平面向量图形结合问题
平面向量与图形的结合(重难点)

CBA 平面向量与平面图形的结合类型平面向量与三角形的结合问题,难度是远高于平面向量的坐标运算类型,这里的问题多数都需要先进行深入的分析,然后才能找到题目突破口,进而才能计算,而不是那种先去算,计算过程中发现突破口的问题。
1. 基于向量本身的问题,主要包括向量的夹角注意事项、平面向量基本定理的拆分向量思路、向量加法减法的运算法则(平行四边形法则主要用于解决向量的加法问题、三角形法则主要用于解决向量的减法问题)、向量垂直、共线的充要条件等这几个基础问题。
这里要特别强调向量的拆分思路,将题中待求的向量或题中给出的向量,拆分成模长或夹角已知的向量,如果题中给出基底向量,则将所有非基底向量拆分成基底向量。
2. 基于向量与三角形的结合,尤其是三角形的各种心与平面向量的结合,这里应该清楚三角形的各种心用向量如何表达,本书相关专项有总结,水平高的学生还应该能够进行正确地推导。
1. 已知,,A B C 为圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为2. 在ABC 中,已知tan AB AC A ⋅=,当30A =时,ABC 的面积为3.如右下图示,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A . 0AD BE CF ++= B. 0BD CF DF -+= C .0AD CE CF +-=D. 0BD BE FC --=4.在ABCD 中,1AD =,3BAD π∠=,E 为CD 的中点,若1AC BE ⋅=,则AB =5.在ABC 中,某23A π∠=,1AB AC ⋅=-,则BC 的最小值为6.在ABC 中,若2AB AB AC BA BC CA CB =⋅+⋅+⋅,则ABC 为___7.正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅的 值为_________8.ABCD 中,8AB =,5AD =,3CP PD =,2AP BP ⋅=,则_____AB AD ⋅=9.已知AB 与AC 夹角为23π,3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥,则_____λ=10.在ABCD 中,若AB a =,AD b =,E 为OD 的中点,延长AE 交CD 于F 点,则____AF a b =+11.△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________12.已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________13.若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____14.若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___15. 设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++=16.如图,在ABCD 中,AP BD ⊥,垂足为p ,且3AP =,则AP AC ⋅=17. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c18.在ABC ∆中,2,3,1,AB AC AB BC ==⋅=则BC 的长度为__________19. 在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.20.在等边ABC 中,P 在线段AB 上,且()01AP AB λλ=<<,若CP AB PA PB ⋅=⋅,则实数____λ=21.已知ABC ∆为等边三角形,2AB =,设点,P Q 满足,(1),,AP AB AQ AC R λλλ==-∈若3,2BQ CP ⋅=-则λ的值为____________参考答案1.解:,,A B C 是圆O 上的三点,()12AO AB AC =+,∴根据向量加法的运算,几何意义得出O 为BC 的中点,即BC 为圆O 的直径。
平面向量的解析几何应用

平面向量的解析几何应用平面向量是解析几何中一个重要的概念,它在几何学中有着广泛的应用。
本文将介绍平面向量的基本概念及其在解析几何中的应用。
一、平面向量的基本概念平面向量是指在平面内用有向线段表示的量。
它具有大小和方向两个重要的特征。
平面向量常用字母加上箭头进行表示,例如向量a用符号→a表示。
平面向量有一系列常用的运算,包括加法、减法、数乘和点乘等。
其中,向量的加法和减法可以通过平行四边形法则进行计算,数乘则是将向量与一个标量相乘,点乘则是两个向量相乘并求和的运算。
二、平面向量的坐标表示平面向量也可以用坐标进行表示。
通常情况下,我们将平面上的一个点的坐标表示为(x, y),那么该点对应的平面向量可以表示为(→a) = (x, y)。
在平面直角坐标系中,平面向量还可以用分量表示。
例如,向量→a可以表示为(→a) = a1i + a2j,其中a1和a2分别是向量在x轴和y 轴上的分量,i和j分别是x轴和y轴的单位向量。
三、1. 向量的位移平面向量的位移是指描述一个点从一个位置移动到另一个位置的向量。
我们可以利用平面向量的减法来计算两个点之间的位移向量。
2. 向量的共线与共面如果两个向量的方向相同或相反,则它们是共线的;如果三个向量在同一平面上,则它们是共面的。
通过判断向量的共线关系和共面关系,我们可以解决许多几何问题,例如判断三点是否共线等。
3. 向量的垂直关系两个向量垂直的条件是它们的点积等于零。
通过应用向量的点乘运算,我们可以判断两个向量是否垂直。
4. 向量的投影平面向量的投影指的是将一个向量投影到另一个向量上的过程。
通过计算向量的投影,我们可以解决直角三角形的问题,例如计算角度、长度等。
5. 三角形的面积三角形的面积可以通过平面向量的叉乘运算来计算。
通过计算三个顶点所对应的向量的叉乘,我们可以得到三角形的面积。
6. 直线和平面的关系平面向量可以用来描述直线和平面的关系。
例如,我们可以用平面向量表示直线的方向,利用向量运算来判断两个直线是否平行或垂直,以及直线和平面的交点等。
平面向量的运算法则

平面向量的运算法则平面向量是解决平面几何问题的重要工具,通过向量的运算可以简化平面几何问题的处理过程。
本文将介绍平面向量的基本概念和运算法则,以及其在几何问题中的应用。
一、平面向量的表示平面向量用有序数对表示,常用形式为A(x₁, y₁)和B(x₂, y₂),其中A和B分别表示向量的起点和终点,(x₁, y₁)和(x₂, y₂)表示向量的坐标。
二、平面向量的加法平面向量的加法指的是将两个向量按照特定的法则相加,得到一个新的向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A与向量B的和C可以表示为C(x₁ + x₂, y₁ + y₂)。
三、平面向量的减法平面向量的减法指的是计算出一个新的向量,使得用该向量加上被减向量等于另一个向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A 与向量B的差D可以表示为D(x₁ - x₂, y₁ - y₂)。
四、平面向量的数量乘法平面向量的数量乘法指的是将一个向量乘以一个实数,得到一个新的向量。
设有向量A(x, y)和实数k,kA可以表示为kA(kx, ky)。
五、平面向量的点乘平面向量的点乘指的是两个向量的对应坐标相乘后相加的运算。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的点乘可以表示为A·B = x₁x₂ + y₁y₂。
六、平面向量的叉乘平面向量的叉乘指的是两个向量按照一定的法则相乘,得到一个新的向量。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的叉乘可以表示为A×B = x₁y₂ - x₂y₁。
七、平面向量的模长平面向量的模长指的是一个向量的长度,可以通过勾股定理求得。
设有向量A(x, y),则向量A的模长可以表示为|A| = √(x² + y²)。
八、平面向量的单位向量平面向量的单位向量指的是模长为1的向量,可以通过将向量除以其模长得到。
设有向量A(x, y),则向量A的单位向量可以表示为Â = (x/|A|, y/|A|)。
高三数学平面向量的几何应用试题

高三数学平面向量的几何应用试题1.在中,是边上的高,给出下列结论:①;②;③;其中结论正确的个数是()A.B.C.D.【答案】D【解析】∵,∴,①;②取BC中点M,,而,∴;③,,所以;所以正确的个数为3个.【考点】向量的运算.2.设平面向量,,函数.(1)当时,求函数的取值范围;(2)当,且时,求的值.【答案】(1)(2).【解析】(1).当时,,则,,所以的取值范围是.(2)由,得,因为,所以,得,.3.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.4.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.5.在Rt△ABC中,,,,则_____.【答案】2【解析】作,则,由题设可知是正三角形,所以.【考点】三角形与向量.6.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()A.B.2C.5D.10【答案】C【解析】因为·=(1,2)·(-4,2)=1×(-4)+2×2=0,所以⊥,且||==,||==2,=||||=××2=5.故选C.所以S四边形ABCD7.已知点P为△ABC所在平面上的一点,且=+t,其中t为实数,若点P落在△ABC的内部,则t的取值范围是()A.0<t<B.0<t<C.0<t<D.0<t<【答案】D【解析】如图,E,F分别为AB,BC的三等分点,由=+t可知,P点落在EF上,而=,∴点P在E点时,t=0,点P在F点时,t=.而P在△ABC的内部,∴0<t<.8.已知向量m,n满足m=(2,0),n=.在△ABC中,=2m+2n,=2m-6n,D为BC边的中点,则||等于().A.2B.4C.6D.8【答案】A【解析】由题意知,=(+)=2m-2n=(1,-).∴||=2.9.在平面四边形ABCD中,满足+=0,(-)·=0,则四边形ABCD是().A.矩形B.正方形C.菱形D.梯形【答案】C【解析】因为+=0,所以=-=,所以四边形ABCD是平行四边形,又(-)·=·=0,所以四边形的对角线互相垂直,所以四边形ABCD是菱形.10.已知点,则与向量同方向的单位向量是( )A.B.C.D.【答案】C【解析】与向量同方向的单位向量是.【考点】单位向量的求法.11.在直角梯形中,,,,,点在线段上,若,则的取值范围是()A.B.C.D.【答案】C【解析】由题意可求得。
高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
平面向量做题技巧

平面向量做题技巧1. 嘿,平面向量做题的时候,要学会找关键信息呀!就像你在一堆玩具中找到你最喜欢的那个一样。
比如已知向量的模和夹角,那不是很明显要去用相关公式嘛!2. 哎呀,一定要记住向量的加减法法则哦,这可太重要啦!就好比搭积木,一块一块地往上加,或者把多余的拿走,不就清楚啦。
像那种给出几个向量让你合成的题,不就用这个嘛!3. 注意啦,向量的数量积可不能马虎!这就好像你和朋友之间的默契,要好好去感受和计算呀。
比如判断向量垂直,不就看数量积是不是零嘛!4. 嘿,在做题时别死脑筋呀,要灵活运用啊!就像跳舞要随着音乐节奏变换动作一样。
碰到复杂的向量问题,多想想有没有简便方法呀!5. 哇塞,对于那些和几何图形结合的题,要把图形看透呀!这就如同你了解一个人的性格一样重要。
比如在三角形里的向量问题,不就利用三角形的特点嘛!6. 记住哦,单位向量也有大用处呢!就好像一个小小的指南针能指引方向一样。
在一些问题里,利用单位向量来转化不就简单多啦!7. 千万别忘了向量共线的条件呀!这就好比走在同一条路上的伙伴。
看到相关条件,马上就想到共线的性质呀!8. 哎呀呀,平面向量做题技巧真的很关键呢!就像拥有一把万能钥匙能打开各种难题的门。
遇到困难别退缩,用对技巧呀!9. 注意那些隐含条件呀,别漏了它们!这就像宝藏藏在角落里,你得细心才能发现。
很多时候答案就在那些被忽略的地方呢!10. 真的,平面向量做题要多用心呀!就像对自己喜欢的事情一样充满热情。
用心去体会每一个技巧,你会发现做题越来越轻松啦!我的观点结论就是:掌握这些平面向量做题技巧,能让你在解题时更加得心应手,轻松应对各种难题,一定要好好运用哦!。
构造图形及建立坐标系解平面向量问题

,
则得 o ≤1_ X 2 +l— y 。 ‘ 1
i f l 2 > t 2 + ÷ 。
解析
由 :( 2+ 咖 , 2+ i ) ,
则 点 A 在 以 C( 2 , 2 ) 为 圆心 , √ 2 为 半径 的圆上 。又 由 已知 :( 2, 0 ) , 则 是 轴 上 的一 个 向量 。所 以 圆 C上
四、 构 造 其他 图 形
由I
Iபைடு நூலகம்=I
I=I ,
例 4 已 知 向 量 :( 2 , 0 ) , :(
:
嘲 , i ) ,
2+ y 2= l ( x_a ) 得 l ( y
一
,
( 2 , 2 ) , 则 与 夹 角 的 最 小 值 和 最 大 值 依 次 是
如, 图, 设 :口 ,
A
根 据条 件 , 知 A, B 。 ,
6 , 易知 I n — x bI 就是点 A
P, B 2构 成 一 个 矩 形 A 船 : , 以
到直线 0 上某 点的距离 。所
A B 。 , A B : 所在 直线为坐标轴建 立
以, J 4一 x b I m , n 为点 A到直线
) 。
r ( 一0 ) =1 ~ Y 。
(
则{
。
【 ( y 一 6 ) = 1 ~
A - o , q 盯 -
卫 1 2 ’ l 2 C’
B . " i T , 老
n 5叮 r 1 T
U ‘ ,
又由 1 l < 1
,
得 0 ≤ ( 一 。 ) + ( y - 6 ) < } ,
,
l =l
【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则 =()
A. B. C. D.
10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足 + + = ,则点O为△ABC的()
A.外心B.内心C.重心D.垂心
11.(2016•河南模拟)如图,在△ABC中,已知 ,则 =()
A. =﹣ ﹣ B. = ﹣
C. = ﹣ D. =﹣ ﹣
11.(2015•厦门校级模拟)如图, , , , ,若m= ,那么n=()
A. B. C. D.
12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB= ,AD= ,则 • =( )
A.1B.2C.t D.2t
答案:
1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP= AB,BQ= BC,若 = , = ,则 =( )
5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是( )
A. + = B. ﹣ = C. + = D. ﹣ =
6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么 =()
A. B. C. D.
7.(2016•湖南模拟)已知 , , ,点C在AB上,∠AOC=30°.则向量 等于()
A. B. C. D.
8.(2016•重庆校级模拟)若| |=2,| |=4且( + )⊥ ,则 与 的夹角是()
A. B. C. D.﹣
9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则 为()
A. B.4 C.4 D.4
B.
10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且 =2 ,点F是BD上靠近D的四等分点,则()
平面向量图形结合问题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
高中复习-平面向量
1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP= AB,BQ= BC,若 = , = ,则 =()
A.﹣8B.﹣4ﻩC.4ﻩD.8
6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则 =()
A.﹣4ﻩB.4ﻩC.﹣8D.8
7.(2015•房山区一模)向量 =(2,0), =(x,y),若 与 ﹣ 的夹角等于 ,则| |的最大值为()
A.4B.2 C.2ﻩD.
8.(2016•合肥二模)点G为△ABC的重心,设 = , = ,则 =( )
A. B. C. D.
12.(2016•衡水模拟)如图,在△ABC中, ,P是BN上的一点,若 ,则实数m的值为( )
A. B. C.1D.3
13.(2016•焦作二模)在平面直角坐标系中,已知向量 =(1,2), ﹣ =(3,1), =(x,3),若(2 + )∥ ,则x=()
A.﹣2 B.﹣4C.﹣3D.﹣1
14.(2016•嘉峪关校级模拟)已知向量 为非零向量, ,则 夹角为()
A. B. C. D.
15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则 • 的取值范围是()
A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]
16.(2016•潮南区模拟)已知平面向量 与 的夹角为 ,且| |=1,| +2 |=2 ,则| |=( )
A.1B. C.3D.2
17.(2016•西宁校级模拟)已知| |=1,| |= ,且 ⊥( ﹣ ),则向量 与向量 的夹角为()
A. B. C. D.
巩固与练习:
1.(2011•丰台区一模)已知平面向量 , 的夹角为60°,| |=4,| |=3,则| + |等于()
A.37B. C.13D.
2.(2016•河南模拟)如图,在△ABC中,已知 ,则 =()
A. ﻩB. C. ﻩD.
3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量 , ,则向量 可以表示为()
A. ﻩB. ﻩC. ﻩD.
4.(2016•抚顺一模)已知向量| |=4,| |=3,且( +2 )( ﹣ )=4,则向量 与向量 的夹角θ的值为()
A. B. ﻩC. ﻩD.
A. + B.﹣ + C. ﹣ D.﹣ ﹣
2.(2016•朔州模拟)点O为△ABC内一点,且满足 ,设△OBC与△ABC的面积分别为S1、S2,则 =( )
A. B. C. ﻩD.
3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量 按向量 =(2009,4,27)平移,所得到的向量坐标是()
延长CO交AB与E,
∵O为△ABC内一点,且满足 ,
∴ = ,
∴O为△DABC重心,E为AB中点,
∴OD:OE=2:1,∴OC:OE=1:2,∴CE:OE=3:2,
∴S△AEC=S△BEC,S△BOE=2S△BOC,
∵△OBC与△ABC的面积分别为S1、S2,
∴ = .
故选:B.
3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量 按向量 =(2009,4,27)平移,所得到的向量坐标是()
A. + ﻩB.﹣ + C. ﹣ D.﹣ ﹣
【解答】解: = .
∵AP= AB,BQ= BC,∴ = = , = = .
∴ = .
故选:A.
2.(2016•朔州模拟)点O为△ABC内一点,且满足 ,设△OBC与△ABC的面积分别为S1、S2,则 =()
A. B. C. D.
【解答】解:延长OC到D,使OD=4OC,
A.(1994,3,4)B.(﹣1994,﹣3,﹣4)ﻩC.(15,1,23)D.(4003,7,31)
4.(2013秋•和平区期末)已知向量 ,若存在向量 ,使得 ,则向量 为( )
A.(﹣3,2)B.(4,3)ﻩC.Байду номын сангаас3,﹣2)D.(2,﹣5)
5.(2016•吉林三模)函数 (1<x<4)的图象如图所示,A为图象与x轴的交点,过点A的直线l与函数的图象交于B,C两点,则( + )• =()