第十二章“轴对称”简介.doc
轴对称知识点整理总结

§13.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.下列各图,你能找出它们的对称轴吗?(1) (2) (3) (4)(5)§13.1 轴对称(二)一、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线.二、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.三、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.[探究1]线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…证明.证法一:利用判定两个三角形全等.如下图,在△APC和△BPC中,△APC≌△BPCPA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,•因此它们也是相等的.[探究2]1.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?探究过程:1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直.2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然.§12.2作轴对称图形一.如何由一个平面图形得到它的轴对称图形.【探究】四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD关于x轴和y轴对称的图形.(归纳:与已知点关于y 轴或x轴对称的点的坐标的规律;)【引申】分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?若△PQR中P(x,y)关于x=1(记为m)轴对称的点的坐标P(x,y) ,则,y= y.若△PQR中P(x,y)关于y=-1(记为n)轴对称的点的坐标P(x,y) ,则x= x,=n.13.3. 1等腰三角形等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.13.3.2等边三角形等边三角形定义:在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。
新人教版八年级上册第12章轴对称第1节第2课时轴对称及其性质精品课件

Copyright 2004-2009 版权所有 盗版必究
5.问题2.如课本图12.1-6,木条l与AB钉在一起,l垂直 平分AB,P1,P2,P3,…是l上的点,分别量一量点P1, P2,P3,…到A与B的距离,你有什么发现?
Copyright 2004-2009 版权所有 盗版必究
3.定义:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.这样,我们就得到图形轴对称的性质. 4. 图形轴对称的性质:若两个图形关于某条直线对称,那 么对称轴是任何一对对应点所连线段的垂直平分线. 类似地,
轴对称图形的对称轴,是任何一对对应点所连线段的 垂直平分线.
教学过程设计
活动一.看图讨论,探索性质. 1.问题1.看课本图12.1-4,△ABC和△A′B′C′关于直线MN 对称,点A′B′C′分别是点A、B、C的对称点,线段AA′、 BB′、CC′与直线MN有什么关系? 2.小组讨论. (1)在课本图12.1-4中,点A、A′是什么关系? (2)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折 叠后,点A与A′重合吗? 于是有: AP=PA′ ∠MPA=∠MPA′=90°. 对于其他的对应点,如点B、B′,C、C′也有类似的情况. (3)那么MN与A和A′,B和B′,C和C′的连线有什么关系呢?
从上面两个结论可以看出:在线段AB的垂直平分线l上的 点与A、B的距离都相等;反过来,与两点A、B的距离相等的 点都在l上,所以直线l可以看成与两点A、B的距离相等的所 有点的集合.
Copyright 2004-2009 版权所有 盗版必究
轴对称知识点总结

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点.3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系"。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体"便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义:经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
性质:线段垂直平分线上的点与线段两端点的距离相等。
(2)判定:与线段两端点距离相等的点在线段的垂直平分线上。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
(2)性质.①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
②等边对等角。
③三线合一。
(3)判定.①有两条边相等的三角形是等腰三角形。
②有两个角相等的三角形是等腰三角形。
7、等边三角形:(1)定义。
三条边都相等的三角形,叫做等边三角形。
说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。
(2)性质.①等边三角形是轴对称图形,其对称轴是“三边的垂直平分线”,有三条。
②三条边上的中线、高线及三个内角平分线都相交于一点。
③等边三角形的三个内角都等于60°。
(3)判定。
①三条边都相等的三角形是等边三角形.②三个内角都相等的三角形是等边三角形。
③有一个内角是60°的等腰三角形是等边三角形。
(4)重要结论。
在Rt△中,30°角所对直角边等于斜边的一半。
人教版数学八年级上第十二章“轴对称”简介

第十二章“轴对称”简介课程教材研究所李海东八年级上册第12章是“轴对称”,主要包括轴对称和等腰三角形的有关内容。
本章共安排了三个小节和两个选学内容,教学时间约需13课时,具体分配如下(仅供参考):12.1 轴对称3课时12.2 作轴对称图形3课时12.3 等腰三角形5课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
轴对称是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容。
在本章第1小节“轴对称”中,教科书立足于学生的生活经验和数学活动经历,从观察现实生活中的对称现象开始,引出轴对称图形和图形的轴对称的概念,从整体上概括出轴对称的特征。
结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理。
接下来,在第2小节“作轴对称图形”中,通过作轴对称图形、简单的图案设计、确定最短路线等活动,让学生进一步体会轴对称的应用价值和丰富内涵。
用坐标表示轴对称,从数量关系的角度刻画了轴对称。
教科书从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。
等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质。
由于它的这些特殊性质,使它比一般三角形应用更广泛。
而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,这也是教科书把这部分内容安排在本章的一个重要原因。
在本章第3小节“等腰三角形”中,利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法的内容。
第十二章轴对称

第十二章轴对称单元(章)教学计划1、地位与作用:本章的主要内容是围绕等腰三角形展开的.等腰三角形是继角、线段后接触到的第三个轴对称图形,它为后面学习等边三角形、直角三角形和特殊四边形、矩形、菱形、等腰梯形、正多边形、圆做下铺垫,也是平面几何研究的主要对象,起着承前启后的作用。
2、目标与要求:知识与技能(1) 通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质;。
(2)探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相互关系;能够按要求作出简单平面图形经过一次或两次轴对称后的图形;认识和欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计(3) 了解线段垂直平分线及其性质,并掌握其性质;了解等腰三角形、等边三角形的有关概念,探索并掌握它们的性质和判定方法。
过程与方法(1)从实际生活中的图形入手,学习轴对称及其性质,欣赏、体验轴对称在现实生活中的广泛应用。
(2)利用轴对称变换,探索等腰三角形的性质及其判定方法,并进一步学校等边三角形。
情感态度与价值观能初步应用本章所学知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间概念,激发学生学习空间与图形的兴趣。
3、重点与难点:重点:轴对称、轴对称变换、等腰三角形的性质和判定。
难点:等腰三角形的性质和判定.掌握等腰三角形的性质和判定,并能应用这些知识。
4、教法与学法:教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.5、活动步骤:一、创设情境、导入新课;二、探索新知合作交流;三、应用迁移,提高巩固练习;四、总结反思,拓展升华;五、布置作业6、时间安排:12.1轴对称 4课时12.2作轴对称图形 2课时12.3等腰三角形 4课时复习与小结 2课时12.1.1 轴对称第一课时【教学目标】:知识与技能:在生活实例中认识轴对称图;分析轴对称图形,理解其概念.过程与方法:通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.经历观察、分析的过程,训练学生观察、分析的能力.情感态度与价值观:通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质教学难点:能够识别轴对称图形并找出它的对称轴.轴对称图形和关于直线成轴对称的区别和联系教学方法:操作,归纳,启发诱导法.教具准备:天安门、蝴蝶、窗花、脸谱等图片.多媒体课件.投影仪.剪刀、小刀、硬纸板.【教学过程】:创设情境,引入新课1.举实例说明对称的重要性和生活充满着对称。
轴对称知识点总结Word 文档

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
三线合一。
(3)判定。
有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。
轴对称 知识讲解

轴对称责编:杜少波【学习目标】1.认识和欣赏身边的轴对称图形,增进学习数学的兴趣.2.了解轴对称以及轴对称图形的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.探索轴对称的基本性质,会画一些简单的关于某直线对称的图形.【要点梳理】【高清课堂 389298 轴对称知识要点】要点一、轴对称图形轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质轴对称、轴对称图形的性质在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.要点诠释:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.【典型例题】类型一、判断轴对称图形【高清课堂389298 轴对称例1】1、在下图的几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个【思路点拨】我们将图中的图形分别沿着某条直线对折,看看图形的两边能否重合,若重合则是轴对称图形,否则就不是.【答案】D;【解析】每个图形都能找到对称轴,使对称轴两边的图形重合【总结升华】找对称轴要注意从不同的角度去观察,做到不重复、不遗漏.举一反三:【变式1】下列图形中,对称轴最少的对称图形是 ( )【答案】A;提示:A一条对称轴,B四条对称轴,C五条对称轴,D三条对称轴.【变式2】在直线、角、线段、等边三角形四个图形中,对称轴最多的是,它有条对称轴;最少的是,它有条对称轴【答案】直线、无数、角、1.【高清课堂389298 轴对称例2】2、观察图形…并判断照此规律从左到右第四个图形是()A . B. C . D.【思路点拨】根据题意分析图形涂黑规律,求得结果,采用排除法判定正确选项.【答案】D;【总结升华】本题考查学生根据图形,归纳、发现并运用规律的能力.注意结合图形解题的思想.举一反三:【变式】(2014春•太谷县校级期末)将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A .B .C .D .【答案】C. 类型二、轴对称或轴对称图形的应用【高清课堂389298 轴对称 例3】3、如图,将矩形纸片ABCD (图①)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图②);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上,折痕EF 交AD 边于点F (如图③);(3)将纸片收展平,那么∠AEF 的度数为( )A .60°B .67.5°C .72°D .75° 【答案】B ;【解析】∠AEF =(180°-45°)÷2=67.5°. 【总结升华】折叠所形成的图形是轴对称图形,对应角相等.举一反三: 【变式1】如图,△ABC 中,AB =BC ,△ABC 沿DE 折叠后,点A 落在BC 边上的A '处,若点D 为AB 边的中点,∠A =70°,求∠BD A '的度数.【答案】100°;∵AB =BC ,∴∠A =∠C =70°,∠B =40°又∵ΔABC 沿DE 折叠后,点A 落在BC 边上的A '处,点D 为AB 边的中点, ∴BD =D A ',∠B =∠D A 'B =40°,∴∠BD A '=180°-40°-40°=100°.【变式2】将矩形ABCD 沿AE 折叠,得到如图所示图形. 若'CED ∠=56°,则∠AED 的大小是_______.【答案】62°;4、(2015春•启东市校级月考)如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20cm,求MN的长.【思路点拨】根据轴对称的性质可得ME=PE,NF=PF,然后求出MN=△PEF的周长.【答案与解析】解:∵M、N分别是点P关于AO、BO的对称点,∴ME=PE,NF=PF,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长等于20cm,∴MN=20cm.【总结升华】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.。
人教课标版 八年级上 第十二章轴对称 12.1轴对称图形的认识

注意:平行四边形不是轴对称图形
2019/2/28
许艳红
6
练一练: A;下面的数字哪些是轴对称图形?它们各有 几条对称轴。
0 5
1 6
2 7
3 8
4 9
B:英文字母中有哪些是轴对称图形?
A G M S Y
B H N T Z
C I O U
D J P V
E K Q W
F L R X
2019/2/28
许艳红
7
轴对称图形
一条对称轴:
等腰三角形 等腰梯形
两条对称轴:
长方形
三条对称轴:
等边三角形
无数条条对称轴:
圆
2019/2/28
许艳红
8
2019/2/28
许艳红
9
2019/2/28
许艳红
10
2019/2/28
许艳红
ห้องสมุดไป่ตู้
11
演示结束!
THANK YOU FOR WATCHING!
感谢聆听!
轴对称图形的认识
教学目标: 导入新课: 轴对称图形的含义: 知识拓展: 加深认识:
随堂练习:
小结:
欣赏:
2019/2/28
许艳红
1
使学生初步认识轴对称图形,知 道轴对称图形的含义,能够找出轴 对称的对称轴。 能准确判断生活中哪些事物是轴 对称图形,能找出轴对称图形的对 称轴。 结合教材、联系生活实际,培养 学生的学习兴趣和热爱生活的情感。
2019/2/28
许艳红
2
导入新课:
同学们:现在我们一起来欣赏这两幅图片,大 家比一比,仔细观察看看哪副图片更漂亮?说说 你的理由。
(Ⅰ)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章“轴对称”简介八年级上册第12章是“轴对称”,主要包括轴对称和等腰三角形的有关内容。
本章共安排了三个小节和两个选学内容,教学时间约需12课时,具体分配如下(仅供参考):12.1 轴对称3课时12.2 轴对称变换3课时12.3 等腰三角形4课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,欣赏、体验轴对称在现实生活中的广泛应用。
在此基础上,利用轴对称变换,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。
轴对称是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容。
在本章第1小节“轴对称”中,教科书立足于学生的生活经验和数学活动经历,从观察现实生活中的对称现象开始,引出轴对称图形和图形的轴对称的概念,从整体上概括出轴对称的特征。
结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理。
接下来,在第2小节“轴对称变换”中,通过观察一系列的图形,引出了轴对称变换并归纳其特征,通过作轴对称图形、简单的图案设计、确定最短路线等活动,让学生进一步体会轴对称的应用价值和丰富内涵。
用坐标表示轴对称,从数量关系的角度刻画了轴对称变换。
教科书从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。
等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质。
由于它的这些特殊性质,使它比一般三角形应用更广泛。
而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,这也是教科书把这部分内容安排在本章的一个重要原因。
在本章第3小节“等腰三角形”中,利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法的内容。
在本章,轴对称的性质是本章的重点,其他轴对称变换的应用,利用轴对称设计图案,用坐标表示轴对称等都是围绕这一性质进行的。
另外,等腰三角形的性质和判定也是本章的重点,它们是证明线段和角相等的重要根据,应用也比较广泛。
按照整套教科书对于推理证明的安排,上一章“全等三角形”已经要求让学生会用符号表示推理(证明)。
在这一章,对于一些图形的性质(如线段垂直平分线的性质、等腰(边)三角形的性质与判定等),仍是要求学生证明。
由于学生刚开始接触用符号表示推理,虽然教科书控制了证明难度,但是相对于上一章,推理的依据多了,图形、题目的复杂程度也增加了,因此会使一些学生感到无处下手,这是本章教学的一个难点,要注意帮助学生克服这一难点。
(三)课程学习目标1.通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质;2.探索简单图形之间的轴对称关系,能够按照要求作出简单图形经过一次或两次轴对称后的图形;认识和欣赏轴对称在现实生活中的应用,能利用轴对称进行简单的图案设计;3.了解线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角的有关概念,探索并掌握它们的性质以及判定方法;4.能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习空间与图形的兴趣。
二、本章编写特点1.有机的整合“空间与图形”领域的相关内容,利用变换研究图形的性质在以往的教科书中,等腰三角形的有关内容一般安排于介绍三角形的内容之中,利用三角形的全等研究等腰三角形的性质和判定。
在本套教科书中,等腰三角形的有关内容安排在了“轴对称”一章,学生学完了轴对称的相关性质之后,利用轴对称的有关知识研究等腰三角形的性质,再利用三角形的全等的知识给以证明,这是本章编排上的一个特点。
等腰三角形是一个很好的轴对称图形,它的许多性质都与它是轴对称图形有关。
利用它的轴对称性,不仅有助于发现等腰三角形的一些性质,而且也能为利用三角形全等的知识证明一些性质提供思路,在教科书的编写中,充分重视了这一点。
例如,教科书引出等腰三角形概念时,不是直接给出定义,而是直接通过一个“探究”栏目,让学生自己剪出一个三角形。
这个剪三角形的过程,就是利用轴对称得到一个等腰三角形的过程。
这个过程还保留下了中间折叠的痕迹,它就是等腰三角形的对称轴。
接下来教科书安排的“思考”栏目是前面“探究”的继续,受剪出等腰三角形的过程的启发,学生很容易想到它是一个轴对称图形,折痕就是它的对称轴。
通过找出其中重合的线段和重合的角利用轴对称变换的性质,可以很容易的引导学生得出等腰三角形的两个性质:“等边对等角”以及“三线合一”。
在进一步证明这两个性质的过程中,关键是要添加辅助线,而有了前面的“探究”“思考”的铺垫,如何添加这个辅助线也就是水到渠成的了。
再如,利用等腰三角形的轴对称性,可以发现等腰三角形中许多相等的线段或角,如两底角平分线、两腰的中线、两腰的高等。
教科书也安排了这样一个“讨论”栏目,让学生利用等腰三角形的轴对称性去发现一些等腰三角形中的相等的线段和角,利用图形的变换研究图形的性质。
等腰三角形是一种轴对称图形,教科书将等腰三角形的相关内容安排在轴对称之后,就是要利用轴对称研究等腰三角形的有关性质,并进一步利用三角形的全等证明这些性质。
将图形的变换与图形的认识、图形的证明有机整合,利用变换研究图形,得到图形的性质,在通过推理证明这些结论。
2.注意联系实际人们生活在三维空间,丰富多彩的图形世界给“空间与图形”的学习提供了大量真实的素材。
本章的内容具有丰富的实际背景,在现实世界中也有着广泛的应用,因此在教学中要注意联系实际,从实际出发引入概念,并将所学知识应用到实际生活中。
例如,轴对称现象在生活中是很常见的,教科书选用了从天安门到故宫的鸟瞰图作为章头图,在第1节的开头,也举出了如自然景观、分子结构、建筑物、艺术作品、日常生活用品、窗花等实际例子,让学生感受对称现象的无处不在,通过观察这些图形,引出轴对称的概念。
在实际教学中,可以结合当地实际选择一些轴对称图形的例子,这些素材不仅应包括人们所习惯的标准几何图形,更应包括丰富多彩的现实世界中的二、三维图形,使学生欣赏现实世界中与轴对称有关的图案,并能够从中发现轴对称的特征。
除了注意从实际例子引出轴对称内容的学习以外,教科书也给出了一些应用轴对称变换的例子,如利用轴对称的观点来解释现实生活中的有关现象、简单的利用轴对称变换设计图案、利用轴对称变换解决一些有关最大、最小的选址问题等等,教科书也注意体现所学知识的应用,体现一个具体——抽象——具体的过程。
3.注意让学生经历观察、实验、归纳论证的过程学习方式的转变是这次课程改革的一个重要目标,与其他教学内容相比,“空间与图形”的内容的教学更能激起学生对数学学习的情感体验,强调学生通过“做数学”来学习数学也是本章教科书的一个突出特点.在内容处理上,教科书加强了实验几何的成分,将实验几何与论证几何有机结合.论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用.对于本章中的一些概念、性质、公理和定理,教科书大多是通过“留空”、设问、设置“观察”“思考”“讨论”“探究”“归纳”以及“数学活动”等栏目,让学生通过画图、折纸、剪纸、度量或做试验等活动,探索发现几何结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式.在发现结论的基础上,再经过推理证明这些结论,使得推理证明成为学生观察、实验、探究得出结论的自然延续,使图形的认识与图形的证明有机整合。
例如,对于等腰三角形“等边对等角”“三线合一”的性质的得出,教科书通过设置一个“探究”“思考”栏目,让学生剪出等腰三角形,并进一步利用轴对称的性质思考其中相等的线段和相等的角,进而发现等腰三角形的性质。
接下来,从上面的操作过程启发,通过做出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等证明等腰三角形的这两个性质。
这种处理,将实验几何与论证几何有机的整合在一起,使学生经历了一个观察、实验、探究、归纳、推理、证明的认识图形的全过程,把推理证明作为学生观察、实验、探究得出结论之后的自然延续,完成好由实验几何到论证几何的过渡。
三、几个值得关注的问题1.注意知识间的联系本章的内容较多,课程标准“空间与图形”领域中图形的认识、图形与变换、图形与坐标、图形与证明各个部分的内容在本章都有涉及,教学时要注意把握各个部分内容之间的联系,有机的整合各个部分的内容。
本章从认识轴对称图形开始,又进一步介绍了两个图形关于某条直线对称(两个图形成轴对称),要注意这两个概念间的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,说的是一个具有特殊形状的图形,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合。
它们的联系:定义中都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,这两个图形就是关于这条直线成轴对称,反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形。
从轴对称变换的角度来看,成轴对称的两个图形的任何一个可以看作由另一个图形经过轴对称变换得到,一个轴对称图形由它的一部分为基础,经过轴对称变换拓展而成。
在轴对称变换之后,教科书安排了用坐标表示轴对称的内容,从数的角度刻画轴对称的内容。
包括关于坐标轴对称的点或图形的坐标的变化以及由点或图形坐标的变化引起点或图形轴对称变换的内容。
这里的关键是要让学生感受图形轴对称变换之后点的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来。
2.满足学生多样化的学习需求,为学生提供个性化学习的时间和空间本章内容中有许多需要发挥学生想象和个性的活动,如欣赏轴对称图案,利用轴对称进行图案设计,探究对称轴是与坐标轴平行(垂直)时轴对称的坐标特点,发现等腰三角形中相等的线段等等,这些内容都为学生个性化的学习提供了空间。
教学时应有意识地满足学生多样化的学习需求真正为学生提供个性化学习的时间和空间。
例如,对于利用轴对称设计图案,不同学生可能会有不同的创意,也会有不同的操作方法(如折叠、剪纸、扎眼、计算机等)完成自己的创意,教师应该鼓励学生大胆想象、大胆尝试,不能用唯一的标准判断全体学生的成果,要把关注点放在活动中的数学层面上,看学生是否真正理解了轴对称变换的特点。
3.注意推理证明的教学对于推理证明的要求,教科书是按“说点儿理”“说理”“简单推理”“用符号表示推理”等分层次安排的。