恒温箱的PID控制-自动控制原理课程设计报告
《自动控制原理》自动控制PID实验报告

《自动控制原理》自动控制PID实验报告课程名称自动控制原理实验类型:实验项目名称:自动控制PID一、实验目的和要求1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和频率域仿真的方法。
2、通过仿真实验研究并总结PID 控制规律及参数对系统特性影响的规律。
3、实验研究并总结PID 控制规律及参数对系统根轨迹、频率特性影响的规律,并总结系统特定性能指标下根据根轨迹图、频率响应图选择PID 控制规律和参数的规则。
二、实验内容和原理一)任务设计如图所示系统,进行实验及仿真程序,研究在控制器分别采用比例(P)、比例积分(PI)、比例微分(PD)及比例积分微分(PID)控制规律和控制器参数(Kp、Ki、Kd)不同取值时,控制系统根轨迹和阶跃响应的变化,总结pid 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。
具体实验容如下:1、比例(P)控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。
总结比例(P)控制的规律。
2、比例积分(PI)控制,设计参数Kp、Ki 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Ki 的变化情况。
总结比例积分(PI)控制的规律。
3、比例微分(PD)控制,设计参数Kp、Kd 使得由控制器引入的开环零点分别处于:1)被控对象两个极点的左侧;2)被控对象两个极点之间;66 3)被控对象两个极点的右侧(不进入右半平面)。
分别绘制三种情况下的根轨迹图,在根轨迹图上确定控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和Kd 的变化情况。
恒温箱PLC控制系统毕业设计

摘要随着现在电子技术的发展,温度测量的利用在许多地方都有比较大的发展空间,许多质量好而且便宜的温度传感器被设计开发,在温度检测控制和测量方面得到了较大的应用。
例如在日常生活、工业生产、和实验室当中恒温箱的的应用随处可以见到。
在生活中我们用恒温箱保存食物,在工业生产中一些原料的保存用到恒温箱,实验室里特别是生物的培养实验室恒温箱的应用更为广泛。
除此之外,在医用、水产、特种工业、工业探伤、照相等领域,都需要稳定而精确的温度。
与此同时随着社会的发展,温度、压力、液位和流量是四中最常见的过程变量,其中温度是一个非常重要的过程变量。
因此国内外对恒温箱的研究越来越深入,恒温箱的用途也越来越广泛,恒温箱plc控制系统不仅不仅促进了科技的发展和工业生产,也提高了人民的生活水平,因而这种低成本而又能打成需求者需要的恒温箱就有意义。
本次设计中,恒温箱控制系统的性能在很大程度上取决于对温度的控制性能,与此同时采用以PLC为主控制器通过拨码开关设定初始输入温度,设定温度与所测温度进行比较,然后plc对数据进行处理,根据偏差信号的大小来驱动控制发热丝或冷水泵,从而使恒温箱达到温度恒定控制的目的。
本次恒温箱plc控制系统将基于plc设计完成,设计过程当中将应用的温度传感器、数码显示管、加热装置、冷却水泵、冷却器、储水箱、温度显示、阀门及状态指示不见。
恒温箱plc控制系统要求控制恒温箱的水温在20~80摄氏度之间某设定数值,当水温小于设定值时,采用电热升温。
当水温大于设定值时,放出热水部分,并且启动冷却风扇使水流经冷却器向恒温箱提供水。
本恒温箱plc控制系统以plc控制器为核心,同时本系统也应用了温度传感器、流量传感器、和液位传感器,设计恒温箱plc控制系统的硬件电路和软件程序,完成控制任务。
恒温箱plc控制系统的设计还对plc特殊功能扩展模块和BCD译码器做了简单的介绍。
关键词:PLC,传感器,恒温箱,PIDAbstractWith the current development of electronic technology, the use of temperature measurement in many places has a relatively large space for development, a number of good quality and inexpensive temperature sensor is designed and developed, in terms of temperature measurement and control and measurement applications have been larger. For example, in daily life, industrial production, and laboratory applications among the incubator can be seen everywhere. In life we saved with the thermostat food, some preserved in the industrial production of raw materials used in the oven, in particular the application of biological laboratory culture laboratory incubator is more extensive. In addition, the medical, aquatic products, specialty industrial, industrial inspection, photography and other fields, we need a stable and precise temperature. With the development of society at the same time, temperature, pressure, level and flow are the four most common process variables, where the temperature is a very important process variables. So researches on more in-depth incubator, incubators use has become increasingly widespread, incubators plc control system not only has not only promoted the development of technology and industrial production, but also improve the living standards of the people, so this demand for low cost and they can be labeled as an incubator needs to be meaningful The design, performance thermostat control system largely depends on the temperature control performance, at the same time adopt a PLC-based controller to set the initial input temperature via DIP switch, set temperature and the measured temperature comparison, then plc for data processing, based on the size of the error signal to the drive control heating wire or cold water pump, so that the oven temperature constant control purposes. The incubator will be based plc control system design is completed, the design process will be applied temperature sensors, digital display tubes, heating devices, cooling water pumps, coolers, storage tanks, temperature display, valves and status indication disappear. Plc thermostat control thermostat control system requires a set value of temperature between 20 to 80 degrees Celsius, when the water temperature is less than the set value, the use of electric heating. When the water temperature is greater than the set value, the release of hot water portions, and start the cooling fan to provide cooling water to flow through the incubator. The thermostat control system plc controller as the core, but also the application of the system temperature sensors, flow sensors, and liquid level sensor, design incubator plc control system hardware and software programs, complete control tasks. Design incubator plc control system also plc expansion modules and special function BCD decoder to do a simple introduction.Abstract: PLC, sensors, thermostat,PID目录摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..1 Abstract (2)1 设计方案的确定 (6)1.1 各控制方案的比较 (6)1.2 PLC温控系统原理 (7)2 系统硬件设计 (9)2.1硬件分配 (9)2.3 恒温控制的PLC 控制装置示意图 (10)2.4工艺过程及控制要求说明 (10)2.5 I/O地址表 (12)2.6温度传感器 (12)2.7 PLC主机 (15)2.8 执行单元 (17)2.9 LED显示器显示方式 (17)2.10 各电器元件的选择 (17)3 系统的软件设计 (17)3.1恒温系统控制流程图 (18)3.2 恒温系统梯形图 (19)3.3 恒温控制系统程序 (29)参考文献 (32)致谢 (33)1设计方案的确定1.1 各控制方案的比较根据任务设计要求,恒温水箱的温度需要运用PID控制。
自动控制课程设计pid

自动控制 课程设计pid一、课程目标知识目标:1. 让学生掌握PID控制原理,理解比例(P)、积分(I)、微分(D)各自的作用及相互关系。
2. 使学生了解自动控制系统中PID参数调整对系统性能的影响。
3. 引导学生运用数学工具描述控制系统的动态特性。
技能目标:1. 培养学生运用PID算法解决实际控制问题的能力。
2. 让学生掌握使用仿真软件进行PID控制器设计和参数优化的方法。
3. 培养学生通过实验分析控制效果,进而调整PID参数的能力。
情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发学习热情。
2. 培养学生的团队合作意识,提高沟通与协作能力。
3. 引导学生关注自动化技术在生活中的应用,认识到科技发展对社会进步的重要性。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够阐述PID控制原理,并解释P、I、D参数对系统性能的影响。
2. 学生能够运用仿真软件设计PID控制器,并完成参数优化。
3. 学生能够通过实验,观察和分析控制效果,根据实际情况调整PID参数。
4. 学生在课程学习中展现出积极的学习态度和良好的团队合作精神。
二、教学内容1. 理论部分:a. 控制系统基本概念及性能指标介绍(对应教材第2章)b. PID控制原理及其数学描述(对应教材第3章)c. PID参数调整对系统性能的影响分析(对应教材第4章)2. 实践部分:a. 使用仿真软件(如MATLAB/Simulink)进行PID控制器设计与仿真(对应教材第5章)b. 实际控制实验,观察和分析PID参数调整对系统性能的影响(对应教材第6章)3. 教学进度安排:a. 第1周:控制系统基本概念及性能指标学习b. 第2周:PID控制原理及其数学描述学习c. 第3周:PID参数调整对系统性能的影响分析d. 第4周:仿真软件操作培训及PID控制器设计e. 第5周:实际控制实验操作及结果分析教学内容遵循科学性和系统性原则,结合教材章节,确保学生能够逐步掌握自动控制及PID控制相关知识。
基于PID算法的恒温控制系统设计

课程设计说明书题目:基于PID算法的恒温控制系统设计学号:姓名:指导教师:日期:目录一、设计题目 (1)二、设计要求 (1)三、设计思路 (1)四、实验设备 (1)五、硬件介绍 (1)六、硬件接线图 (2)七、软件流程图、 (4)八、PID参数确定 (5)九、实验总结 (6)附件:实验程序 (7)一、设计题目基于PID算法的恒温控制系统设计二、设计要求1.利用DS18B20采集温度并显示;2.利用单片机I/O管角输出PWM控制功率电阻发热;3.基于PID算法实现恒温控制。
三、设计思路本设计要求实时采集温度并实现恒温控制,根据设计要求,本次设计拟采用AT89C52单片机作为控制芯片,采集部分使用DS18B20温度传感器,显示部分采用数码管显示实时温度,功率电阻作为控制对象。
在PID算法的基础上完成恒温控制系统的设计。
四、实验设备单片机开发试验仪1台AT89C52单片机芯片1个DS18B20温度传感器1个C9013三极管1个1W功率二极管1个五、硬件介绍DS18B20:DS18B20是常用的温度传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点.DS18B20的主要特征:全数字温度转换及输出。
先进的单总线数据通信。
最高12位分辨率,精度可达土0。
5摄氏度。
12位分辨率时的最大工作周期为750毫秒。
可选择寄生工作方式。
检测温度范围为–55°C ~+125°C (–67°F ~+257°F)内置EEPROM,限温报警功能。
64位光刻ROM,内置产品序列号,方便多机挂接。
多样封装形式,适应不同硬件系统.DS18B20数据采集过程⑴GND 地信号⑵DQ 数据输入/输出引脚。
开漏单总线接口引脚。
当被用着在寄生电源下,也可以向器件提供电源。
⑶VDD 可选择的VDD引脚.当工作于寄生电源时,此引脚必须接地。
由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。
自动控制原理课程设计汇本报告恒温箱

指导教师评定成绩:审定成绩:自动控制原理课程设计报告设计题目:恒温箱自动控制系统单位〔二级学院〕:自动化学院学生姓名:专业:班级:学号:指导教师:目录一、摘要2二、问题重述2三、控制对象的分析51、工作原理52、系统运行方框图53、建立数学模型求系统的传递函数6〔1〕电压放大电路7〔2〕功率放大电路7〔3〕调压电路8〔4〕执行电动机9〔5〕减速器114、传递函数的表示115、系统校正12〔1〕频域法校正12〔2〕根轨迹校正16四、心得体会:21一、摘要主要解决的问题是对恒温箱自动控制系统构造图进展分析,画出构造框图,算出传递函数,并对其进展频域校正和根轨迹校正,找到适宜的解决方法,构建校正网络电路,从而使得系统能够满足要求的性能指标。
关键词:增益系统传递函数频域分析根轨迹校正二、问题描述:恒温箱自动控制系统➢恒温箱实际温度由热电偶转换为对应➢恒温箱期望温度由电压u1给定,并与实际温度u2比拟得➢温度偏差信号经电压、功率放大后,用以驱动执行电动机,并通过传动机构拖动调压器动触头。
当温度偏高时,动触头向减小电流的方向运动,反之加大电流,直到温度到达给定值为止,此时,偏差 u=0,电机停顿转动。
控制系统中各组成环节及参数如下:①减速齿轮传动比:j=8②直流电机(他励):励磁线圈电阻r f=20Ω,电感L f=2H,扭矩常数CT=5(N.M)/A ,P1=0.85kW,U N=110V,I N=9.8A,n N=1500r/min ③电压放大电路:图1电压放大电路④功率放大电路:图2功率放大电路⑤调压器电路:图3调压器电路要求:1、根据位置跟踪原理图建立系统数学模型2、画出位置跟踪系统的方框图3、当系统不稳定时,要求对系统进展校正,校正后满足给定的性能指标。
4、稳定性分析:A频域法校正系统在最大指令速度为1800〔度/秒〕时,相应的位置滞后误差不超过10度;相角裕度为450+30度,幅值裕度不低6分贝;过渡过程的调节时间不超过2秒。
pid温控课程设计

pid温控课程设计一、课程目标知识目标:1. 让学生理解PID温控的基本概念,掌握其工作原理;2. 使学生掌握PID参数的调整方法,了解不同参数对温控效果的影响;3. 帮助学生了解PID温控在实际应用中的优势及其在自动化领域的应用。
技能目标:1. 培养学生运用所学知识,进行PID温控系统的设计与调试能力;2. 提高学生分析问题和解决问题的能力,使其能够针对实际温控需求,调整PID参数;3. 培养学生团队协作能力,通过小组讨论和实践,共同完成温控系统的搭建和优化。
情感态度价值观目标:1. 培养学生对自动化技术的兴趣和热情,激发其探索精神;2. 培养学生严谨的科学态度,注重实验数据的真实性;3. 引导学生关注环保和节能,认识到PID温控在节能减排中的重要性。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生通过理论学习与实践操作,掌握PID温控的基础知识和技能,培养其创新意识和团队协作能力,同时提高学生解决实际问题的能力。
课程目标具体、可衡量,以便教师进行教学设计和评估,确保学生能够达到预期的学习成果。
二、教学内容1. 理论知识:- PID温控原理:讲解比例(P)、积分(I)、微分(D)控制的基本概念和作用;- PID参数调整:介绍PID参数对温控效果的影响,以及调整方法;- 实际应用案例分析:分析PID温控在工业、农业、医疗等领域的应用案例。
2. 实践操作:- 搭建PID温控系统:指导学生使用温控模块、传感器、控制器等元件,搭建简单的温控系统;- PID参数调试:让学生分组进行实验,调整PID参数,观察温控效果,分析数据;- 创新设计:鼓励学生针对实际需求,对PID温控系统进行优化和改进。
3. 教学大纲:- 第一周:PID温控原理学习;- 第二周:PID参数调整方法学习;- 第三周:实际应用案例分析;- 第四周:搭建PID温控系统及参数调试;- 第五周:创新设计及优化。
教学内容依据课程目标,结合课本相关章节,科学、系统地组织,确保学生能够掌握PID温控的基础知识和实践技能。
基于PID算法的水温控制系统设计报告

基于PID的水温控制系统设计摘要本次设计采用proteus仿真软件,以AT89C51单片机做为主控单元,运用PID控制算法,仿真实现了一个恒温控制系统。
设计中使用温度传感器DS18B20采集实时温度,不需要复杂的信号调理电路和A/D转换电路,能直接与单片机完成数据的采集和处理,使用PID算法控制加热炉仿真模型进行温度控制,总体实现了一个恒温控制仿真系统。
系统设计中包含硬件设计和软件设计两部分,硬件设计包含显示模块、按键模块、温度采集模块、温度加热模块。
软件设计的部分,采用分层模块化设计,主要有:键盘扫描、按键处理程序、液晶显示程序、继电器控制程序、温度信号处理程序。
另外以AT89C51 单片机为控制核心,利用PID 控制算法提高了水温的控制精度,使用PID 控制算法实施自动控制系统,具有控制参数精度高、反映速度快和稳定性好的特点。
关键词:proteus仿真,PID,AT89C51,DS18B20温度控制目录1 系统总体设计方案论证 (1)1.1 设计要求 (1)1.2 总体设计方案 (2)2 系统的硬件设计 (3)2.1 系统硬件构成概述 (3)2.2 各单元总体说明 (4)2.3 按键单元 (5)2.4 LCD液晶显示单元 (6)2.5 温度测试单元 (7)2.6 温度控制器件单元 (8)3 恒温控制算法研究(PID)................................................................... 错误!未定义书签。
3.1 PID控制器的设计 (7)3.2 PID算法的流程实现方法与具体程序 (10)4 系统的软件设计 (14)4.1 统软件设计概述 (14)4.2 系统软件程序流程及程序流程图 (15)4.3 温度数据显示模块分析 (16)4.4 测试分析 (18)5 模拟仿真结果 ......................................................................................... 错误!未定义书签。
自动控制原理课程设计汇本报告恒温箱

指导教师评定成绩:审定成绩:自动控制原理课程设计报告设计题目:恒温箱自动控制系统单位(二级学院):自动化学院学生姓名:专业:班级:学号:指导教师:目录一、摘要 (2)二、问题重述 (2)三、控制对象的分析 (5)1、工作原理 (5)2、系统运行方框图 (5)3、建立数学模型求系统的传递函数 (6)(1)电压放大电路 (7)(2)功率放大电路 (7)(3)调压电路 (8)(4)执行电动机 (9)(5)减速器 (11)4、传递函数的表示 (11)5、系统校正 (12)(1)频域法校正 (12)(2)根轨迹校正 (16)四、心得体会: (21)一、摘要主要解决的问题是对恒温箱自动控制系统结构图进行分析,画出结构框图,算出传递函数,并对其进行频域校正和根轨迹校正,找到合适的解决办法,构建校正网络电路,从而使得系统能够满足要求的性能指标。
关键词:增益系统传递函数频域分析根轨迹校正二、问题描述:恒温箱自动控制系统➢恒温箱实际温度由热电偶转换为对应➢恒温箱期望温度由电压u1给定,并与实际温度u2比较得➢温度偏差信号经电压、功率放大后,用以驱动执行电动机,并通过传动机构拖动调压器动触头。
当温度偏高时,动触头向减小电流的方向运动,反之加大电流,直到温度达到给定值为止,此时,偏差 u=0,电机停止转动。
控制系统中各组成环节及参数如下:①减速齿轮传动比:j=8②直流电机(他励):励磁线圈电阻r f=20Ω,电感L f=2H,扭矩常数CT=5 (N.M)/A , P1=0.85kW,U N=110V,I N=9.8A,n N=1500r/min③电压放大电路:④功率放大电路:⑤调压器电路:要求:1、根据位置跟踪原理图建立系统数学模型2、画出位置跟踪系统的方框图3、当系统不稳定时,要求对系统进行校正,校正后满足给定的性能图1电压放大电路图2功率放大电路图3调压器电路指标。
4、稳定性分析:A频域法校正系统在最大指令速度为1800(度/秒)时,相应的位置滞后误差不超过10度;相角裕度为450+30度,幅值裕度不低6分贝;过渡过程的调节时间不超过2秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒温箱的PID控制摘要:为满足生产生活中对稳定温度的需求,恒温箱是必不可少的。
用PID调节方法控制恒温箱的温度,保证温度在标准范围内稳定。
在完成任务的基础上,采用PID整定方法或通过改良PID控制器实现稳、准、快的要求,并在调节过程中发现、整理如何调节PID参数相对最优。
Abstract:To meet the needs of production in the life of stable temperature, constant temperature box is indispensable.Control the temperature of the incubator with the PID method, guarantee the stability of the temperature within the scope of the standard.On the basis of completing the task, using PID setting method or through improved PID controller to realize steady, accurate, fast, and found in the process of adjusting and sort out how to adjust the relative optimal PID parameters.关键词:PID,恒温箱,整定方法Key word:Proportion Integration Differentiation,incubator,Setting method目录:恒温箱的PID控制 (1)一、引言: (3)1.1恒温箱温度控制系统简介 (3)1.2恒温箱工作流程 (3)二、理论基础: (4)2.1PID控制原理 (4)2.2PID控制器各校正环节的作用 (5)三、温度控制系统模型建立 (5)3.1恒温箱温度控制系统方框图 (5)3.2温度系统模型 (5)四、PID温度控制器分析设计 (6)4.1 PID建模 (6)4.2 simulink仿真 (8)4.3系统改良 (9)五、结论 (11)一、引言:在工业生产和实验研究中,经常需要高稳定度的恒温环境,因此恒温箱或者说是恒温系统应用十分广泛。
传统的温度控制以简单的PID来实现。
常规的PID调节具有结构简单,稳定性好,可靠性高,易于工程实现等优点,其主要问题是参数整定问题但是对环境条件和控制参数较敏感,并且超调量与调节时间之间存在一定矛盾难以协调一致,所以较难达到理想的效果。
但是,引入改良型的PID控制器可以在一定程度上优化控制效果,使系统具有较好的适应性和抗干扰能力,从而实现较高稳定性的温度控制。
1.1恒温箱温度控制系统简介恒温箱的原理其实比较简单,关键的控制部分有三个:1.温度探头2.制冷压缩机3.加热器,有的用红外线加热,或直接用电阻丝加热。
温度探头的测量端伸在恒温箱内部的空气中,不能与物体或是箱体接触,实时监测箱内的温度,在控制面板上,可以设置恒温箱的恒温范围。
当探头检测到温度低于下限时,开启加热器加热.温度开始回升.当探头检测到温度高于上限时,开启制冷压缩机制冷,温度下降.如此来回控制。
本文主要讨论高温恒温箱(一般高于60℃),执行单元以加热器为主。
1.2恒温箱工作流程图1恒温箱工作流程二、理论基础:2.1PID 控制原理在模拟控制系统中,控制器最常用的控制规律是PID 控制。
常规PID 控制系统原理框图如图2所示。
系统由模拟PID 控制器和被控对象组成。
PID 控制器是一种线性控制器,对误差信号额()e t 分别进行比例、积分、微分运算,三个作用分量之和作为控制信号输出给被控制对象。
PID 控制器的微分方程数学模型为:()1()()()td p i T de t u t K e t e t dt T dt ⎡⎤=++⎢⎥⎣⎦⎰p K —比例系数 i T —积分系数 d T —微分系数 ()u t 作为PID 控制器的输出信号送到被控对象,将偏差的比例(P ),积分(I )和微分(D )通过线性组合构成控制量,对被控对象进行控制;系统误差信号定义为:()()()e t r t c t =-,()r t 是系统的给定输入信号;()c t 是系统的被控量。
PID 控制器的传递函数模型:1()(1)c p d i G s K T s T s=++ 由上式可知:当d T =0、i T =∞时,则有()c p G s K =,此时为比例(P )控制器;当i T =∞时,则有()(1)c p d G s K T s =+此时为比例微分(PD )控制器,如将其作为校正器,相当于超前校正器;当d T =0时,则有:1()(1)c p i G s K T s=+此时为比例微分(PI )控制器,如将其作为校正器,相当于滞后校正器;当0P K ≠、0d T ≠、i T ≠∞时,则有:1()(1)c p d i G s K T s T s=++称为全PID 控制器。
2.2PID 控制器各校正环节的作用比例环节 及时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减小偏差。
积分环节 主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积分时间常数iT ,iT 越大积分作用越弱,反之则越强。
微分环节 能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效地早期修正信号,从而加快系统的动作速度,减小调节时间。
三、温度控制系统模型建立3.1恒温箱温度控制系统方框图3.2温度系统模型工业生产过程中的大多数控制对象可以近似地用一阶惯性纯滞后环节来表示,其传递函数为:()1se G s KTs τ-=+ 式中:K 为放大系数;T 为过程时间常数;τ为纯滞后时间 通过查阅资料,被控对象恒温箱温度传递函数为;204.4()3401se G s s -=+ 根据上式设计PID 控制器,并通过对系统调节得到最佳的系统整定效果。
图3 温度控制方框图四、PID 温度控制器分析设计4.1 PID 建模由于该开环传递函数204.4()3401se G s s -=+带有时间延迟,所以这里要用时间延迟系统的频率分析方法。
延迟特性的传递函数如下:幅相特性 ()()1j j G j e e τωτωω--==⋅幅频特性1(20log 0)G G dB ==相频特性 G τω∠=-带有纯时间延迟的连续控制系统的传递函数模型可以写成s s n n n m m m e s G e a s a s b s b s b s G ττ----=++++++=)()(111110τ为延迟时间常数;1()G s 为不带时间延迟的传递函数模型。
所以,带时间延迟的系统相当于在不带时间延迟的传递函数模型后面串接一个纯时间延迟环节seτ-。
1892年由法国数学家Pade 提出的一种著名的有理近似方法,表达式为:+++++++++-+-≈---nn nn s s p s p s p s s p s p s p s e )()()(2/1)()()(2/11322113221τττττττττ其中1p 2p …成为Pade 近似系数。
由此可知,纯延迟时间函数可以用这种近似方法求取传递函数。
本实验使用这种方法对应的MATLAB 控制系统工具箱中提供的函数‘pade ()’求得并绘制系统开环开环传递函数204.4()3401se G s s -=+的Bode 图以及Nyquist 曲线。
-40-30-20-1001020M a g n i t u d e (d B)10-410-310-210-110P h a s e (d e g )Bode DiagramFrequency (rad/s)代码:G=tf(4.4,[340,1],'iodelay',20); bode(G); grid on-1012345Nyquist DiagramReal AxisI m a g i n a r y A x i s由nyquist 图得到,R=0,由开环传递函数得P=0,所以Z=0。
综上所述,温度控制系统开环稳定。
4.2 simulink 仿真代码: G=tf(4.4,[340,1],'iodelay',20); nyquist(G); grid on4.3系统改良引入微分先PID控制,结构图如图从图中可以看出,引入微分先行PID 控制器得到的阶跃响应结果与普通PID相比,超调更小,调节时间更短。
五、结论PID在生产生活中的应用十分广泛,因为PID控制具有易于调节,工作稳定,相对简单等优点。
本文通过对恒温箱PID控制的研究展现了PID控制器的优缺点及一些特性。
通过本文实例不难看出,不经改良的PID控制器的性能较差,超调量大、调节时间长,而经过微分先行改良的PID控制器的性能相对普通PID控制器有明显改善。
PID具有滞后性,因为PID是根据误差对系统进行调整的。
引入微分先行后可以使超调量减小进而缩短调节时间,达到“快”的特性。
PID的改良方法还有很多,不同的改良方法可以改善控制器不同的性能。
参考文献【1】胡寿松自动控制原理简明教程(第二版)科学出版社 2010【2】艾冬梅李艳晴张丽静刘琳 MATLAB与数学实验机械工业出版社 2012【3】付冬梅实用PID的几种改进方法。