大跨度空间结构的发展历史及分类
大跨度结构简介

大跨度结构简介摘要:20世纪的工业革命推动了建筑技术的发展,在出现了水泥和钢铁等新型材料之后,人们学会了建造拱、钢架之类的平面结构,跨越50—70m的跨度。
随着生活水平的提高,人类从事生产和社会活动对更大跨度的空间突出了需要。
关键词:大跨度;结构;体系1.分类介绍(1)空间网格结构 网壳结构的出现早于平板网架结构。
在国外,传统的肋环型穹顶已有一百多年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。
中国第一批具有现代意义的网壳是在50和60年代建造的,但数量不多。
当时柱面网壳大多采用菱形“联方”网格体系。
直到80年代初期,第一个平板网架(上海师范学院球类房,31.5mx40.5m)于1964年建成以来,网架结构才有了较好发展势头。
当时平板网架在国内还是全新的结构形式,这两个网架规模都比较大,即使从今天来看仍然具有代表性,因而对工程界产生了很大影响。
在当时体育馆建设需求的激励下,国内各高校、研究机构和设计部门对这种新结构投入了许多力量,专业的制作和安装企业也逐渐成长,为这种结构的进一步发展打下了较坚实的基础。
改革开放以来的十多年里是我国空间结构快速发展的黄金时期而平板网架结构就自然地处于捷足先登的优先地位。
甚至80年代后期北京为迎接1990年亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。
在这一时期,网架结构的设计已普遍采用计算机,生产技术也获得很大进步,开始广泛采用装配式的螺栓球结点,大大加快了网架的安装。
(2)膜结构膜结构(Membrane Structures)是20世纪中期发展起来的一种新型建筑结构形式,是由多种高强薄膜材料(PVC或Teflon)及加强构件(钢架、钢柱或钢索)通过一定方式使其内部产生一定的预张应力以形成某种空间形状,作为覆盖结构,并能承受一定的外荷载作用的一种空间结构形式。
膜结构可分为充气膜结构和张拉膜结构两大类。
充气膜结构是靠室内不断充气,使室内外产生一定压力差(一般在10mm-30mm水柱之间),室内外的压力差使屋盖膜布受到一定的向上的浮力,从而实现较大的跨度。
大跨度空间结构

土耳其圣索非亚教堂, 建于公元537年, 跨度32m
意大利佛罗伦萨圣玛丽亚 教堂,建于公元1420年, 跨度42m
英国伦敦圣保罗大教堂, 建于公元1710年, 跨度33m
意大利罗马大教堂, 建于公元1593年, 跨度42m
2. 钢筋混凝土薄壳结构的出现和发展
1824年:英国人阿士普丁发明混凝土制作法 1856年:英国人贝斯麦首次用转炉炼钢成功,钢材开始用 于建筑结构 1886年:德国人冠农通过圆拱与平板荷载实验确定了钢筋 受拉、混凝土受压的钢筋混凝土理论 1892年:法国人亨奈比克用圆钢筋埋入混凝土作整体梁板 结构,随即钢筋混凝土开始广泛应用于房屋建筑 1892年:A.E.H.Love考虑径向剪力与弯矩的理论为壳体结 构理论的发展打下了基础
永久性膜结构的产生:
在大阪世博会,盖格公司成功地向世人推出气承式膜结构的新设计技 术,而受到建筑工程界一致认可后,又面临所使用的膜材料问题。这 种膜材只有7年— 8年的寿命,在太阳紫外线及风、雨的交互作用下, 膜布会变得硬脆、破裂,而失去结构性能。 正在此时,美国福特基金会下属的教育设施实验室给盖格公司一笔资 金,用来开发此种永久性的建筑膜。 在盖格公司领导下,同美国的杜邦公司、康宁玻纤公司等五家共同开 发永久性的结构膜。 产品很顺利地就制成了,化纤公司将康宁公司提供的玻璃纤维,先集 成线再织成布纱,经过矽胶浸泡,先制成水密坯布,再多次快速放入特 氟隆溶液中,使坯布两面皆有均匀的特氟隆涂层,永久性的PTFE膜正式 诞生。 经过加速气候实验,其物理稳定性确定后,盖格公司又设计各种结构 配件及确定设计程序,以建造不同性质的膜结构。
Tokyo Dome
日本东京后乐园棒球馆 Span Structure Completion 201m Air-inflated membrane structure 1988
大跨度空间结构

摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。
全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。
关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。
常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。
世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。
2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。
效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。
古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。
被誉为展现穹力的杰作。
然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。
公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。
1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。
这工程实例表明工程结构经验时代的结束和科学时期的到来。
工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。
19世纪的工业革命促使科学技术飞快进步。
生铁材料出现以后引起了建筑结构革命性的变化。
1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。
大跨空间结构的发展回顾与展望

大跨空间结构的发展回顾与展望前言大跨空间结构是指横跨较大空间范围的建筑结构,如大跨度桥梁、室内运动场馆、会议中心等。
它们通常需要更高的设计难度和技术水平,以保证其在使用过程中的稳定和安全。
本文将从发展历程和未来发展两个方面对大跨空间结构进行回顾和展望。
发展历程20世纪初的大跨度桥梁20世纪初期,人们开始建造大跨度桥梁,如美国纽约市布鲁克林大桥、英国伦敦塔桥等。
这些桥梁用铁和钢制成,结构稳定,设计新颖。
然而,随着行车质量和交通密度的增加,这些桥梁逐渐不能满足需求,于是开始向更大跨度、更高强度的桥梁发展。
50~60年代的大跨度钢结构随着20世纪50~60年代钢结构制造技术的进步,大跨度钢结构开始出现,如日本广岛市锦带大桥、美国旧金山湾区大桥等。
这些桥梁采用的是双曲拱形等特殊形式,结构轻巧、功能性强,成为当时的代表作品。
但是,随着钢结构在建筑领域的广泛应用,逐渐暴露出其耐久性差、易受腐蚀等问题。
70~80年代的大跨度混凝土结构20世纪70~80年代,由于钢结构存在问题,混凝土结构得到了更广泛的应用。
在此期间,出现了一批大跨度混凝土建筑,如西班牙塞维利亚金塔塔、中国汉口长江大桥等。
这些建筑采用的是现浇钢筋混凝土桥面板,都采用了独特的结构形式和装饰手法。
21世纪的大跨度钢-混凝土混合结构随着21世纪的到来,大跨度结构开始出现结构材料混合使用,如中国的上海东方明珠电视塔、英国的伦敦眼。
这些建筑采用钢-混凝土混合结构体系,大大提高了结构稳定性,结合新材料的使用,极大地拓展了大跨度结构的建设领域。
未来发展未来,大跨空间结构将更加注重结构环保、工艺创新和品质升级。
主要包括以下几个方面:1. 智能化未来,大跨空间结构将不断向智能化、数字化方向发展,如采用先进控制技术、传感器监测技术等,实现结构的自适应和自我修复。
2. 新材料新材料的不断发展将赋予大跨空间结构更好的性能和更高的抗力。
如钢-纤维混凝土、碳纤维等材料的应用将会成为未来的主流之一。
大跨度结构的发展概况

大跨度结构的发展概况一、概 述在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。
与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。
空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。
当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。
事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。
从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。
近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。
建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。
例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。
1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。
70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。
建国以来大跨度建筑的空间结构发展

建国以来大跨度建筑的空间结构发展空间大跨度结构是建筑工程发展的一个重要标志,我国自五十年代以来就开展了对薄壳结构、悬索结构的研究开发与应用,建成了一批有影响的代表性工程,并取得了一大批研究成果。
八十年代由于计算机技术的发展,空间网格结构在理论研究、标准规范和工程实践等方面均取得了举世瞩目的成绩。
随着国力的增强,新材料的不断出现,空间结构由单一结构形式发展为组合结构、混合结构等多种结构形式,应用范围也从公共建筑、体育建筑发展到工业建筑乃至建筑的各个领域。
50年来,空间大跨度结构取得的辉煌成就使我们能充满信心地去营造21世纪更广阔的空间。
一、五十年空间大跨度结构的发展历程建国50年来,空间大跨度结构经历了四个发展时期:第一时期为五十年代末至六十年代中期,第二时期为七十年代末至八十年代中,第三时期为八十年代末到九十年代初,第四个时期为九十年代。
这四个发展时期都是依据当时的国力和建筑技术水平,反映出各自的结构特点与技术水平。
1、五十年代末至六十年代中期五十年代末,随着建国十年来国力的复苏,国家已有能力关注大型体育馆与大跨度公共建设的需要。
广大结构设计研究人员也以空前的热情投入于薄壳结构、悬索结构的理论研究。
这些理论研究紧密结合工程需要,在当时产生了很好的效果。
在薄壳结构方面,我国技术人员对球壳、圆柱面柱、双曲扁壳、组合扭壳等作了系统的理论研究,发表了一大批高质量的论文。
在理论研究的基础上,进行了大量的工程实践,其中代表性的工程如新疆某工厂的金工车间,采用跨度60m的椭园旋转壳体结构,目前该工程仍为国内最大跨度的薄壳结构。
还建成了跨度42m双曲扁壳的北京网球馆。
建成于1959年的北京火车站,其跨度为35m×35m,也采用双曲扁壳结构。
薄壳结构取材容易、材料省、结构与建筑围护合二为一,造价低,除模板制作稍麻烦外,施工相对简便,计算分析可用连续化方法求解,这些都是符合当时的技术水平与施工条件的。
配合大量的理论研究与工程实践,于1965年完成了国内第一本空间结构方面的规程《钢筋混凝土薄壳顶盖及楼盖设计计算规程》(BJG16-65),这一规程对以后薄壳结构的设计与施工起到了积极的指导作用。
大跨度建筑

膜结构是空间结构中最新发展起来的一种类型,它以性能优良的织物为材料,或是向膜内充气,由空气压力 支撑膜面,或是利用柔性钢索或刚性骨架将膜面绷紧,从而形成具有一定刚度并能覆盖大跨度结构体系。膜结构 既能承重又能起围护作用,与传统结构相比,其重量却大大减轻,仅为一般屋盖重量的1/10-1/30。
因为壳体结构属于高效能空间薄壁结构范畴,可以适应于力学要求的各种曲线形状,所以其承受弯曲及扭转 的能力远比平面结构系统大。另外,因结构受力均匀,因而可充分发挥材料的材耗,所以壳体结构体系非常适用 于大跨度的各类建筑。
由于钢的强度很高,很小的截面就能够承受很大的拉力,因而在本世纪初就开始用钢索来悬吊屋顶结构。悬 索在均匀荷载作用下必然下垂而呈悬链曲线的形式,索的两端不仅会产生垂直向下的压力,而且还会产生向内的 水平拉力。单向悬索结构为了支承悬索并保持平衡,必须在索的两端设置立柱和斜向拉索,以分别承受悬索所给 予的垂直压力和水平拉力。单向悬索的稳定性很差,特别是在风力的作用下,容易产生振动和失稳。
(2)悬挂膜结构-一般采用独立的桅杆或拱作为支承结构将钢索与膜材悬挂起来,然后利用钢索向膜面施加 张力将其绷紧,这样就形成了具有一定刚度的屋盖。
(3)骨架支撑膜结构-这是以钢骨架代替了空气膜结构中的空气作为膜的支撑结构,骨架可按建筑要求选用 拱、网壳之类的结构,然后在骨架上敷设膜材并绷紧,适用于平面为方形、圆形或矩形的建筑物。
在大跨度结构中,结构的支点越分散,对于平面布局和空间组合的约束性就越强;反之,结构的支承点越集 中,其灵活性就越大。从罗马时代的筒形拱衍变成高直式的尖拱拱肋结构;从半球形的穹隆结构发展成带有帆拱 的穹隆结构,都表明由于支承点的相对集中而给空间组合带来极大的灵活性。
主要大跨度建筑构造

空间结构体系
——网架
——折板
——薄壳 ——悬索
——……
(把结构的所有组成构件协同 起来共同跨越空间,作为整体 来考虑——整体作用大于单个 作用之和,且多向受力比单向 受力更发挥材料潜力,空间工 作比平面工作更符合力的自然 传递路线)
2 十种常用的大跨度结构形式
特点 ——刚结点(与排架结构对比):大大减少梁的跨中弯距 ——结构断面小,外形简洁,可暴露结构构件 ——门型刚架中部向上微翘有利于综合利用室内空间,扩大
净空高度 ——适用于40m跨度以内,动荷载不能太大(吊车≤10T,
远小于排架)
——刚架结构的造型
扩展:薄腹梁结构体系
常用作T、工字梁 自重较大,跨度6~18
不宜选用) 2 跨度<36m——预应力钢筋混凝土。
18~24m亦可选用普通钢筋混凝土 3 跨度<18m钢筋混凝土组合屋架 4 房屋内部以及所在地区相对湿度>75%,通
风不良者,或者有侵蚀揭纸,不宜选择木屋架 和钢屋架
3.1.4 网架结构及其造型
概念:一种由多根杆件以一定规律通过节点组成 的空间结构
2.6 薄壳结构及其造型
概念:一种薄得不至于产生明显弯曲应力,但 是厚度足以承受压力、拉力、剪力的形抵抗结 构
——薄壳结构的特点与类型
特点:曲面内轴向力;薄、轻、省、跨大、造 型丰富;费工费时、隔热效果不好、易开裂、 容易引起室内声音的反射和混响
类型 筒壳、球壳、扁壳、鞍形壳
——薄壳结构的特点与类型
发展 现代大跨度建筑造型已经有较大自由
结构是在特定 的材料和施工 技术条件下运 用力学原理创 造出来的房屋 的骨架
建筑师——选 择结构形式; 需要对各种结 构的基本的力 学特征和适用 范围有深入的 了解,才能够 自由创作,结 构和形式统一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨度空间结构的发展历史及分类【摘要】按照古代、近代、现代的时间顺序介绍空间结构的发展历程。
按传统划分方法、单元组成划分法对空间结构进行分类,后者能更好的囊括和包络既有的空间结构形式。
【关键词】大跨度空间结构;发展历史;分类
1982年中国成立空间结构委员会,在此后三十多年里大跨度空间结构发展迅速,兴建了大量体育场馆、会议展览馆、机场车库、大型娱乐场所、多功能厅等,结构在跨度上跨度的要求越来越高,在形式上,也不断创新。
一、空间结构的发展历史
在二十世纪前,古代空间结构就已经出现并大量应用,主要标志性结构为拱券式穹顶,该结构充分利用拱券合理传力的原理,有连环拱、交叉拱、拱上拱、大拱套小拱。
该类结构的代表工程:南京无梁殿(明洪武14年),平面尺寸38m×54m,净高22m。
二十世纪初叶(1925年)后,涌现了大梁的近代空间结构,主要标志性结构为薄壳结构、网格结构和一般悬索结构。
其中薄壳结构代表工程有:北京火车站(1959年),跨度35m×35m;网架结构代表工程有:首都体育馆(1968年),跨度99m ×112.2m;悬索结构代表工程:北京工人体育馆(1961年,跨度94m),浙江人民体育馆(1967年,跨度60m ×80m ),成都城北体育馆(1979年,跨度61m)。
到二十世纪末叶(1975 年前后),现代空间结构开始发展,其主要标志性结构为索膜结构、索杆张力结构、索穹顶结构等。
例如,2008 年建成的114m×144m北京奥运会国家体育馆是世界上最大跨度的双向弦支桁架结构。
二、按传统方法划分空间结构
按传统的划分方法,空间结构分为薄壳结构、网架结构、网壳结构、悬索结构和膜结构五类。
五种空间结构的定义及主要形式如下:
(一)网架结构是以多根杆件按照一定规律组合而成的网格状高次超静定空间杆系结构,有以下主要形式:(1)平面桁架系组成的网架结构,主要有两向正交正放网架、两向斜交斜放网架、两向正交斜放网架、三向网架等型式。
(2)四角锥体组成的网架结构主要有正放四角锥网架、斜放四角锥网架、正放抽空四角锥网架、棋盘形四角锥网架、星型四角锥网架、单向折线型网架等型式。
(3)三角锥组成的网架结构主要有三角锥网架、抽空三角锥网架(分Ⅰ型和Ⅱ型)、蜂窝形三角锥网架等型式。
(4)六角锥体组成的网架结构主要形式有正六角锥网架。
(二)网壳结构是将杆件沿着某个曲面有规律地布置而组成的空间结构体系其受力特点与薄壳结构类似,是以“薄膜”作用为主要受力特征的。
主要有球面网壳、双曲面网壳、圆柱面网壳、双曲抛物面网壳等。
(三)薄膜结构以性能优良的柔软织物为材料,由膜内空气压力支承膜面,或利用柔性钢索或刚性支承结构使膜产生一定的预张力,从而形成具有一定刚度、能够覆盖大空间的结构体系。
主要有空气支承膜结构、张拉式膜结构、骨架支承膜结构等形式。
(四)悬索结构是以能受拉的索作为基本承重构件,并将索按照一定规律布置所构成的一类结构体系。
悬索结构按索的布置方向和层数分为:单向单层悬索结构、辐射式单层悬索结构、双向单层悬索结构、单向双层预应力悬索结构、辐射式预应力悬索结构、双向双层预应力悬索结构、预应力索网结构等。
(五)薄壳结构指建筑工程中满足t/R≤1/20的壳体。
薄壳结构按曲面形成可分为旋转壳与移动壳;按建造材料分为钢筋混凝土薄壳、砖薄壳、钢薄壳和复合材料薄壳等。
除以上几种空间结构外,尚有组合网架结构、预应力网格结构、管桁结构、张弦梁结构、点连接玻璃幕墙支承结构、索穹顶结构等几种常用空间结构。
三、按单元组成划分空间结构
国内外出现的空间结构多达38种,若按上诉传统分类方法则很难囊括和包络现有的各种形式。
根据空间结构的单元组成来分类各种形式的空间结构,可避免传统分类方法的局限性,分别是板壳单元、梁单元、杆单元、索单元和膜单元共五种。
仅由单一单元组成的结构有15种,由两种及以上单元组成的结构有23种。
由两种及以上单元组成的结构仅以一种单元为主要组成单元,以板壳为主的结构有4
种,以梁为主的结构有6种,以杆为主的结构有6种,以索为主结构有5种,以膜为主的结构有2种。
具体见表1。
参考文献:
[1]董石麟.空间结构的发展历史、创新、形式分类与实践应用[J].空间结构,2009,15(3):23-41.
[2]刘锡良主编.现代空间结构[M].天津:天津大学出版社,2 002.。