《数学实验》实验报告——迭代法

合集下载

大学数学实验报告----迭代(一)——方程求解

大学数学实验报告----迭代(一)——方程求解

Do M n , n, 2, 100
运行结果:
M n_Integer : Module y, k , m 2; k m ^ n 1 ;
x Mod k, n ;
Print n, " ", PrimeQ n , " ", x, "
", GCD m, n
Do M n , n, 2, 100
2 True 0 2 3 True 1 1 4 False 0 2 5 True 1 1 6 False 2 2 7 True 1 1 8 False 0 2 9 False 4 1 10 False 2 2 11 True 1 1 12 False 8 2 13 True 1 1 14 False 2 2 15 False 4 1 16 False 0 2 17 True 1 1 18 False 14 2 19 True 1 1 20 False 8 2 21 False 4 1 22 False 2 2 23 True 1 1 24 False 8 2 25 False 16 1 26 False 2 2 27 False 13 1 28 False 8 2 29 True 1 1 30 False 2 2 31 True 1 1 32 False 0 2 33 False 4 1 34 False 2 2 35 False 9 1 36 False 32 2 37 True 1 1 38 False 2 2 39 False 4 1 40 False 8 2
99 False 3 27 100 False 1 67 Null2
m=4 时
输入程序:
M n_Integer : Module y, k , m 4; k m ^ n 1 ; x Mod k, n ; Print n, " ", PrimeQ n , " ", GCD m, n , " ", x Do M n , n, 2, 100

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告

迭代法解线性方程组数值分析实验报告一、实验目的本次实验旨在深入研究和掌握迭代法求解线性方程组的基本原理和方法,并通过数值实验分析其性能和特点。

具体目标包括:1、理解迭代法的基本思想和迭代公式的推导过程。

2、掌握雅克比(Jacobi)迭代法、高斯赛德尔(GaussSeidel)迭代法和超松弛(SOR)迭代法的算法实现。

3、通过实验比较不同迭代法在求解不同类型线性方程组时的收敛速度和精度。

4、分析迭代法的收敛性条件和影响收敛速度的因素。

二、实验原理1、线性方程组的一般形式对于线性方程组$Ax = b$,其中$A$ 是$n×n$ 的系数矩阵,$x$ 是$n$ 维未知向量,$b$ 是$n$ 维常向量。

2、迭代法的基本思想迭代法是从一个初始向量$x^{(0)}$出发,按照某种迭代公式逐步生成近似解序列$\{x^{(k)}\}$,当迭代次数$k$ 足够大时,$x^{(k)}$逼近方程组的精确解。

3、雅克比迭代法将系数矩阵$A$ 分解为$A = D L U$,其中$D$ 是对角矩阵,$L$ 和$U$ 分别是下三角矩阵和上三角矩阵。

雅克比迭代公式为:$x^{(k+1)}= D^{-1}(b +(L + U)x^{(k)})$。

4、高斯赛德尔迭代法在雅克比迭代法的基础上,每次计算新的分量时立即使用刚得到的最新值,迭代公式为:$x_i^{(k+1)}=(b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i+1}^{n}a_{ij}x_j^{(k)})/a_{ii}$。

5、超松弛迭代法在高斯赛德尔迭代法的基础上引入松弛因子$\omega$,迭代公式为:$x_i^{(k+1)}= x_i^{(k)}+\omega((b_i \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}\sum_{j=i}^{n}a_{ij}x_j^{(k)})/ a_{ii} x_i^{(k)})$。

《数学实验》实验报告——迭代法

《数学实验》实验报告——迭代法

3.线性方程组的迭代求解
给定一个 n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0

观察序列,并且判断极限。 Mathematica 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得
当 x0=0.9,n=10 时,运行程序得
当 x0=1,n=10 时,运行程序得
实验结论:
10
由以上实验可得,函数 f(x)=x/2+1/x 的极限为 1.41421
运行程序结果如下:
实验结论:
试验中假设矩阵 A 的对角元素 aii<>0,i=1,2,3,…n.令 D=diag(a11,a12,,,….ann),则可以将 方程 Ax=b 转化成 x=(U+L)x+D-1b 其中 U 为下三角阵,L 为上三角阵。如果 U+L 的行列式 最大特征值的绝对值小于 1,则线性方程组有解且唯一。
写成 Ax=b 的形式, 再将其改写成 x=M*x=f 其中 M 是 n 阶矩阵, f=(f1,f2,f3,f4….fn)T 是 n 维列向量,给定 x0,由迭代 x(n+1)=M*x^n+f,n=0,1,2,3,4…..对给定的矩阵 M 数组 f 和 初始值 x0,由 x(n+1)=M*x^n+f,n=0,1,2,3,4…..用 mathematic 可得迭代结果。 迭代程序如下:
《数学实验》实验报告
班级 实验 内容 **** 学号 **** 姓名 实验 类别 **** 成绩 实验 时间

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告

MAAB计算方法迭代法牛顿法二分法实验报告实验目的:比较MAAB计算方法中迭代法、牛顿法和二分法的优缺点,探究它们在求解方程中的应用效果。

实验原理:1、迭代法:将方程转化为x=f(x)的形式,通过不断迭代逼近方程的根。

2、牛顿法:利用函数在特定点的切线逼近根的位置,通过不断迭代找到方程的根。

3、二分法:利用函数值在区间两端的异号性质,通过不断二分缩小区间,最终逼近方程的根。

实验步骤:1、选择一元方程进行求解,并根据方程选择不同的计算方法。

2、在迭代法中,根据给定的初始值和迭代公式,进行迭代计算,直到满足预设的迭代精度要求。

3、在牛顿法中,选择初始点,并根据切线方程进行迭代计算,直到满足预设的迭代精度要求。

4、在二分法中,选择区间,并根据函数值的异号性质进行二分,直到满足预设的迭代精度要求。

5、根据计算结果,比较三种方法的求解效果,包括迭代次数、计算时间、求解精度等指标。

实验结果与分析:通过对多个方程进行测试,得到了以下实验结果:1、迭代法的优点是简单易懂,适用范围广,但当迭代公式不收敛时会导致计算结果不准确。

2、牛顿法的优点是收敛速度较快,但需要计算函数的一阶导数和二阶导数,对于复杂函数较难求解。

3、二分法的优点是收敛性较好,不需要导数信息,但收敛速度较慢。

4、对于线性方程和非线性方程的求解,牛顿法和迭代法通常比二分法更快速收敛。

5、对于多重根的方程,二分法没有明显优势,而牛顿法和迭代法能更好地逼近根的位置。

6、在不同的方程和初值选择下,三种方法的迭代次数和求解精度略有差异。

7、在时间效率方面,二分法在收敛速度较慢的同时,迭代次数较少,牛顿法在收敛速度较快的同时,迭代次数较多,而迭代法对于不同方程有较好的平衡。

结论:1、对于不同类型的方程求解,可以根据具体情况选择合适的计算方法。

2、迭代法、牛顿法和二分法各有优缺点,没有绝对的最优方法,需要权衡各种因素选择最适合的方法。

3、在实际应用中,可以根据方程的特点和精度要求综合考虑不同方法的优劣势,以获得较好的求解效果。

数学数学实验Newton迭代法

数学数学实验Newton迭代法

数学实验题目4 Newton 迭代法摘要0x 为初始猜测,则由递推关系产生逼近解*x 的迭代序列{}k x ,这个递推公式就是Newton 法。

当0x 距*x 较近时,{}k x 很快收敛于*x 。

但当0x 选择不当时,会导致{}k x 发散。

故我们事先规定迭代的最多次数。

若超过这个次数,还不收敛,则停止迭代另选初值。

前言利用牛顿迭代法求的根程序设计流程问题1(1 程序运行如下:r = NewtSolveOne('fun1_1',pi/4,1e-6,1e-4,10) r = 0.7391(2 程序运行如下:r = NewtSolveOne('fun1_2',0.6,1e-6,1e-4,10) r = 0.5885问题2(1 程序运行如下:否 是否是是定义()f x输入012,,,x N εε开 始1k =01()f x ε<0100()()f x x x f x =-'102||x x ε-<k N =输出迭代失败标志输出1x输出奇 异标志结 束01x x = 1k k =+ 否r = NewtSolveOne('fun2_1',0.5,1e-6,1e-4,10)r = 0.5671(2)程序运行如下:r = NewtSolveOne('fun2_2',0.5,1e-6,1e-4,20)r = 0.5669问题3(1)程序运行如下:①p = LegendreIter(2)p = 1.0000 0 -0.3333p = LegendreIter(3)p = 1.0000 0 -0.6000 0p = LegendreIter(4)p =1.0000 0 -0.8571 0 0.0857p = LegendreIter(5)p = 1.0000 0 -1.1111 0 0.2381 0②p = LegendreIter(6)p = 1.0000 0 -1.3636 0 0.4545 0 -0.0216r = roots(p)'r= -0.932469514203150 -0.6612 0.9324695142031530.6612 -0.238619186083197 0.238619186083197用二分法求根为:r = BinSolve('LegendreP6',-1,1,1e-6)r = -0.932470204878826 -0.661212531887755 -0.2386200573979590.2386 0.661192602040816 0.932467713647959(2)程序运行如下:①p = ChebyshevIter(2)p = 1.0000 0 -0.5000p = ChebyshevIter(3)p = 1.0000 0 -0.7500 0p = ChebyshevIter(4)p = 1.0000 0 -1.0000 0 0.1250p = ChebyshevIter(5)p = 1.0000 0 -1.2500 0 0.3125 0②p = ChebyshevIter(6)p = 1.0000 0 -1.5000 0 0.5625 0 -0.0313r = roots(p)'r = -0.965925826289067 -0.7548 0.9659258262890680.7547 -0.258819045102521 0.258819045102521用二分法求根为:r = BinSolve('ChebyshevT6',-1,1,1e-6)r = -0.965929926658163 -0.7755 -0.2588289221938780.2588 0.7020 0.965924944196429与下列代码结果基本一致,只是元素顺序稍有不同:j = 0:5;x = cos((2*j+1)*pi/2/(5+1))x =0.965925826289068 0.7548 0.258819045102521-0.258819045102521 -0.7547 -0.965925826289068(3)程序运行如下:①p = LaguerreIter(2)p = 1 -4 2p = LaguerreIter(3)p = 1 -9 18 -6p = LaguerreIter(4)p = 1 -16 72 -96 24p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000②p = LaguerreIter(5)p =1.0000 -25.0000 200.0000 -600.0000 600.0000 -120.000r = roots(p)'r =12.6432 7.8891 3.5964257710407111.4520 0.263560319718141用二分法求根为:r = BinSolve('LaguerreL5',0,13,1e-6)r = 0.263560314567722 1.4789 3.5964257656311507.0720 12.6490(4)程序运行如下:①p = HermiteIter(2)p = 1.0000 0 -0.5000p = HermiteIter(3)p = 1.0000 0 -1.5000 0p = HermiteIter(4)p = 1.0000 0 -3.0000 0 0.7500p = HermiteIter(5)p = 1.0000 0 -5.0000 0 3.7500 0②p = HermiteIter(6)p = 1.0000 0 -7.5000 0 11.2500 0 -1.8750r = roots(p)'r =-2.3587 2.3588 -1.3358490740136961.335849074013698 -0.4367 0.4366用二分法求根为:r = BinSolve('HermiteH6',-3,3,1e-6)r =-2.3516 -1.335849********* -0.43630.4366 1.335848983453244 2.3504所用到的函数function r = NewtSolveOne(fun, x0, ftol, dftol, maxit)% NewtSolveOne 用Newton法解方程f(x)=0在x0附近的一个根%% Synopsis: r = NewtSolveOne(fun, x0)% r = NewtSolveOne(fun, x0, ftol, dftol)%% Input: fun = (string) 需要求根的函数及其导数% x0 = 猜测根,Newton法迭代初始值% ftol = (optional)误差,默认为5e-9% dftol = (optional)导数容忍最小值,小于它表明Newton法失败,默认为5e-9 % maxit = (optional)迭代次数,默认为25%% Output: r = 在寻根区间内的根或奇点if nargin < 3ftol = 5e-9;endif nargin < 4dftol = 5e-9;endif nargin < 5maxit = 25;endx = x0; %设置初始迭代位置为x0k = 0; %初始化迭代次数为0while k <= maxitk = k + 1;[f,dfdx] = feval(fun,x); %fun返回f(x)和f'(x)的值if abs(dfdx) < dftol %如果导数小于dftol,Newton法失败,返回空值r = [];warning('dfdx is too small!');return;enddx = f/dfdx; %x(n+1) = x(n) - f( x(n) )/f'( x(n) ),这里设dx = f( x(n) )/f'( x(n) )x = x - dx;if abs(f) < ftol %如果误差小于ftol,返回当前x为根r = x;return;endendr = []; %如果牛顿法未收敛,返回空值function p = LegendreIter(n)% LegendreIter 用递推的方法计算n次勒让德多项式的系数向量Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)%% Synopsis: p = LegendreIter(n)%% Input: n = 勒让德多项式的次数%% Output: p = n次勒让德多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %P0(x) = 1p = 1;return;elseif n == 1 %P1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为P0pMid = [1 0]; %初始化三项递推公式中项为P1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Pn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = (2*i+3)/(i+2) * pMidCal - (i+1)/(i+2) * pBkCal; %勒让德多项式三项递推公式Pn+2(x) = (2*i+3)/(i+2) * x*Pn+1(x) - (i+1)/(i+2) * Pn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德多项式最高次项系数归一化function p = ChebyshevIter(n)% ChebyshevIter 用递推的方法计算n次勒让德-切比雪夫多项式的系数向量Tn+2(x) = 2*x*Tn+1(x) - Tn(x)%% Synopsis: p = ChebyshevIter(n)%% Input: n = 勒让德-切比雪夫多项式的次数%% Output: p = n次勒让德-切比雪夫多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %T0(x) = 1p = 1;return;elseif n == 1 %T1(x) = xp = [1 0];return;endpBk = 1; %初始化三项递推公式后项为T0pMid = [1 0]; %初始化三项递推公式中项为T1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Tn+1pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的PnpBkCal(3:i+3) = pBk;pFwd = 2*pMidCal - pBkCal; %勒让德-切比雪夫多项式三项递推公式Tn+2(x) = 2*x*Tn+1(x) - Tn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把勒让德-切比雪夫多项式最高次项系数归一化function p = LaguerreIter(n)% LaguerreIter 用递推的方法计算n次拉盖尔多项式的系数向量Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)*Ln(x)%% Synopsis: p = LaguerreIter(n)%% Input: n = 拉盖尔多项式的次数%% Output: p = n次拉盖尔多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %L0(x) = 1p = 1;return;elseif n == 1 %L1(x) = -x+1p = [-1 1];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [-1 1]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal1 = zeros(1,i+3); %构造用于计算的x*Ln+1(x)pMidCal1(1:i+2) = pMid;pMidCal2 = zeros(1,i+3); %构造用于计算的Ln+1(x)pMidCal2(2:i+3) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Ln(x)pBkCal(3:i+3) = pBk;pFwd =( (2*i+3)*pMidCal2 - pMidCal1 - (i+1)*pBkCal )/ (i+2); %拉盖尔多项式三项递推公式Ln+2(x) = (2*n+3-x)*Ln+1(x) - (n+1)^2*Ln(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function p = HermiteIter(n)% HermiteIter 用递推的方法计算n次埃尔米特多项式的系数向量Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)%% Synopsis: p = HermiteIter(n)%% Input: n = 埃尔米特多项式的次数%% Output: p = n次埃尔米特多项式的系数向量if round(n) ~= n | n < 0error('n必须是一个非负整数');endif n == 0 %H0(x) = 1p = 1;return;elseif n == 1 %H1(x) = 2*xp = [2 0];return;endpBk = 1; %初始化三项递推公式后项为L0pMid = [2 0]; %初始化三项递推公式中项为L1for i = 0:n-2pMidCal = zeros(1,i+3); %构造用于计算的x*Hn+1(x)pMidCal(1:i+2) = pMid;pBkCal = zeros(1,i+3); %构造用于计算的Hn(x)pBkCal(3:i+3) = pBk;pFwd =2*pMidCal - 2*(i+1)*pBkCal; %埃尔米特多项式三项递推公式Hn+2(x) = 2*x*Hn+1(x) - 2*(n+1)*Hn(x)pBk = pMid; %把中项变为后项进行下次迭代pMid = pFwd; %把前项变为中项进行下次迭代endp = pFwd/pFwd(1); %把拉盖尔多项式最高次项系数归一化function r = BinSolve(fun, a, b, tol)% BinSolve 用二分法解方程f(x)=0在区间[a,b]的根%% Synopsis: r = BinSolve(fun, a, b)% r = BinSolve(fun, a, b, tol)%% Input: fun = (string) 需要求根的函数% a,b = 寻根区间上下限% tol = (optional)误差,默认为5e-9%% Output: r = 在寻根区间内的根if nargin < 4tol = 5e-9;endXb = RootBracket(fun, a, b); %粗略寻找含根区间[m,n] = size(Xb);r = [];nr = 1; %初始化找到的根的个数为1maxit = 50; %最大二分迭代次数为50for i = 1:ma = Xb(i,1); %初始化第i个寻根区间下限b = Xb(i,2); %初始化第i个寻根区间上限err = 1; %初始化误差k = 0;while k < maxitfa = feval(fun, a); %计算下限函数值fb = feval(fun, b); %计算上限函数值m = (a+b)/2;fm = feval(fun, m);err = abs(fm);if sign(fm) == sign(fb) %若中点处与右端点函数值同号,右端点赋值为中点b = m;else %若中点处与左端点函数值同号或为0,左端点赋值为中点a = m;endif err < tol %如果在a处函数值小于tolr(nr) = a; %一般奇点不符合该条件,这样可以去除奇点nr = nr + 1; %找到根的个数递增k = maxit; %改变k值跳出循环endk = k + 1; %二分迭代次数递增endendfunction X = powerX(x,a,b)% powerX 对给定向量(x1, x2,..., xn)返回增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)%% Synopsis: X = powerX(x,a,b)%% Input: x = 需要返回增幂矩阵的向量% a,b = 寻根区间上下限%% Output: X = 增幂矩阵(x1^a, x2^a,..., xn^a; x1^a+1, x2^a+1,..., xn^a+1; ...; x1^b, x2^b,..., xn^b;)if round(a) ~= a | round(b) ~= berror('a,b must be integers');elseif a >= berror('a must be smaller than b!');endx = x(:)';row = b-a+1;col = length(x);X = zeros(row, col);for i = b:-1:aX(b-i+1,:) = x.^i;Endfunction [f, dfdx] = fun1_1(x)f = cos(x) - x;dfdx = -sin(x) - 1;function [f, dfdx] = fun1_2(x)f = exp(-x) - sin(x);dfdx = -exp(-x) - cos(x);function [f, dfdx] = fun2_1(x)f = x - exp(-x);dfdx = 1 + exp(-x);function [f, dfdx] = fun2_2(x)f = x.^2 - 2*x*exp(-x) + exp(-2*x);dfdx = 2*x - 2*exp(-x) + 2*x*exp(-x) - 2*exp(-2*x);function y = LegendreP6(x)p = LegendreIter(6);X = powerX(x,0,6);y = p*X;function y = ChebyshevT6(x)p = ChebyshevIter(6);X = powerX(x,0,6);y = p*X;function y = LaguerreL5(x)p = LaguerreIter(5);X = powerX(x,0,5);y = p*X;function y = HermiteH6(x)p = HermiteIter(6);X = powerX(x,0,6);y = p*X;思考题(1)由于Newton法具有局部收敛性,所以在实际问题中,当实际问题本身能提供接近于根的初始近似值时,就可保证迭代序列收敛,但当初值难以确定时,迭代序列就不一定收敛。

实验报告四 线性方程组的求解-迭代法

实验报告四 线性方程组的求解-迭代法

浙江大学城市学院实验报告课程名称 科学计算实验项目名称 线性方程组的求解-迭代法实验成绩 指导老师(签名 ) 日期 2014/11/17一. 实验目的和要求1. 掌握Jacobi 迭代方法,Gauss-Seidel 迭代方法,SOR 迭代方法的编程思想,能够分别用分量形式和矩阵形式编写相关程序。

2. 观察SOR 迭代法中松弛因子变化情况对收敛的影响。

3. 了解Hilbert 矩阵的病态性和作为线性方程组系数矩阵的收敛性。

二. 实验内容和原理编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。

2-1 编程注释设11121121222212,n n n n nn n a a a b a a a b A b a a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 对下述求解线性方程组的Matlab 程序添上注释语句,其中A 和b 分别为线性方程组的系数矩阵和右端向量;0x 为迭代初始向量(0)X ;max N 为容许迭代最大次数,eps 为迭代终止条件的精度(容许误差),终止条件为前后两次迭代解的差的向量2-范数。

1) Jacobi 迭代:Jacobimethod(A,b,x0,Nmax,eps)2) Gauss-Seidel 迭代:GaussSeidelmethod(A,b,x0,Nmax,eps)2-2 分析应用题利用2-1中的程序来分析用下列迭代法解线性方程组:123456410100014101050141012101410501014120010146x x x x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 的收敛性,并求出使(1)()20.0001k k XX +-≤的近似解及相应的迭代次数,其中取迭代初始向量(0)X 为零向量。

迭代——方程求解(mathematica数学实验报告)

迭代——方程求解(mathematica数学实验报告)

0,1称为(f、迭代法函数的迭代是数学研究中的一个非常重要的思想工具,哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分.同时,迭代在各种数值计算算法以及其它学科领域的诸多算法中处于核心的本实验的基本理论是分形几何学程序运行如下:练习2:利用迭代公式1(),0,1,...()n n g x x x n g x +=-=' 得到()^32g x x =-的迭代序列,其中01x =,10n =,程序运行如下:练习3:对给定的矩阵M ,数组f 和初始向量0x ,由迭代公式1n n x Mx f +=+得到的迭代序列如下:练习4:利用迭代公式11()x L D A X D b --=-+将方程组⎪⎩⎪⎨⎧=++=++11111111.......................................b x a x a b x a x a n nn n n n 即Ax b =改成多种等价形式x Mx f =+做迭代,观察其收敛状况。

给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,运行结果如下:练习5:同练习4,给定(){}1,2,2,(1,1,1),(2,2,1)A =-与(){}2,1,1,(1,1,1),(1,1,2)A =--,利用迭代公式111()()x I L Ux I L D b ---=-+-对方程组Ax b =做迭代。

程序运行如下:实验结果和结果分析:对于书上给出的例题程序,要实际上机亲自操作一次,从而了解不同命令的不同作用,对于相似的命令要区分明白他们的不同之处。

这一章小的命令比较多,也比较杂,需要分门别类区分开,并且分别运行一下。

书后的练习题离不开前面的例题,要在掌握好例题的情况下,多练习一些习题,加深记忆。

Mathematica 在迭代法解方程组非常方。

第一次实验报告-迭代法

第一次实验报告-迭代法
四、源程序调试过程和(或)实验分析
结果提交:a=-1,a=121,a=3三种情况的结果截屏。
实验题目
结构化程序设计
实验时间
实验地点
实验成绩
实验性质
□验证性√设计性□综合性
教师评价:
□算法/实验过程正确;□源程序/实验内容提交□程序结构/实验步骤合理;
□实验结果正确;□语法、语义正确;□报告规范;
其他:
评价教师签名:
一、实验目的
1)通过上机实验,认识软件开发环境,掌握开发工具的操作方法;
2)了解编译程序原理,以及源程序、目标程序和执行程序的特点;
3)验证程ห้องสมุดไป่ตู้的正确性;
4)学习上机调试程序的方法和技术;
5)学习顺序、条件、循环三种基本结构的应用。
二、实验项目内容(实验题目)
已知平方根迭代公式Xn +1=0.5*(Xn+ a/Xn)且x0=a/2。编写程序输入a值计算其平方根。迭代的结束条件是Xn +1- Xn<10-5
三、源程序(实验过程或算法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

观察序列,并且判断极限。 Mathematica 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得
当 x0=0.9,n=10 时,运行程序得
当 x0=1,n=10 时,运行程序得
实验结论:
10
由以上实验可得,函数 f(x)=x/2+1/x 的极限为 1.41421
《数学实验》实验报告
班级 实验 内容 **** 学号 **** 姓名 实验 类别 **** 成绩 实验 时间
迭代法
自选实验
2011.6.7
实验问题:
n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0
其中,f[x_]:=为所求迭代函数,迭代n次产生相应是序列,并观察。
(3)线性方程组的迭代求解 对给定的矩阵 M、 数组 f 和初始向量 x0, 由 X^(n+1)=Mx^n+f,n=0,1,2,3……给定的结 果 其 Matheatica 程序如下:

实验过程:
1.迭代序列 ( 1 ) 给 定 的 实 数 域 上 光 滑 的 实 值 函 数 f(x) 以 及 初 值 x0, 定 义 数 列 x(n+1)=f(x0),n=0,1,2,3,……. 对函数 f(x)= (25*x - 85)/(x + 3)的迭代过程,可以形象地用蜘蛛网图像来直观地显示,运 行以下程序:
2.方程求根
用迭代序列求 g(x)=x^3-2*x+1 的根,其 matheatic 程序如下:
当 x0=0.1,n=10 时,运行程序得
当 x0=0.5,n=10 时,运行程序得 当 x0=1.0,n=10 时,运行程序得
当 x0=1.5,n=10 时,运行程序得
当 x0=2.5,n=10 时,运行程序得

(2)以下是给定初值 x0 为 5.0
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图 如图:

(3)以下给定初值 x0 是 5.5
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图 如图:

(4)以下给定初值 x0 是 10
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图
பைடு நூலகம்实验目的:
(1)了解、掌握迭代法并且会熟练运用迭代法。 (2)通过多个实例研究知道的迭代数列的收敛性,比较多次实验的结果,继而得出相应结 论。 (3)通过理论知识以及多个实例,结合目的(2)学习线性方程组的迭代求解,通过多次举例 实验得出相应结论。 (4)同目的(3)类似学习非线性方程组的迭代求解,同样通过理论实例得出相应结论。
问题分析:
本实验通过给定的一个实数域上光滑的实值函数 f(x)以及一个初值 X0,之后,将 X0 代入所给的 f(x)得到一个函数值 f(x0)记为 X1;再将得到的 X1 代入函数 f(x)中得到 f(x1), 记为 X2;将 X2 代入 f(x)中得到 f(x2)记为 X3,再将 X3 代入函数 f(x)…….. 重复上述过程, 当将 Xn 代入 f (x) 中得到 Xn+1 即 Xn+1=f(Xn)。 其中{Xn} (n=0 1 2 3 ..) 为 f(x)的一个迭代序列。通过得到的迭代序列{Xn},可以了解迭代序列{Xn}的敛散性:当 n 趋向无穷大时,如果{Xn}收敛于某个 X*,则得到 X*=f(X*),即:X*为 X=f(X)的解。 由以上理论支撑就可以利用迭代法求解某个方程的根继而就可以求解线性方程组的 解、非线性方程组的解。 求解线形方程时,线形方程组的系数矩阵 A 的行列式非零时方程组有唯一解,将方程组 改写成 x=Mx+f 的形式(f 为 n 阶矩阵,f=(f1,f2,……,fn)T 是 n 维列向量,给定 x0,由迭 代方程 X^(n+1)=M*X^n+f,n=0,1,2,….. 确定向量序列 x^n, 如果 x^n 收敛至向量 x*, 则有
当 x0=15,n=50 时,运行程序得
当 x0=22,n=100 时,运行程序得
11
由以上实验可得,函数 g(x)=x^3-2*x+1 收敛到 1
实验结论:
由所给 x0 代入方程 g(x)=x^3-2*x+1 得到 x1, 再将得到的 x1 代入方程 g(x)=x^3-2*x+1 得 到 x2 , 再 将 得 到 的 x2 代 入 方 程 g(x)=x^3-2*x+1 得 到 x3….. 重 复 上 述 过 程 得 到 x1,x2,x3,x4…..如果 x1,x2,x3,x4…..收敛到 x,则 x 即 为方程的根,如果 x1,x2,x3,x4…..不收 敛,则换初始值重复上述过程即可,直到得出收敛的 x.

如图:
(5)以下给定初值 x0 是 16
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图

如图:
(6)以下给定初值 x0 是 17
得到函数 f(x)=(25*x-85)/(x+3)的蜘蛛网图

如图:
实验验证:
(1)程序如下:
运行结果:
实验结论
(1):当初始值 x0 在 5.0~17.0 之间时,都可通过迭代法得知蜘蛛网均落在两直线之间(即收 敛) ,而当初始值 x0 落在 5.0~17.0 之外时其蜘蛛网落在两直线之外(即发散)。 (2) 对给定的初值 x0 及迭代函数 f(x)=x/2+1/x,迭代 n 次产生相应的序列,

x*=Mx*+f,即 x*为方程组的解。 求解非线性方程组时,其可能有很多解,求解过程同求解线性方程组类似。
实验步骤:
(1)方程求根 用迭代序列求解,其编写程序如下:
其中,f[x_]:=所给方程, x0为所给初始值(x0应该给多组,用不同的初始值代入所给 函数,观察其结果。 (2)迭代序列的极限 用迭代序列求解,其编写程序如下:
3.线性方程组的迭代求解
给定一个 n 元线性方程组
a11 x1 a12 x 2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n am 1 x1 am 2 x 2 amn xn 0
相关文档
最新文档