铁桥,时分秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?(4)田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇.已知牛牛每分钟走50米,求甲、乙两地之间的路程.(5)一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度.(6)甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走,甲第一次遇到乙后又走了30秒遇到丙,再过4分钟第二次遇到乙.已知甲、乙的速度比是3:2,湖的周长是900米,求丙的速度.(7)一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?(8)当当和田田两人从相距1089米的两地同时出发相向而行,已知当当每分钟走52米,他们经过11分钟相遇,那么,请问:田田每分钟走多少米?(9)在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次,已知环形跑道的长度是1600米,那么两人的速度分别是多少?(10)一辆小汽车从武汉到杭州需要8小时,一辆大客车从杭州到武汉需要10小时.两车同时从两地出发相向而行,几小时相遇?(11)小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?(12)甲乙两人分别从两地同时出发同向而行,两地相距800米,乙在前面,甲在后面.乙每分钟走30米,甲每分钟走50米,请问:多久后甲可以追上乙?(13)一只蚂蚁沿着等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行45厘米,30厘米,36厘米,那么蚂蚁爬一周平均每分钟爬行几厘米?(14)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面.甲、乙两地相距84千米,小王一共经过4小时追上了小李小李每小时走10千米,请问:小王每小时走多少千米?(15)甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.(16)周六,乐乐骑自行车去朋友家参加聚会,已知乐乐与朋友家相距3600米,乐乐去的时候速度为300米/分,回来的速度是600米/分.求乐乐来回的平均速度.(17)小白和小青分别从甲、乙两地相向而行,小白开车每小时行驶60千米,小青开车每小时行驶80千米,两人相遇在距离中点40千米的地方.求甲乙两地之间的距离.(18)当当从教室去图书馆还书,如果每分钟走100米,能在图书馆闭馆前2分钟到达.如果每分钟走50米,到达时就要超出闭馆时间2分钟,求教室到图书馆的路程.(19)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第5次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了10次掌,问此时两人各走了多少米?(20)甲在乙前面100米,于是乙以每分钟50米的速度向他追去,已知甲每分钟走40米,问:乙多长时间能追上甲呢?(21)王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲,他应以多大的速度往回开?(22)在环形跑道上,甲、乙两人同时同地出发,若背向而行,每6分钟相遇一次;若同向而行,每20分钟甲追上乙一次,已知环形跑道的长度是1200米,现在两个人站在跑道上相距300米的地方同向出发,甲何时第一次追上乙?(23)当每天早上按时从家里出发去上学,乐乐每天早上也按时出门去散步,两人相向而行,当当每分钟走60米,乐乐每分钟走40米,两人每天都在同一时刻相遇,有一天当当提前出门,因此比平早9分钟与乐乐相遇,这天当当比平常提前多久出门?(24)上午8点整,甲从A地出发匀速去B地,8点20分甲与从B地出发匀速去A地的乙相遇;相遇后甲将速度提高到原来的3倍,乙速度不变;8点30分,甲、乙两人同时到达各自的目的地.那么,乙从B地出发时是8点几分.(25)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒.问:他后一半路程用了多少时间?(26)田田和当当沿着学校的环形林荫道散步,田田每分钟走55米,当当每分钟走65米.已知林荫道周长是480米,他们从同一地点同时背向而行,(1)经过多长时间两人第一次相遇?(2)又经过多长时间两人第二次相遇?(3)到第10次相遇共走几圈,共用多长时间?(4)在他们第10次相遇后,田田再走多少米就回到出发点?(27)一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?(28)汽车上山用了5小时,速度为每小时36千米.下山只用了4小时,汽车下山每小时行驶了多少千米?(29)甲、乙两辆汽车分别从A、B两地出发相对而行,甲车每小时行48千米,乙车每小时行50千米,若甲先出发1小时,再经过5小时与乙相遇,求A、B 两地间的距离.(30)甲和乙驾车从相距700千米的两地同时出发相向而行,甲每小时行驶48千米,乙每小时行驶52千米,请问:两人多久后相遇?(31)一辆汽车从甲地出发,开往相距190千米的乙地.它先以80千米/时的速度行驶了0.8小时,然后以90千米/时的速度行驶.(1)汽车再行驶多少小时才能到达乙地?(2)汽车全程平均每小时行驶多少千米?(保留一位小数(32)在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?(33)小明骑自行车到朋友家聚会,一路上他注意到每隔12分钟就有一辆公交车从后边追上小乐,小明骑着骑着突然车胎爆了,小明只好以原来骑车三分之一的速度推着车往回走,这时他发现公交车以每隔4分钟一辆的频率迎面开过来,公交车站发车的间隔时间到底为多少?(34)一辆汽车从甲城经过乙城开往丙城,共行驶了36小时.从甲城到乙城每小时行驶32千米,从乙城到丙城每小时行驶27千米.已知甲、乙两城之间的距离是640千米.问:全程共有多少千米?(35)甲、乙两车分别从A,B两地同时出发,相向而行.出发时,甲、乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离A地还有10千米.那么A,B两地相距多少千米?(36)乐乐和田田两人分别从A、B两地同时出发相向而行,已知乐乐每分钟走50米,田田走完全程要18分钟.出发3分钟,两人仍相距450米问:两人出发多久后能相遇?(37)上学路上当当发现田田在他前面,于是就开始追田田.当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(38)甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.(39)一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地.骑车时每小时行驶12千米,步行时每小时走4千米.问:这个人走完全程的平均速度是多少?(40)甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5倍,而且甲比乙速度快。
小学五年级环形跑道的行程问题例题精选十五道

环形跑道的行程问题经典例题1.甲、乙两人在一个周长为180米的环形跑道上跑步,甲每秒跑5米,乙每秒跑4米,如果两人从同一点同时出发反向跑步,秒后两人第二次相遇。
2.阿呆和阿瓜在周长为400米的环形跑道上练习长跑,阿呆的速度是每秒3米,阿瓜的速度是每秒2米,如果两人从同一地点同时出发反向跑,经过秒两人第一次相遇。
3.甲、乙两人在周长为300米的环形跑道上同时同地同向而行,甲的速度是75米/分,乙的速度是50米/分,那么经过分钟甲第三次追上乙。
4.有一个圆形跑道,周长为360米,甲、乙二人同时从同一点沿同一方向出发,甲每秒跑5米,乙每秒跑2米,秒后甲第三次追上乙。
5.甲乙两人再周长为220米的环形跑道上同时同地背向而行练习跑步,已知甲的速度是每秒6米,乙的速度是每秒4米,那么到第五次相遇共用了秒。
6.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米,已知林荫道周长是480米,他们从同一地点同时背向而行,在他们第三次相遇后,王老师还需走米能回到出发点。
7.甲乙两人在湖边散步,甲每分钟走50米,乙每分钟走40米,如果湖一周的长度是1800米,他们同时同地背向而行,在他们第四次迎面相遇后,甲再走米就能回到出发点。
8.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需要走米才能回到出发点。
9.周长为800米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3米/秒和5米/秒,那么秒后乙第三次追上甲。
10.周长为600米的圆形跑道上,甲、乙两人从A点同时同向而行,速度分别是3.5米/秒和5米/秒,那么乙第二次追上甲时距离出发地米。
11.小雨和小凡各以一定速度,在周长为1000米的环形跑道上跑步,小雨的速度是55米/分,小凡的速度是45米/分,两人同时从同一地点出发,反向跑步,分钟后两人第二次迎面相遇。
小学五年级火车过桥的行程问题例题精选十道

火车过桥的行程问题经典例题1.一列火车车长180米,每秒行25米,这列火车完全通过320米的大桥,需要经过秒。
2.一列火车车长240米,每秒行30米,这列火车完全通过720米的大桥需要秒。
3.一列火车的车速是每分钟280米,这列火车从车头上桥到车尾离桥需要8分钟,已知这座桥的桥长是1600米,那么这列火车的车长是米。
4.一列火车车长是480米,通过720米的山洞需要6分钟,这列火车的速度是每分钟米。
5.一列火车经过一座长240米的大桥用了10秒,经过另一座长360米的大桥用了13秒,这列火车长米。
6.墨莫沿铁路旁的小道散步,他散步的速度是每秒2米,这时迎面开来一列速度为18米/秒的火车,已知火车全长360米,那么从车头与他相遇到车尾错开的时间是秒。
7.高高在铁路旁以每秒2米的速度步行,一列长180米的火车从他后面开来,已知火车的速度是每秒20米,那么火车从他身边经过需要秒。
8.小玲在一条笔直的公路上散步,速度为60米/分,一辆长26米的公共汽车从后面追来,公共汽车的速度是14米/秒,那么从车头追上小玲,到车尾与小玲错开需要秒。
9.小樱以每分钟120米的速度沿铁路步行,一列长200米的客车从她身后开来,客车的速度是每秒钟22米,客车从他身边经过要用秒。
10.一列火车经过一条300米的隧道,又经过另外一条425米的隧道用了25秒,这列火车长米。
11.一列火车车长210米,每秒行25米,这列火车完全通过290米的大桥,需要经过秒。
12.一列火车的车速是每分钟160米,这列火车从车头上桥到车尾离桥需要8分钟,已知这座桥的桥长是1000米,怎么这列火车的车长是米。
13.一支队伍排成长200米的队列,要通过一座长是1000米的桥,这支队伍前进的速度是每分钟60米,那么这支队伍经过这座桥需要分。
14.乐乐在铁路旁以每秒2米的速度步行,一列长240米的火车从他后面开来,从他身边通过用了10秒,那么火车的速度为米/秒。
五年级行程问题经典例题

行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
五年级行程问题应用题

五年级行程问题应用题1.XXX和XXX同时从两地出发,相向而行。
XXX每分钟走50米,XXX每分钟走40米。
他们经过3分钟相遇。
求两地相距多远?XXX和XXX相向而行,每分钟他们的距离是50+40=90米。
在3分钟内,他们相遇,因此他们走过的总距离是3×90=270米。
由于他们相向而行,所以两地的距离是他们走过的总距离的一半,即270÷2=135米。
2.两人同时从两地相向而行。
一个人骑摩托车每分钟行600米,另一个人骑自行车每分钟行200米。
他们经过几分钟相遇?两人相向而行,每分钟他们的距离是600+200=800米。
他们相遇时走过的距离是两地的距离,设为x。
根据时间和速度的关系,可以列出方程:x÷800=时间。
又因为他们是同时出发的,所以时间相等,所以可以得出方程:x÷800=时间×2.将时间代入方程,得到x÷800=2t,即x=1600t,其中t为他们相遇的时间。
又因为他们相遇时走过的距离是x,所以x=600t+200t=800t。
将x=1600t代入其中一个方程,得到1600t=800t×2,即t=1分钟。
3.两只轮船同时从上海和武汉相对开出。
从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。
上海到武汉的航路长多少千米?两只船相对开出,每小时的距离是26+17=43千米。
在25小时内,两船相遇,因此它们走过的总距离是25×43=1075千米。
由于它们是相对开出的,所以它们走过的距离是航路的总长度,设为x。
根据时间和速度的关系,可以列出方程:x÷43=时间。
将时间代入方程,得到x÷43=25,即x=1075千米。
4.一艘轮船从甲港开往乙港,每小时行25千米,4.5小时到达。
从乙港返回甲港时用了5小时,返回时平均每小时行多少千米?从甲港到乙港的航行时间是4.5小时,因此航行的距离是25×4.5=112.5千米。
五年级数学常考的行程问题练习(附答案)

五年级数学常考的行程问题练习(附答案)1.两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。
两车开出后几小时相遇?2.两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经4小时相遇。
甲乙两地相距多少千米?3.客车与货车分别从相距275千米的两站同时相向开出,2.5小时在途中相遇。
已知客车每小时行60千米,货车每小时行多少千米?4.两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。
一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?5.丙列火车同时从甲乙两城相对开出。
一列火车每小时行60千米,另一列火车每小时行80千米。
4小时后还相距210千米,求两城距离。
6.甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。
两队合作8天后还差52米这条水渠全长多少米?7.甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。
已知汽车每小时行40千米,求摩托车每小时行多少千米?8.甲镇与乙镇相距138千米,张王二人骑自行车分别从两镇同时出发相向而行。
张每小时行13千米,王每小时行12千米,王在行时中因修车耽误1小时,然后继续行进。
求从出发到相遇经过几小时?9.甲乙两城相距240千米。
客车从甲城开往乙城,每小时行50千米,货车从乙城开往甲城,每小时行30千米。
两车同时出发,2小时后还相距多少千米?10.甲、乙二人从相距31.2千米的两村相对起来,甲每小时行4千米,乙每小时行4.8千米。
两人相遇时乙行14.4千米,甲比乙先出发几小时?【参考答案】1.500/(55+45)=5(小时)2.(56+63)×4=476(千米)3.276/2.5-60=50(千米)4.(465-120)/4.5=39.7(千米)5.(60+80)×4+210=770(千米)6.(75=75-2.5)×8+52=1232(米)7.(484-40×1.5)/4-40=66(千米)8.(138-13)/(13+12)+1=6(小时)9.240-(50+30)×2=80(千米)10.(31.2-14.4)/4-14.4/4.8=1.2(小时)。
小学五年级数学行程问题典型练习题

行程问题(一)【知识分析】相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度和×时间=路程,今天,我们学校这类问题。
【例题解读】例1客车和货车同时分别从两地相向而行,货车每小时行85千米,客车每小时行90千米,两车相遇时距全程中点8千米,两地相距多少千米?【分析】根据题意,两车相遇时货车行了全程的一半-8千米,客车行了全程的一半+8千米,也就是说客车比货车多行了8×2=16千米,客车每小时比货车多行90-85=5千米。
那么我们先求客车和货车两车经过多少小时在途中相遇,然后再求出总路程。
(1)两车经过几小时相遇?8×2÷(90-85)=3.2小时(2)两地相距多少千米?(90+85)×3.2=560(千米)例2小明和小丽两个分别从两地同时相向而行,8小时可以相遇,如果两人每小时多少行1.5千米,那么10小时相遇,两地相距多少千米?【分析】两人每小时多少行1.5千米,那么10小时相遇,如果以这样的速度行8小时,这时两个人要比原来少行1.5×2×8=24(千米)这24千米两人还需行10-8=2(小时),那么减速后的速度和是24÷2=12(千米)容易求出两地的距离1.5×2×8÷(10-8)×=120千米【经典题型练习】1、客车和货车分别从两地同时相向而行,2.5小时相遇,如果两车每小时都比原来多行10千米,则2小时就相遇,求两地的距离?2、在一圆形的跑道上,甲从a点,乙从b点同时反方向而行,8分钟后两人相遇,再过6分钟甲到b点,又过10分钟两人再次相遇,则甲环形一周需多少分钟?【知识分析】两车从两地同时出发相向而行,第一次相遇合起来走一个全程,第二次相遇走了几个全程呢?今天,我们学习这类问题【例题解读】例 a、b两车同时从甲乙两地相对开出,第一次在离甲地95千米处相遇,相遇后两车继续以原速行驶,分别到达对方站点后立即返回,在离乙地55千米处第二次相遇,求甲乙两地之间的距离是多少千米?【分析】a、b两车从出发到第一次相遇合走了一个全程,当两年合走了一个全程时,a车行了95千米从出发到第二次相遇,两车一共行了三个全程,a车应该行了95×3=285(千米)通过观察,可以知道a车行了一个全程还多55千米,用285千米减去55千米就是甲乙两地相距的距离95×3—55=230千米【经典题型练习】1、甲乙两车同时从ab两地相对开出,第一次在离a地75千米相遇,相遇后两辆车继续前进,到达目的地后立即返回,第二次相遇在离b地45千米处,求a、b两地的距离2、客车和货车同时从甲、乙两站相对开出,第一次相遇在距乙站80千米的地方,相遇后两车仍以原速前进,在到达对方站点后立即沿原路返回,两车又在距乙站82千米处第二次相遇,甲乙两站相距多少千米?【知识分析】在行程问题中,有时候两车同时出发,但中途因意外可能需要停车,有时候不一定同时出发,也可能同一车在不同的时间段的速度不一样,今天我们学习这种变化的问题。
(完整)五年级奥数行程问题五大专题

行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇.那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52千米/时和40千米/时,它们同时从A地出发到B地去,出发后6时,甲车遇到一辆迎面开来的卡车,1时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B 两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例5】一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(一)专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。
两车同时出发,为什么甲车会比乙车多行64千米呢因为甲车每小时比乙车多行56-48=8(千米)。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。
32×2÷(56-48)=8(小时)(56+48)×8=832(千米)答:东、西两地相距832千米。
练习一》1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米分析与解答快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。
此时,慢车行了95-25-7=63(千米),因此慢车每小时行63÷3=21(千米)。
[(40×3-25×2-7)÷3=21(千米)答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米2,汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地&例3 甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米分析与解答二人相遇时,甲比乙多行15×2=30(千米),说明二人已行30÷6=5(小时),上午8时至中午12时是4小时,所以甲的速度是15÷(5-4)=15(千米/小时)。
因此,东西两村的距离是15×(5-1)=60(千米)练习三1,甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地千米处与乙相遇。
A、B两地间的距离是多少千米。
2,小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
小红每分钟走多少米例4 甲、乙两车早上8时分别从A、B两地同时相向出发,到10时两车相距千米。
两车继续行驶到下午1时,两车相距还是千米。
A、B两地间的距离是多少千米分析从10时到下午1时共经过3小时,3小时里,甲、乙两车从相距千米到又相距千米,共行×2=225千米。
两车的速度和是225÷3=75千米。
从早上8时到10时共经过2小时,2小时共行75×2=150千米,因此,A、B两间的距离是150+=千米。
练习四1,甲、乙两车同时从A、B两地相向出发,3小时后,两车还相距120千米。
又行3小时,两车又相距120千米。
A、B两地相距多少千米'2,快、慢两车早上6时同时从甲、乙两地相向开出,中午12时两车还相距50千米。
继续行驶到14时,两车又相距170千米。
甲、乙两地相距多少千米3,东、西两村相距36千米,甲、乙二人同时从东西两村相向出发,3小时后,丙骑车从东村出发去追甲,结果三人同时在某地相遇。
已知甲每小时行4千米,乙每小时行5千米,求丙的速度。
;行程问题(二)专题简析:本周的主要问题是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。
追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例1 中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车^分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。
60÷24=小时,所以小时后小轿车能追上中巴车。
练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟:例2 一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的分析途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。
90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。
因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。
练习二(1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
小王是在离工厂多远处遇到熟人的(2)一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行千米。
加油站离乙地多少千米例3 甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。
走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。
甲骑车多少分钟才能追上乙(分析当甲取了东西改骑自行车出发时,乙已行15+15+5=35分钟,行了60×35=2100米。
甲骑车每分钟比乙步行多行(360-60)米,用2100米除以(360-60)米就得到甲骑车追上乙的时间。
练习三(1)兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米。
出发10分钟钟后,哥哥返回家中取文具,然后立即骑车以每分钟310米的速度去追弟弟。
哥哥骑车几分钟追上弟弟(2)快车每小时行60千米,慢车每小时行40千米,两车同时从甲地开往乙地。
出发小时后,快车因故停下修车小时。
修好车后,快车仍用原速前进,经过几小时才能追上慢车:例4 甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少分析出发10分钟后,甲从乙身后追上了乙,也就是10分钟内甲比乙多行了一圈。
因此,甲每分钟比乙多行4000÷10=400米。
知道了二人的速度差是每分钟400米,速度和是每分钟700米,就能算出甲骑车的速度是(700+400)÷2=550米,乙跑步的速度是700-550=150米。
练习四(1)爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。
爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明(2)在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑米。
两人起跑后的第一次相遇点在起跑线前多少米}例5 甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。
甲在公路上A处,乙、丙在公路上B处,三人同时出发,甲与乙、丙相向而行。
甲和乙相遇3分钟后,甲和丙又相遇了。
求A、B之间的距离。
分析甲和乙相遇后,再过3分钟甲又能和丙相遇,说明甲和乙相遇时,乙比丙多行(100+75)×3=525米。
而乙每分钟比丙多行90-75=15米,多行525米需要用525÷15=35分钟。
35分钟甲和乙相遇,说明A、B两地之间的距离是(100+90)×35=6650米。
练习五(1)甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。
甲、乙二人在B地,丙在A地与甲、乙二人同时相向而行,丙和乙相遇后,又过2分钟和甲相遇。
求A、B两地的路程。
(2)甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。
甲、乙二人从B地同时同向出发,丙从A地同时同向去追甲和乙。
丙追上甲后又经过10分钟才追上乙。
求A、B两地的路程。