2019-2020学年江苏省盐城市亭湖区景山中学九年级(上)期末数学试卷
江苏省盐城市九年级(上)期末数学试卷(含答案)

江苏省盐城市九年级(上)期末数学试卷(含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.在Rt △ABC 中,∠C=90°,BC=4,AC=3,CD ⊥AB 于D ,设∠ACD=α,则cosα的值为( ) A .45B .34C .43D .353.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =3; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④4.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差B .平均数C .众数D .中位数5.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .117.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .68.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .11.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+312.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,43) 13.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣214.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上 B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的15.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .34二、填空题16.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 17.若53x y x +=,则yx=______. 18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________20.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____. 21.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 22.抛物线21(5)33y x =--+的顶点坐标是_______. 23.方程290x 的解为________.24.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 28.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.29.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.30.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.三、解答题31.(1)x 2+2x ﹣3=0 (2)(x ﹣1)2=3(x ﹣1)32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.33.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 34.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.35.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C (0,533). (1)求该函数的表达式;(2)设E 为对称轴上一点,连接AE 、CE ; ①当AE +CE 取得最小值时,点E 的坐标为 ;②点P 从点A 出发,先以1个单位长度/的速度沿线段AE 到达点E ,再以2个单位长度的速度沿对称轴到达顶点D .当点P 到达顶点D 所用时间最短时,求出点E 的坐标.四、压轴题36.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CMBP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积; (4)在(3)的条件下,求AB 的长度. 37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.39.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.40.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt △ABC 中,∠C=90°,BC=4,AC=3, ∴2222AB AC BC 345=+=+=, ∵CD ⊥AB, ∴∠ADC=∠C=90°, ∴∠A+∠ACD=∠A+∠B, ∴∠B=∠ACD=α, ∴4cos 5BC cos B AB α===. 故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值.3.C解析:C 【解析】 【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =,∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.4.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.7.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425+=+=BC CD故选:B.本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.8.B解析:B【解析】【分析】【详解】解:将点(m,3m)代入反比例函数kyx=得,k=m•3m=3m2>0;故函数在第一、三象限,故选B.9.D解析:D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,75 ==.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.11.A解析:A【解析】【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【详解】解:将二次函数y=x2的图象沿y轴向上平移2个单位长度,得到:y=x2+2,再沿x轴向左平移3个单位长度得到:y=(x+3)2+2.故选:A.【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,33).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.D解析:D【解析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.14.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.15.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题16.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.19.【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵C 解析:32【解析】【分析】首先判断出AB 、BC 是⊙O 的切线,进而得出FC=AF+DC ,设AF=x ,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB 、BC 是⊙O 的切线,∵CF 是⊙O 的切线,∴AF=EF ,BC=EC ,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.20.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.21.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握. 25.8【解析】【分析】在Rt△ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos∠DAC=sinC 得到tanB =,接着在Rt△A解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AEAD AC=,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.28.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 29.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.30.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.三、解答题31.(1)x=﹣3或x=1;(2)x=1或x=4.【解析】【分析】(1)用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x=﹣3或x=1;(2)∵(x﹣1)2=3(x﹣1),∴(x﹣1)[(x﹣1)﹣3]=0,∴(x﹣1)(x﹣4)=0,∴x=1或x=4;【点睛】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.32.(1)见解析;(2)14 5【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴2222345AE AB BE=+=+=.∵△ABF∽△EAD,BF ABAD EA∴=,4752BF∴=.145BF∴=.【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.33.(1)10700y x=-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,。
景山初三期末数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 3/2D. √-1答案:C解析:有理数是可以表示为两个整数比的数,其中分母不为0。
在给出的选项中,只有3/2可以表示为两个整数比,因此选C。
2. 下列各数中,无理数是()A. 2.5B. √9C. √-1D. 3/4答案:C解析:无理数是不能表示为两个整数比的数,且无限不循环小数。
在给出的选项中,只有√-1是无理数,因为负数没有实数平方根。
3. 若a=√2,b=√3,则a+b的值是()A. √5B. √6C. √5+√6D. √5-√6答案:A解析:根据勾股定理,a²+b²=c²,其中c是斜边。
在本题中,a=√2,b=√3,所以a²+b²=2+3=5,即c²=5,所以c=√5。
因此,a+b=√2+√3=√5。
4. 已知x²-3x+2=0,则x的值是()A. 1B. 2C. 1或2D. 无解答案:C解析:这是一个一元二次方程,可以通过因式分解或使用求根公式求解。
因式分解得(x-1)(x-2)=0,所以x=1或x=2。
5. 若a、b是方程x²-3x+2=0的两根,则a²+b²的值是()A. 4B. 5C. 6D. 7答案:C解析:根据韦达定理,方程x²-3x+2=0的两根之和为3,两根之积为2。
所以a+b=3,ab=2。
根据平方差公式,a²+b²=(a+b)²-2ab=3²-2×2=6。
二、填空题(每题3分,共30分)1. 若x²-4x+3=0,则x的值是______。
答案:1或3解析:这是一个一元二次方程,可以通过因式分解或使用求根公式求解。
因式分解得(x-1)(x-3)=0,所以x=1或x=3。
2. 若√2x+3=5,则x的值是______。
答案:1x=2/√2=√2。
江苏省盐城市九年级上学期期末数学试卷 (解析版)

江苏省盐城市九年级上学期期末数学试卷 (解析版)一、选择题1.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)2.在△ABC 中,若|sinA ﹣12|+(22﹣cosB )2=0,则∠C 的度数是( ) A .45°B .75°C .105°D .120°3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DEBC的值为( )A .12B .13C .14D .194.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-2 5.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-6.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x 7.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100° 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°12.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 13.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③ 15.下列方程中,有两个不相等的实数根的是( )A .x 2﹣x ﹣1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=0二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.19.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.20.如图,每个小正方形的边长都为1,点A 、B 、C 都在小正方形的顶点上,则∠ABC 的正切值为_____.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.22.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+这个正方形的边长为_____________24.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.25.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 26.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.27.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.28.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.29.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S 甲、2S 乙,且22S S >甲乙,则队员身高比较整齐的球队是_____.30.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题31.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?32.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.33.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD 边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=33(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.34.如图,在直角三角形ABC中,∠C=90°,点D是AC边上一点,过点D作DE⊥BD,交AB于点E,若BD=10,tan∠ABD=12,cos∠DBC=45,求DC和AB的长.35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.四、压轴题36.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
盐城市九年级上第一学期期末数学试卷

盐城市九年级上第一学期期末数学试卷一、选择题1.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.2472.在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.45B.34C.43D.353.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0 4.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.95.一元二次方程x2-x=0的根是()A.x=1B.x=0C.x1=0,x2=1D.x1=0,x2=-1 6.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A.16B.13C.12D.237.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A .1B .2C .3D .48.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .159.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8B .9C .10D .1110.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°11.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2) B .(﹣1,﹣2) C .(1,﹣2) D .(1,2) 12.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣313.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7214.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323 D .315.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.18.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________;19.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)20.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.21.抛物线21(5)33y x =--+的顶点坐标是_______.22.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.23.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.24.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.25.数据1、2、3、2、4的众数是______.26.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.27.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.28.若a b b -=23,则ab的值为________. 29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.30.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26P 的坐标. 32.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E . (1)求∠DAC 的度数; (2)若AC =6,求BE 的长.33.A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.34.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .35.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围?四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.A解析:A【解析】【分析】根据勾股定理求出AB的长,在求出∠ACD的等角∠B,即可得到答案.【详解】如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,∴AB5==,∴∠ADC=∠C=90°,∴∠A+∠ACD=∠A+∠B,∴∠B=∠ACD=α,∴4cos5BCcos BABα===.故选:A.【点睛】此题考查解直角三角形,求一个角的三角函数值有时可以求等角的对应函数值. 3.D解析:D【解析】∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0.解得:k>﹣1且k≠0.故选D.考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.4.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.5.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.6.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.8.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 9.D解析:D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.10.A解析:A【解析】【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD 的度数.【详解】解:∵AC 是圆O 的切线,AB 是圆O 的直径,∴AB ⊥AC ,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A .【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.11.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .12.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x 2﹣3x =0,x (x ﹣3)=0,x =0或x ﹣3=0,x 1=0,x 2=3.故选:B .【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).13.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,OAP OBPAPO BPOOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan∠OAP=tan30°=OPAP=33,∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=2336023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.18.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC 中,∠C=90°,∴△ABC 外接圆直径为斜边AB 、圆心是AB 的解析:5【解析】【分析】先确定外接圆的半径是AB ,圆心在AB 的中点,再计算AB 的长,由此求出外接圆的半径为5.【详解】∵在△ABC 中,∠C=90°,∴△ABC 外接圆直径为斜边AB 、圆心是AB 的中点,∵∠C=90°,AC=6,BC=8, ∴22226810AB AC BC ,∴△ABC 外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.19.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 20.2﹣2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =BC =2,根据勾股定理可求AG =2,由三角形的三边关系可得AH≥AG ﹣HG ,当点H 在线段AG 上时,解析:2【解析】【分析】取BC 中点G ,连接HG ,AG ,根据直角三角形的性质可得HG =CG =BG =12BC =2,根据勾股定理可求AG =25,由三角形的三边关系可得AH ≥AG ﹣HG ,当点H 在线段AG 上时,可求AH 的最小值.【详解】 解:如图,取BC 中点G ,连接HG ,AG ,∵CH ⊥DB ,点G 是BC 中点 ∴HG =CG =BG =12BC =2, 在Rt △ACG 中,AG 22AC CG +5在△AHG 中,AH ≥AG ﹣HG ,即当点H 在线段AG 上时,AH 最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 21.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 22.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.23.50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.24.(,2).【解析】【分析】【详解】解:如图,当点B 与点D 重合时,△BEF 面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.25.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.26.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出AB AEAD AC=,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴AC==∵AE是直径,∴∠ABE=90°,∴∠ABE=∠ADC,∵∠E=∠C,∴△ABE∽△ADC,∴AB AE AD AC =,∴3AB =∴AB =【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.27.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高,∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.28.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a, ∴a b =5335a a =, 故答案为:53. 【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 29.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差: ()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 30.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解. 【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 三、解答题31.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF 与y 的关系,从而得出y 的值,再代入抛物线解析式求出x 的值,得出点坐标.【详解】解:(1)把()4,1A 和()0,1-代入218y x bx c =++得:1241b c c =++⎧⎨-=⎩ 解方程组得出:01b c =⎧⎨=-⎩所以,0b =,1c =-(2)由已知条件得出C 点坐标为2310,2C ⎛⎫ ⎪⎝⎭,设()0,M n .过点C 作CD l ⊥,过点A 作AE l ⊥.两个直角三角形的三个角对应相等,∴CMD AME ∆∆∽∴CD MD AE ME= ∴2310214n n -=- ∵解得:4n =∴()0,4M(3)设点P 的纵坐标为y,由题意得出,1262EF y ⨯⨯=46EF y = ∵MP 与PE 都为圆的半径,∴MP=PE∴()2228y 84()2EF y y ++-=+ 整理得出,∴EF 46=∵46EF = ∴y=±1, ∴当y=1时有,21118x =-,解得,x 4=±; ∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1-【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.32.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90°又∵CE=CE∴△CDE ≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD ∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即333DE = ∴DE=3∵弦AC 垂直平分OD∴OD=2DE=23∴直径BD=2OD=43∴BE=BD-DE=43-3=33【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.33.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29; (2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.34.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.35.(1)3m ;(2)生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2【解析】【分析】(1)设垂直于墙的一边长为x 米,则平行于墙的一边长为(12-3x )米,根据长方形的面积公式结合生物园的面积为9平方米,列出方程,解方程即可;(2)设围成生物园的面积为y ,由题意可得:y =x (12﹣3x )且53≤x <4,从而求出y 的最大值即可.【详解】设这个生物园垂直于墙的一边长为xm ,(1)由题意,得x (12﹣3x )=9,解得,x 1=1(不符合题意,舍去),x 2=3,答:这个生物园垂直于墙的一边长为3m ;(2)设围成生物园的面积为ym 2.由题意,得()()21233212y x x x -+==--,∵12371230x x -≤⎧⎨-⎩> ∴53≤x <4 ∴当x =2时,y 最大值=12,12﹣3x =6,答:生物园垂直于墙的一边长为2m .平行于墙的一边长为6m 时,围成生物园的面积最大,且为12m 2.【点睛】本题主要考查一元二次方程的应用和二次函数的应用,解题的关键是正确解读题意,根据题目给出的条件,准确列出方程和二次函数解析式.四、压轴题36.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值;(2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标.【详解】。
江苏盐城景山中学九年级上期末数学考试卷(解析版)(初三)期末考试.doc

江苏盐城景山中学九年级上期末数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】已知四条线段满足,将它改写成为比例式,下面正确的是().A. B. C. D.【答案】C.【解析】试题分析:根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.根据四条线段满足,可得ab=cd,A、如果,那么ad=cb,故此选项错误;B、如果,那么ad=bc,故此选项错误;C、如果,那么ab=cd,故此选项正确;D、如果,那么ac=bd,故此选项错误.故选:C.考点:比例线段.【题文】在Rt△ABC中,∠C=90°,如果把Rt△ABC的各边的长都缩小为原来的,则∠A的正切值().A.缩小为原来的 B.扩大为原来的4倍C.缩小为原来的 D.没有变化【答案】D.【解析】试题分析:根据题意得到锐角A的对边与邻边的比值不变,然后根据正切的定义可判断锐角A的正切值不变.∵在Rt△ABC中,如果每个边都缩小为原来的,∴锐角A的对边与邻边的比值不变,∴锐角A的正切值不变.故选:D.考点:锐角三角函数的定义.【题文】一组数据2、5、4、3、5、4、5的中位数和众数分别是().A.3.5,5 B.4,4 C.4,5 D.4.5,4【答案】C.【解析】试题分析:根据众数和中位数的概念求解.这组数据按照从小到大的顺序排列为:2,3,4,4,5,5,5,则众数为5,中位数为4.故选:C.考点:众数;中位数.【题文】在抛物线y=﹣4x﹣4上的一个点是().A.(4,4) B.(,)C.(3,﹣1) D.(﹣2,﹣8)【答案】B.【解析】试题分析:把x=4、、3、﹣2分别代入y=﹣4x﹣4,计算出对应的函数值后进行判断.∵当x=4时,y=﹣4x﹣4=﹣4;当x=时,y=﹣4x﹣4=;当x=3时,y=﹣4x﹣4=﹣7;当x=﹣2时,y=﹣4x﹣4=8;∴点(,)在抛物线y=﹣4x﹣4上.故选:B.考点:二次函数图象上点的坐标特征.【题文】一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是().A. B. C. D.1【答案】B.【解析】试题分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.用A和a分别表示粉色有盖茶杯的杯盖和茶杯;用B和b分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb,所以颜色搭配正确的概率是.故选:B.考点:列表法与树状图法.【题文】如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm),则该圆的半径为().A.5cm B.cm C.cm D.cm【答案】C.【解析】试题分析:根据题意可知,圆内的弦长为3cm,作出弦的弦心距,根据垂径定理和勾股定理,可以求出圆的半径.如图示,连接OA,根据题意知,PC=2cm,OP⊥AB,∴AP=BP,∵AB=3c m,∴AP=cm,在Rt△AOP中,设OA=x,则0P=x﹣2,根据勾股定理得,,解得,x=.故选:C.考点:垂径定理;勾股定理.【题文】已知二次函数y=+bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:(1)ac>0;(2)方程ax2+bx+c=0的两根是=﹣1,=3;(3)2a﹣b=0;(4)当x>1时,y随x的增大而减小;则以上结论中正确的有().A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:由二次函数y=+bx+c的图象可得:抛物线开口向下,即a<0,抛物线与y轴的交点在y轴正半轴,即c>0,ac<0,(1)错误;由图象可得抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,抛物线与x轴的另一个交点为(﹣1,0),则方程+bx+c=0的两根是=﹣1,=3,(2)正确.∵对称轴为直线x=1,∴=1,即2a+b=0,(3)错误;由函数图象可得:当x>1时,y随x的增大而减小,故(4)正确;综上所知正确的有(2)(4)两个.故选:B.考点:二次函数图象与系数的关系.【题文】如图,在平面直角坐标系xOy中,抛物线y=+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为().A. B. C.2 D.【答案】B.【解析】试题分析:设M到直线l的距离为m,则有+bx+c=m两根的差为3,又+bx+c=0时,△=0,列式求解即可.∵抛物线y=+bx+c与x轴只有一个交点,∴△=﹣4ac=0,∴﹣4c=0,则有+bx+c=m两根的差为3,可得:﹣4(c﹣m)=9,解得:m=.故选:B.考点:抛物线与x轴的交点.【题文】一元二次方程﹣x=0的根是.【答案】=0,=1.【解析】试题分析:方程左边分解因式后得:x(x﹣1)=0,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,即x=0或x﹣1=0,解得=0,=1.故答案为:=0,=1.考点:解一元二次方程——因式分解法.【题文】已知△ABC与△DEF相似且周长比为2:5,则△ABC与△DEF的相似比为.【答案】2:5.【解析】试题分析:直接根据相似三角形性质进行解答即可.∵△ABC与△DEF相似且周长比为2:5,∴两三角形的形似比为2:5.故答案为:2:5.考点:相似三角形的性质.【题文】随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:=36,=158,则小麦长势比较整齐的试验田是.【答案】甲.【解析】试题分析:根据方差的意义判断即可.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.由方差的意义,观察数据可知甲块试验田的方差小,故甲试验田小麦长势比较整齐.故答案为:甲.考点:方差.【题文】小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是.【答案】.【解析】试题分析:根据几何概率的求法:最终停留在黑色的方砖上的概率就是黑色区域的面积与总面积的比值.观察这个图可知:黑色区域(4块)的面积占总面积(9块)的,则它最终停留在黑色方砖上的概率是. 故答案为:.考点:几何概率.【题文】已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积为____________.【答案】8π.【解析】试题分析:求出圆锥的底面圆周长,利用公式S=LR即可求出圆锥的侧面积.圆锥的地面圆周长为2π×2=4π,则圆锥的侧面积为×4π×4=8π.故答案为:8π.考点:圆锥的计算.【题文】如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是.【答案】.【解析】试题分析:连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=,则tan∠ABC==.故答案为:.考点:锐角三角函数的定义;勾股定理;勾股定理的逆定理.【题文】已知a是方程+3x﹣6=0的一个根,则代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值为.【答案】7.【解析】试题分析:首先把代数式3a(2a+1)﹣(2a+1)(2a﹣1)去括号合并同类项得到+3a+1,然后把a代入方程+3x﹣6=0得到+3a=6,所以+3a+1=6+1=7.即代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值为7.故答案为:7.考点:一元二次方程的解.【题文】如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为44,且DE=6,则sin∠ODE=.【答案】.【解析】试题分析:求出正方形ANOM,求出AM长,根据勾股定理切点OD的长,根据解直角三角形求出即可.设切线AD的切点为M,切线AB的切点为N,连接OM、ON、OE,∵四边形ABCD是正方形,正方形ABCD的周长为44,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON ,∴四边形ANOM是正方形,∵AD和DE与圆O相切,∴OE⊥DE,DM=DE=6,∴AM=11﹣6=5,∴OM=ON=OE=5,在RT△ODM中,OD===,∵OE=OM=5,∴sin∠ODE==.故答案为: .考点:切线的性质;正方形的性质.【题文】若A(,),B(,),C(1,)为二次函数y=+4x﹣5的图象上的三点,则、、的大小关系是.【答案】<<.【解析】试题分析:将二次函数y=+4x﹣5配方得,所以抛物线开口向上,对称轴为x=﹣2,因为A、B、C三点中,B点离对称轴最近,C点离对称轴最远,所以<<.故答案为:<<.考点:二次函数图象上点的坐标特征.【题文】△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC、AB、AC边上的动点,则△PQR 周长的最小值为.【答案】.【解析】试题分析:如图1中,作P点关于AB的对称点P′,作P点关于AC的对称点P″,连接P′P″,与AB交于点Q′,与AC交于点R′,连接PP′交AB于M,连接PP″交AC于N,此时△PQ′R′的周长最小,这个最小值=P′P″,∵PM=MP′,PN=NP″,∴P′P″=2MN,∴当MN最小时P′P″最小.如图2中,∵∠AMP=∠ANP=90°,∴A、M、P、N四点共圆,线段AP就是圆的直径,MN是弦,∵∠MAN是定值,∴直径AP最小时,弦MN最小,∴当点P与点D重合时,PA最小,此时MN最小.如图3中,∵在RT△ABD中,∠ADB=90°,AD=2,DB=3,∴AB=,在RT△ADC中,∵∠ADC=90°,AD=2,CD=1,∴AC=,∵DM⊥AB,DN⊥AC,∴•AC•DN=•DC•AD,∴DN=,AN=,∵∠MAD=∠DAB,∠AMD=∠ADB,∴△AMD∽△ADB,∴,∴=AM•AB,同理=AN•AC,∴AM•AB=AN•AC,∴,∵∠MAN=∠CAB,∴△AMN∽△ACB,∴,∴,∴MN=,∴△PQR周长的最小值=P′P″=2MN=.故答案为:.考点:轴对称-最短路线问题.【题文】(2015秋•盐城校级期末)(1)计算:tan260°+4sin30°•cos45°;(2)解方程:﹣4x+3=0.【答案】(1) ;(2) =1,=3.【解析】试题分析:(1)直接把tan60°=、sin30°=和cos45°=代入原式化简求值即可;(2)直接利用十字相乘法对方程的左边进行因式分解得到(x﹣1)(x﹣3)=0,再解两个一元一次方程即可.试题解析:(1)tan260°+4sin30°•cos45°=+4××=;(2)x2﹣4x+3=0,因式分解得,(x﹣1)(x﹣3)=0,解得,=1,=3.考点:解一元二次方程-因式分解法;特殊角的三角函数值.【题文】作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.【答案】(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).【解析】l C笔试859590口试8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【答案】(1)补全统计表和统计图详见解析;(2) 144;(3) B当选.【解析】试题分析:(1)根据统计图可得A的口试成绩是90,根据统计表可得C的笔试成绩是90分,即可作图;(2)利用B所占的比例乘以360度即可求解;(3)首先求得A、B、C的投票得分,然后利用加权平均数公式即可求解.试题解析:(1)补充图形如下:竞选人ABC笔试859590口试908085;(2)360°×40%=144°,故答案为:144°;(3)A的投票得分是:300×35%=105(分),则A的最后得分是=92.5(分);B的投票得到是:300×40%=120(分),则B的最后得分是=98(分);C的投票得分是:300×25%=75(分),则C的最终得分是=84(分).所以B当选.考点:条形统计图;统计表;加权平均数.【题文】一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【答案】(1);(2).【解析】试题分析:(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.试题解析:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.考点:列表法与树状图法;概率公式.【题文】(2015秋•盐城校级期末)如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.(1)求证:ED∥AC;(2)连接AE,试证明:AB•CD=AE•AC.【答案】(1)证明详见解析;(2)证明详见解析.【解析】试题分析:(1)由圆周角定理,可得∠BAD=∠E,又由BE∥AD,易证得∠BAD=∠ADE,然后由AD是△ABC 的角平分线,证得∠CAD=∠ADE,继而证得结论;(2)首先连接AE,易得∠CAD=∠ABE,∠ADC=∠AEB,则可证得△ADC∽△BEA,然后由相似三角形的对应边成比例,证得结论.试题解析:(1)∵BE∥AD,∴∠E=∠ADE,∵∠BAD=∠E,∴∠BAD=∠ADE,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∴∠CAD=∠ADE,∴ED∥AC;(2)连接AE,∵∠CAD=∠ADE,∠ADE=∠ABE,∴∠CAD=∠ABE,∵∠ADC+∠ADB=180°,∠ADB+∠AEB=180°,∴∠ADC=∠AEB,∴△ADC∽△BEA,∴AC:AB=CD:AE,∴AB•CD=AE•AC.考点:相似三角形的判定与性质;圆周角定理.【题文】(2015秋•盐城校级期末)某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【答案】3米.【解析】试题分析:过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.试题解析:作CD⊥AB交AB延长线于D,设CD=x 米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.考点:解直角三角形的应用.【题文】(2015秋•盐城校级期末)如图,抛物线y=+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).(1)求抛物线的解析式;(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,①试说明EF是圆的直径;②判断△AEF的形状,并说明理由.【答案】(1) y=﹣2x﹣3;(2)①证明详见解析;②△AEF是等腰直角三角形,理由详见解析.【解析】试题分析:(1)将A、B、C三点坐标代入抛物线方程,即可求得a、b、c的值;(2)①由B、C、D三点的坐标即可得出∠CBO=∠OBD=45°,从而得出∠EBF=90°,即可得出EF为圆的直径;②利用同圆内,同弧所对的圆周角相等,可以找到∠AEF=∠AFE=45°,从而得出△AEF是等腰直角三角形.试题解析:(1)∵抛物线y=+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3),∴,解得,∴抛物线的解析式为y=﹣2x﹣3;(2)按照题意画出图形,如下图,①∵B点坐标(3,0)、C点坐标(0,﹣3),∴OB=OC=3,∴△BOC为等腰直角三角形,∴∠CBO=45°,又∵D是y轴正半轴上的点,OD=3,∴△BOD为等腰直接三角形,∴∠OBD=45°,∠CBD=∠CBO+∠OBD=45°+45°=90°,即∠FBE=90°,∴EF是圆的直径.②∵∠CBO=∠OBD=45°,∠AFE=∠OBD,∠AEF=∠CBO(在同圆中,同弧所对的圆周角相等),∴∠AEF=∠AFE=45°,∴∠FAE=90°,AE=AF,∴△AEF是等腰直角三角形.考点:二次函数综合题.【题文】(2015秋•盐城校级期末)公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的改进.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元)(x>120),年销售量为y(万件),第一年年获利(年获利=年销售额﹣生产成本)为z (万元).(1)求出y与x之间,z与x之间的函数关系式;(2)该公司能否在第一年收回投资.【答案】(1)y=x+36;z=+42x﹣2160;(2)公司不能在第一年收回投资.【解析】试题分析:(1)根据:年销量=原销量﹣因价格上涨减少的销量,年获利=单件利润×年销售量,可列出函数关系式;(2)将(1)中年利润函数关系式配成顶点式,可知其最大值小于总投资,故第一年不能收回投资.试题解析:由题意得,y=24﹣,即y=x+36,z=(x﹣60)(x+36)=+42x﹣2160;(2)z=+42x﹣2160=+2250,当x=210时,第一年的年最大利润为2250万元,∵2250<750+1750,∴公司不能在第一年收回投资.考点:二次函数的应用.【题文】(2010•通化)如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为y.①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.【答案】(1)证明详见解析;(1)①y=3x+27;②存在,当x=时,y有最大值,此时y=.【解析】试题分析:(1)先根据AD=CD,DE⊥AC判断出DE垂直平分AC,再由线段垂直平分线的性质及直角三角形的性质可得出∠DCF=∠DAF=∠B,在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B可知△DCF∽△ABC,由相似三角形的对应边成比例即可得出答案;(2)①先根据勾股定理求出AC的长,再由梯形的面积公式即可得出x、y之间的函数关系式;②由EF∥BC,得△AEF∽△ABC,由相似三角形的对应边成比例可求出AB、EF的长,进而可得出△AEF∽△DEA及DF的长,根据DE=DF+FE可求出DE的长,由①中的函数关系式即可得出结论.试题解析:(1)∵AD=CD,DE⊥AC,∴DE垂直平分AC,∴AF=CF,∠DFA=∠DFC=90°,∠DAF=∠DCF.∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,∴∠DCF=∠DAF=∠B.在Rt△DCF和Rt△ABC中,∠DFC=∠ACB=90°,∠DCF=∠B,∴△DCF∽△ABC.∴,即,∴AB•AF=CB•CD;(2)解:连接PB,①∵AB=15,BC=9,∠ACB=90°,∴AC==12,∴CF=AF=6.∴y=(x+9)×6=3x+27;②由EF∥BC,得△AEF∽△ABC.AE=BE=AB=,EF=.由∠EAD=∠AFE=90°,∠AEF=∠DEA,得△AEF∽△DEA.Rt△ADF中,AD=CD==10,AF=6,∴DF=8.∴DE=DF+FE=8+=.∵y=3x+27(0≤x≤),函数值y随着x的增大而增大,∴当x=时,y有最大值,此时y=.考点:相似三角形的判定与性质;一次函数的性质;勾股定理.【题文】(2015秋•盐城校级期末)如图,二次函数y=+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)b=;点D的坐标:;(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.【答案】(1)1;(﹣3,4);(2)线段AO上不存在点P(点P不与A、O重合),使得OE的长为1 ;(3). 【解析】试题分析:(1)利用点在二次函数图象上,代入即可求得b,将二次函数换成交点式,即能得出B点的坐标,由AD=AB可算出D点坐标;(2)假设存在,由DP⊥AE,找出∠EPO=∠PDA,利用等角的正切相等,可得出一个关于OP长度的一元二次方程,由方程无解可得知不存在这样的点;(3)利用角和边的关系,找到全等,再利用三角形相似,借助相似比即可求得AM,求出△ADM的面积即是所求.试题解析:(1)∵点A(﹣3,0)在二次函数y=+bx﹣的图象上,∴0=﹣3b﹣,解得b=1,∴二次函数解析式为y=+x﹣=(x+3)(x﹣1),∴点B(1,0),AB=1﹣(﹣3)=4,∵四边形ABCD为正方形,∴AD=AB=4,∴点D(﹣3,4),故答案为:1;(﹣3,4).(2)直线PE交y轴于点E,如图1,假设存在点P,使得OE的长为1,设OP=a,则AP=3﹣a,∵DP⊥AE,∠APD+∠DPE+∠EPO=180°,∴∠EPO=90°﹣∠APD=∠ADP,tan∠ADP==,tan∠EPO==,∴=,即﹣3a+4=0,△=﹣4×4=﹣7<0,无解,故线段AO上不存在点P(点P不与A、O重合),使得OE的长为1.(3)假设存在这样的点P,DE交x轴于点M,如图2,∵△PED是等腰三角形,∴DP=PE,∵DP⊥PE,四边形ABCD为正方形∴∠EPO+∠APD=90°,∠DAP=90°,∠PAD+∠APD=90°,∴∠EPO=∠PDA,∠PEO=∠DPA,在△PEO和△DAP中,∠EPO=∠PDA,DP=PE,∠PEO=∠DPA,∴△PEO≌△DAP,∴PO=DA=4,OE=AP=PO﹣AO=4﹣3=1,∴点P坐标为(﹣4,0).∵DA⊥x轴,∴DA∥EO,∴∠ADM=∠OEM(两直线平行,内错角相等),又∵∠AMD=∠OME(对顶角),∴△DAM∽EOM,∴,∵OM+MA=OA=3,∴MA=×3=,△PED与正方形ABCD重叠部分△ADM面积为×AD×AM=×4×=.答:存在这样的点P,点P的坐标为(﹣4,1),此时△PED与正方形ABCD重叠部分的面积为.考点:二次函数综合题.。
江苏省盐城市九年级上学期期末数学试卷 (解析版)

江苏省盐城市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm2.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)3.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定 4.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:16.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°7.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .68.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-19.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 10.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( ) A .13B .14C .15D .1611.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1212.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm13.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>14.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .215.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.若△ABC ∽△A′B′C′,∠A =50°,∠C =110°,则∠B′的度数为_____.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.抛物线y=(x﹣2)2﹣3的顶点坐标是____.21.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;22.一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为__________cm.23.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.24.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为__________m.25.若32xy=,则x yy+的值为_____.26.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).27.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.28.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”)29.如图,AE、BE是△ABC的两个内角的平分线,过点A作AD⊥AE.交BE的延长线于点D.若AD=AB,BE:ED=1:2,则cos∠ABC=_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。
江苏省盐城市亭湖区2019-2020学年九年级上学期期末数学试题(含解析)

2019-2020学年度第一学期期末学情调研九年级数学试卷注意事项:1.本试卷考试时间为120分钟, 试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分)1.二次函数2(1)3y x =-+图象的顶点坐标是( ) A. (1,3)B. (1,3)-C. (1,3)-D. (1,3)--2.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A. P圆内B. P 在圆上C. P 在圆外D. 无法确定3.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A. 8B. 9C. 10D. 114.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( ) A.14B.34C.15D.355.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A. 30°B. 35°C. 40°D. 50°6.方程2210x x --=的两根之和是( ) A. 2-B. 1-C.12D. 12-7.若圆锥底面半径为2,母线长为5,则圆锥的侧面积为( ) A. 5πB. 10πC. 20πD. 40π8.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A. 2x <B. 2x >C. 0x <D. 0x >二、填空题(本大题共8小题,每小题3分,共24分)9.若24=16x ,则x =__.10.二次函数233y x x =++-的图象与y 轴的交点坐标是__.11.将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是 .12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.13.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.14.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__. 15.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.16.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解方程: (1)220x x +=(2)241x x =-18.已知关于x 的一元二次方程()2m 1x 2x 10-+-=有两个不相等的实数根,求m 的取值范围.19.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序. (1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.20.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I )所示: 小花 70 80 90 80 70 90 80 100 60 80 小红 908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ): 姓名 平均成绩 中位数 众数 小华 80 小红 8090(1)填空:根据表I 的数据完成表Ⅱ中所缺的数据; (2)老师计算了小红的方差22214(9080)3(6080)(10080)20010⎡⎤⨯-+⨯-+-=⎣⎦请你计算小华的方差并说明哪名学生的成绩较为稳定.21.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx+c=0的两个根; (2)写出不等式ax 2+bx+c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围.22.如图,CD 是O直径,O 是圆心,E 是圆上一点,且81EOD ∠=,A 是 DC 延长线上一点,AE 与圆交于另一点B ,且AB OC =.(1)求证:2E EAD ∠=∠; (2)求EAD ∠的度数.23.如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b ≥(x ﹣2)2+m 的x 的取值范围.24.如图所示,O 分别切ABC 的三边AB 、BC 、CA 于点D 、E 、F ,若8BC =,10AC =,6AB =.(1)求AD 的长; (2)求O 的半径长.25.某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件. (1)该店销售该商品原来一天可获利润 元.(2)设后来该商品每件售价降价x 元,此店一天可获利润y 元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求y 与x 之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值. 26.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B ,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程()cm l与时间()s t 满足关系()230l t t t =+≥,乙以8cm /s 的速度匀速运动,半圆的长度为42cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?27.如图,在直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A (-3,0)、B (1,0),与y 轴交于点C .(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D ,使得△ABD 的面积等于△ABC 的面积的53倍?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点E 是以点C 为圆心且1为半径的圆上的动点,点F 是AE 的中点,请直接写出线段OF 的最大值和最小值.2019-2020学年度第一学期期末学情调研九年级数学试卷注意事项:1.本试卷考试时间为120分钟, 试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分)1.二次函数2(1)3y x =-+图象的顶点坐标是( ) A. (1,3) B. (1,3)- C. (1,3)- D. (1,3)--【答案】A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+, ∴二次函数图像顶点坐标为:(1,3). 故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).2.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A. P 在圆内 B. P 在圆上C. P 在圆外D. 无法确定【答案】C 【解析】 【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4, ∴点P 在圆外. 故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.3.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A. 8B. 9C. 10D. 11【答案】D【解析】【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.4.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是()A. 14B.34C.15D.35【答案】D 【解析】【分析】根据题意即从5个球中摸出一个球,概率为35.【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.5.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A. 30°B. 35°C. 40°D. 50°【答案】C【解析】【分析】根据圆周角与圆心角的关键即可解答. 【详解】∵∠AOC =80°, ∴102ABC AOC 4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 6.方程2210x x --=的两根之和是( ) A. 2- B. 1-C.12D. 12-【答案】C 【解析】 【分析】利用两个根和的关系式解答即可. 【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 7.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A. 5π B. 10π C. 20πD. 40π【答案】B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.8.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A. 2x < B. 2x >C. 0x <D. 0x >【答案】C 【解析】 【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围. 【详解】222(1)1y x x x =-+=--+, ∵图像的对称轴为x=1,a=-10<, ∴当x 1<时,y 随着x 的增大而增大, 故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增.二、填空题(本大题共8小题,每小题3分,共24分)9.若24=16x ,则x =__. 【答案】2± 【解析】 【分析】用直接开平方法解方程即可. 【详解】24=16x ,2=4x ,2x =±,故答案为:2±.【点睛】此题考查一元二次方程的解法,依据方程的特点选择恰当的方法.10.二次函数233y x x =++-的图象与y 轴的交点坐标是__.【答案】(0,3) 【解析】 【分析】令x=0即可得到图像与y 轴的交点坐标.【详解】当x=0时,y=3,∴图象与y 轴的交点坐标是(0,3) 故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y 轴交点的横坐标等于0,与x 轴交点的纵坐标等于0,依此列方程求解即可.11.将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是 . 【答案】y=x 2+x ﹣2. 【解析】根据平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,将抛物线y=x 2+x 向下平移2个单位,所得抛物线的表达式是y=x 2+x ﹣2.12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.【答案】23【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=46=23.故答案为23. 13.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__. 【答案】25% 【解析】 【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x ,280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去) 故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1 x )2=后量,即可解答此类问题.14.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__. 【答案】74 【解析】 【分析】利用加权平均数公式计算. 【详解】甲的成绩=70560290374523,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键. 15.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.【答案】2 【解析】 【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案. 【详解】解:如图所示,连接OA ,∵半径ON 交AB 于点M ,M 是AB 的中点, ∴AM=BM=12AB =4,∠AMO=90°, ∴在Rt △AMO 中 22OM AM+ =5.∵ON=OA , ∴MN=ON-OM=5-3=2. 故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 16.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.26 【解析】 【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令2143115y x =-中y=0,得x 13,x 23 ∴直线AC 的解析式为31y x =-,设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1 ∴PQ 2=PB 2-BQ 2, 32+(31x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ 26, 26【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解方程: (1)220x x += (2)241x x =-【答案】(1)10x =或22x =-;(2) 12x =或22x =【解析】 【分析】(1)用提公因式法解方程; (2)用配方法解方程. 【详解】(1)220x x +=, x (x+2)=0, x 1=0,x 2=-2; (2)241x x =-.,241x x -=-, 2(2)3x -=,12x =,22x =【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的解法即可.18.已知关于x 的一元二次方程()2m 1x 2x 10-+-=有两个不相等的实数根,求m 的取值范围.【答案】m >﹣1且m ≠0. 【解析】 【分析】由关于x 的一元二次方程2210mx x +-=有两个不相等的实数根,由一元二次方程的定义和根的判别式的意义可得m ≠0且△>0,即4﹣4m •(﹣1)>0,两个不等式的公共解即为m 的取值范围. 【详解】∵关于x 的一元二次方程2210mx x +-=有两个不相等的实数根, ∴m ≠0且△>0,即4﹣4m •(﹣1)>0,解得m >﹣1, ∴m 的取值范围为m >﹣1且m ≠0,∴当m >﹣1且m ≠0时,关于x 的一元二次方程mx 2+2x ﹣1=0有两个不相等的实数根. 19.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序. (1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率. 【答案】(1)13;(2)画图见解析;12【解析】 【分析】(1)从3个人中选一个,得甲第一个演讲的概率是13(2)列树状图即可求得答案.【详解】(1)甲第一个演讲的概率是13; (2)树状图如下:共有6种等可能情况,其中丙比甲先演讲的有3种, ∴P (丙比甲先演讲)=3162=. 【点睛】此题考查事件的概率,在确定事件的概率时通常选用树状图或列表法解答. 20.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I )所示: 小花 70 80 90 80 70 90 80 100 60 80 小红 908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ): 姓名 平均成绩 中位数 众数 小华 80 小红 8090(1)填空:根据表I 的数据完成表Ⅱ中所缺的数据; (2)老师计算了小红的方差22214(9080)3(6080)(10080)20010⎡⎤⨯-+⨯-+-=⎣⎦请你计算小华的方差并说明哪名学生的成绩较为稳定.【答案】(1)见解析;(2)小华的方差是120,小华成绩稳定.【解析】【分析】(1)由表格可知,小华10次数学测试中,得60分的1次,得70分的2次,得80分的4次,得90分的2次,得100分的1次,根据加权平均数的公式计算小华的平均成绩,将小红10次数学测试的成绩从小到大排列,可求出中位数,根据李华的10个数据里的各数出现的次数,可求出测试成绩的众数;(2)先根据方差公式分别求出两位同学10次数学测试成绩的方差,再比较大小,其中较小者成绩较为稳定.【详解】(1)解:(1)小华的平均成绩为:110(60×1+70×2+80×4+90×2+100×1)=80,将小红10次数学测试的成绩从小到大排列为:60,60,60,80,80,90,90,90,90,100,第五个与第六个数据为80,90,所以中位数为80902=85,小华的10个数据里80分出现了4次,次数最多,所以测试成绩的众数为80.填表如下:(2)小华同学成绩的方差:S2=110[102+02+102+02+102+102+02+202+202+02]=110(100+100+100+100+400+400)=120,小红同学成绩的方差为 200,∵120<200,∴小华同学的成绩较为稳定.【点睛】本题考查平均数、中位数、众数、方差的意义.一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 21.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax 2+bx+c=0的两个根; (2)写出不等式ax 2+bx+c >0的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围.【答案】(1)x 1=1,x 2=3;(2)1<x <3;(3)x >2. 【解析】 【分析】(1)利用抛物线与x 轴的交点坐标写出方程ax 2+bx +c =0的两个根; (2)写出函数图象在x 轴上方时所对应的自变量的范围即可; (3)根据函数图象可得答案.【详解】解:(1)由函数图象可得:方程ax 2+bx +c =0的两个根为x 1=1,x 2=3; (2)由函数图象可得:不等式ax 2+bx +c >0的解集为:1<x <3; (3)由函数图象可得:当x >2时,y 随x 的增大而减小.【点睛】本题考查了抛物线与x 轴的交点问题、根据函数图象求不等式解集以及二次函数的性质,注意数形结合思想的应用. 22.如图,CD 是O 的直径,O 是圆心,E 是圆上一点,且81EOD ∠=,A 是 DC 延长线上一点,AE 与圆交于另一点B ,且AB OC =.(1)求证:2E EAD ∠=∠; (2)求EAD ∠的度数.【答案】(1)见解析;(2)27【解析】 【分析】(1)连接 OB ,利用等腰三角形的性质证得2EAD ∠=∠,1E ∠=∠,再利用等角的关系得2E EAD ;(2)根据(1)可直接求得EAD ∠的度数. 【详解】(1)如图,连接 OB .AB OC =,OB OC =, ∴ AB BO =,∴ 2EAD ∠=∠,∴ 122EAD EAD ∠=∠+∠=∠. 又 OE OB =, ∴ 1E ∠=∠, ∴ 2EEAD ,(2)由(1) 得 381EOD E EAD EAD ∠=∠+∠=∠=, ∴ 27EAD ∠=.【点睛】此题考查圆的性质,等腰三角形的性质,题中依据AB OC =连接OB 是解题的关键.23.如图,二次函数y=(x ﹣2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B . (1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b ≥(x ﹣2)2+m 的x 的取值范围.【答案】(1)二次函数解析式为y=(x ﹣2)2﹣1;一次函数解析式为y=x ﹣1.(2)1≤x ≤4. 【解析】 【分析】(1)将点A (1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式.(2)根据图象和A 、B 的交点坐标可直接求出kx+b ≥(x-2)2+m 的x 的取值范围. 【详解】解:(1)将点A (1,0)代入y=(x ﹣2)2+m 得,(1﹣2)2+m=0,解得m=﹣1. ∴二次函数解析式为y=(x ﹣2)2﹣1. 当x=0时,y=4﹣1=3,∴C 点坐标为(0,3).∵二次函数y=(x ﹣2)2﹣1的对称轴为x=2, C 和B 关于对称轴对称, ∴B 点坐标(4,3).将A (1,0)、B (4,3)代入y=kx+b 得,k+b=0{4k+b=3,解得k=1{b=1-. ∴一次函数解析式为y=x ﹣1. (2)∵A 、B 坐标为(1,0),(4,3),∴当kx+b ≥(x ﹣2)2+m 时,直线y=x ﹣1的图象在二次函数y=(x ﹣2)2﹣1的图象上方或相交,此时1≤x ≤4.24.如图所示,O 分别切ABC 的三边AB 、BC 、CA 于点D 、E 、F ,若8BC =,10AC =,6AB =.(1)求AD 的长; (2)求O 的半径长.【答案】(1)4;(2)2 【解析】 【分析】(1)设AD=x ,根据切线长定理得到AF=AD,BE=BD,CE=CF,根据关系式列得方程解答即可;(2)连接OD 、OE 、OF 、OA 、OB 、OC ,将△ABC 分为三个三角形:△AOB 、△BOC 、△AOC ,再用面积法求得半径即可.【详解】解:(1)设 AD x =,O 分别切 ABC 的三边 AB 、BC 、CA 于点 D 、E 、F ,AF AD x ∴==,8BC =,10AC =,6AB =,6BD BE AB AD x ∴==-=-,10CE CF AC AF x ==-=-, 6108BE CE x x BC ∴+=-+-==, 即 1628x -=,得 4x =, AD ∴ 的长为 4.(2)如图,连接OD 、OE 、OF 、OA 、OB 、OC , 则OD ⊥AB,OE ⊥BC,OF ⊥AC,且OD=OE=OF=2, ∵8BC =,10AC =,6AB =, ∴AB 2+BC 2=AC 2,∴△ABC 是直角三角形,且∠B 是直角,∴△ABC 的面积=11112222AB OD AC OF BC OE BC AB , ∴11(6810)6822OD, ∴OD=2,即O 的半径长为2.【点睛】此题考查圆的性质,切线长定理,利用面积法求得圆的半径,是一道圆的综合题.25.某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件. (1)该店销售该商品原来一天可获利润 元.(2)设后来该商品每件售价降价x 元,此店一天可获利润y 元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求y 与x 之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值. 【答案】(1)2000;(2)①售价是75元,②售价为85元,利润最大为3125元. 【解析】 【分析】(1)用每件利润乘以50件即可;(2)每件售价降价x 元,则每件利润为(100-60-x )元,销售量为(50+5x )件,它们的乘积为利润y , ①利用y=2625得到方程(100-60-x )(50+5x )=2625,然后解方程即可; ②由于y=(100-60-x )(50+5x ),则可利用二次函数的性质确定最大利润值.【详解】解:(1)解:(1)该网店销售该商品原来一天可获利润为(100-60)×50=2000(元), 故答案为2000;(2)①(10060)(505)2625x x --+= 解得5x =或25x =,又因尽量多增加销售量,故25x =. 售价是1002575-=元.答:每件商品的售价应降价25元;②2(10060)(505)5(15)3125y x x x +=--+=--, 当15x =时,售价为1001585-=元,利润最大为3125元.答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元.【点睛】本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围.26.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B ,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程()cm l 与时间()s t 满足关系()230l t t t =+≥,乙以8cm /s 的速度匀速运动,半圆的长度为42cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间? (3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间? 【答案】(1)28cm ;(2)3s ;(3)7s 【解析】 【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程23842t t t ,求解即可; (3)第二次相遇应是走了三个半圆的长度,得到238126t t t ,解方程即可得到答案.【详解】解:(1)当 t=4s 时,23161228lt t cm.答:甲运动 4s 后的路程是 28?c m .(2) 由图可知,甲乙第一次相遇时走过的路程为半圆 21?c m ,甲走过的路程为 2t 3t +,乙走过的路程为 4t ,则23842t t t .解得 3t = 或 14t =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了 3s .(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 342126cm ,则238126t t t解得 7t = 或 18t =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了 7s .【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.27.如图,在直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A (-3,0)、B (1,0),与y 轴交于点C .(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D ,使得△ABD 的面积等于△ABC 的面积的53倍?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点E 是以点C 为圆心且1为半径的圆上的动点,点F 是AE 的中点,请直接写出线段OF 的最大值和最小值.【答案】(1)224x 233y x =+-;(2)存在,理由见解析;D (-4, 103)或(2,103);(31312+; 1312- 【解析】【分析】(1)将点A 、B 的坐标代入函数解析式计算即可得到;(2)点D 应在x 轴的上方或下方,在下方时通过计算得∴△ABD 的面积是△ABC 面积的43倍,判断点D 应在x 轴的上方,设设D (m ,n ),根据面积关系求出m 、n 的值即可得到点D 的坐标;(3)设E(x,y),由点E 是以点C 为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E 的坐标为E 2(,12)x x ,再根据点F 是AE 中点表示出点F 的坐标2312(,)2x x ,再设设F(m,n),再利用m 、n 、与x 的关系得到n=21(23)2m ,通过计算整理得出22231(1)()()22n m ,由此得出F 点的轨迹是以3(,1)2--为圆心,以12为半径的圆,再计算最大值与最小值即可. 【详解】解:(1)将点A (-3,0)、B (1,0)代入y =ax 2+bx -2中,得932020a b a b --=⎧⎨+-=⎩,解得2343a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴224x 233y x =+- (2)若D 在x 轴的下方,当D 为抛物线顶点(-1,83-)时,02C (,-), ∴△ABD 的面积是△ABC 面积的43倍, 4533<,所以D 点一定在x 轴上方. 设D (m ,n ), △ABD 的面积是△ABC 面积的53倍, ∴n =103∴224233m m +-=103∴m =-4或m =2 ∴D (-4, 103)或(2,103) (3)设E(x,y),∵点E 是以点C 为圆心且1为半径的圆上的动点,∴22(2)1x y ++=,∴y=212x , ∴E 2(,12)x x , ∵F 是AE 的中点,∴F 坐标2312(,)22x x ,设F(m,n),∴m=32x -,n=212x , ∴x=2m+3,∴n=21(23)2m ,∴2n+2=21(23)m , ∴(2n+2)2=1-(2m+3)2, ∴4(n+1)2+4(32m )2=1, ∴22231(1)()()22n m , ∴F 点的轨迹是以3(,1)2--为圆心,以12为半径的圆, 1131(0)12222, 1131(0)1222212+; 12- 【点睛】此题是二次函数的综合题,考察待定系数法解函数关系式,图像中利用三角形面积求点的坐标,注意应分x 轴上下两种情况,(3)还考查了两点间的中点坐标的求法,两点间的距离的确定方法:两点间的距离的平方=横坐标差的平方+纵坐标差的平方.。
江苏省盐城地区九年级上学期期末考试数学考试卷(含答案)

江苏省盐城地区九年级上学期期末考试数学考试卷(含答案)注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程中,是关于x的一元二次方程的是(▲)A.x+1x=2B.2x2﹣x=1C.3x3=1D.xy=42.设方程x2﹣3x+2=0的两根分别是x1,x2,则x1+x2的值为(▲)A.3B.32C.32D.﹣23.如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于(▲)A.30°B.60°C.120°D.300°4.已知⊙O的半径是4,点P到圆心O的距离为5,则点P在(▲)A.⊙O的内部B.⊙O的外部C.⊙O上或⊙O的内部D.⊙O上或⊙O的外部(第3题)5.从拼音“shuxue”中随机抽取一个字母,抽中字母u的概率为(▲)A.13B.14C.15D.166.一组数据x、0、1、﹣2、3的平均数是1,则x的值是(▲)A.3B.1C.2.5D.07.将函数y=ax2+bx+c(a≠0)的图象向下平移两个单位,以下错误的是(▲)A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变8.表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是(▲)A.这个函数的最小值为﹣6B.这个函数的图象开口向下C.这个函数的图象与x轴无交点D.当x>2时,y的值随x值的增大而增大二、填空题(本大题共8小题,每小题3分,共24分)9.抛物线y=﹣2(x+2)2﹣5的顶点坐标是▲.10.方程x2﹣x=0的根为▲.11.一组数据分别为:79、81、77、82、75、82,则这组数据的中位数是▲.12.已知圆锥的底面圆半径为4,母线长为5,则圆锥的侧面积是▲.13.如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.则a的值为▲.14.转动如图所示的转盘,当转盘停止时,指针落在阴影区域的概率是▲.(第13题)(第14题)(第15题)15.二次函数y=ax2+bx+c的图象如图所示,则三个代数式①abc,②b2﹣4ac,③a﹣b+c中,值为正数的有▲.(填序号)16.如图中的三个图形都是边长为1的小正方形组成的网格,数一数长度为1的线段,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为▲.(用含n的代数式表示)(第16题)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17.(6分)解方程:(1)(x ﹣1)2﹣9=0 (2)x 2﹣2x ﹣5=018.(6分)已知关于x 的一元二次方程x 2+x ﹣m =0.(1)设方程的两根分别是x 1,x 2,若满足2121x x x x ⨯=+,求m 的值. (2)二次函数y =x 2+x ﹣m 的部分图象如图所示,求m 的值.19.(8分)已知二次函数y =x 2﹣4x +3. (1)将y =x 2﹣4x +3化成y =a (x ﹣h )2+k的形式: ▲ ;(2)这个二次函数图象与x 轴交点坐标为 ▲ ; (3)这个二次函数图象的最低点的坐标为 ▲ ; (4)当y <0时,x 的取值范围是 ▲ .20.(8分)已知关于x 的一元二次方程:x 2﹣(2k +2)x +k 2+2k =0. (1)当k =2时,求方程的根;(2)求证:这个方程总有两个不相等的实数根.21.(8分)九年级某班要召开一次“走近抗疫英雄,讲好中国故事”主题班会活动,李老师制作了编号为A 、B 、C 、D 的4张卡片(如图,除编号和内容外,其余完全相同),并将它们背面朝上洗匀后放在桌面上.(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为 ▲ ;(2)小明从4张卡片中随机抽取1张(不放回),小丽再从余下的3张卡片中随机抽取1张,然后根据抽取的卡片讲述相关英雄的故事,求小明、小丽两人中恰好有一人讲述钟南山抗疫故事的概率(请用“画树状图”、“列表”等方法写出分析过程).22.(10分)某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,每组20人,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955根据上面的信息,解答下列问题:(1)甲组的平均成绩为▲分,甲组成绩的中位数是▲,乙组成绩统计图中m=▲,乙组成绩的众数是▲;(2)根据图表信息,请你判断哪个小组的成绩更加稳定?只需要直接写出结论.23.(10分)如图,AB、AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P,连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=6,求由劣弧AC、线段AC所围成图形的面积S.24.(10分)【概念提出】圆心到弦的距离叫做该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为▲.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长与OP的长无关.其中所有正确结论的序号是▲.【问题解决】(3)若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为▲°.(4)已知如图②给定的线段EF和⊙O,点Q是⊙O内一定点.过点Q作弦AB,满足AB=EF,请问这样的弦可以作▲条.25.(10分)某水果超市经销一种高档水果,售价每千克40元.(1)若按售价为每千克50元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,超市决定采取适当的涨价措施,但超市规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克.现该超市希望每天盈利6000元,那么每千克应涨价多少元?(2)在(1)的基础上,利用函数关系式求出每千克水果涨价多少元时,超市每天可获得最大利润?最大利润是多少?26.(12分)如图,点P 在y 轴的正半轴上,⊙P 交x 轴于B 、C 两点,以AC 为直角边作等腰Rt △ACD ,BD 分别交y 轴和⊙P 于E 、F 两点,连接AC 、FC ,AC 与BD 相交于点G . (1)求证:∠ACF =∠ADB ; (2)求证:CF=DF ; (3)∠DBC = ▲ °;(4)若OB=3,OA=6,则△GDC 的面积为 ▲ .27.(14分)如图1,在平面直角坐标系中,直线y =﹣6x +6与x 轴、y 轴分别交于A 、C 两点,抛物线y =x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为B . (1)抛物线解析式为 ▲ ;(2)若点M 为x 轴下方抛物线上一动点,MN ⊥x 轴交BC 于点N ,当点M 运动到某一位置时,线段MN 的长度最大,求此时点M 的坐标及线段MN 的长度;(3)如图2,以B 为圆心、2为半径的⊙B 与x 轴交于E 、F 两点(F 在E 右侧),若点P 是⊙B 上一动点,连接P A ,以P A 为腰作等腰Rt △P AD ,使∠P AD =90°(P 、A 、D 三点为逆时针顺序),连接FD .①将线段AB 绕点A 顺时针旋转90°,请直接写出B 点的对应点B′的坐标; ②求FD 长度的取值范围.图1 图2AE FDO BCGPxy参考答案一、选择题(本大题共有8小题,每小题3分,共24分) 1.B2.A3.C4. B5.A6.A 7.D8.D二、填空题(本大题共8小题,每小题3分,共24分) 9. (-2,-5) 10.x 1=0,x 2=111.8012.π20 13.314.31 15.①②③16.2n (n +1)三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17.(6分)解:(1)31±=-x2,421-==x x (3分) ()16166161)2(212+-=+=±=-=-x x x x (3分)18.(6分)解: (1)由题意得:121-=+x xmx x -=⨯21∴1=m(2分)当m=1时,∆>0,∴1=m (1分)(2)图像可知:过点(1,0) 当x=1,y=0代入y =x 2+x ﹣m ∴2=m(3分)19.(8分)解:(1) y =(x ﹣2)2﹣1; ;(2分) (2) (1,0)或(3,0) ;(2分) (3)(2,-1);(2分) (4) 1<x <3 ;(2分)20.(8分)解:(1)解:当k =2时,求方程的根为124,2x x ==.(4分) (2)证明:∵Δ=[﹣(2k +2)]2﹣4(k 2+2k )=4>0,∴不论k 取何值,此一元二次方程总有两个不相等的实数根.(4分)21.(8分)解:(1)小明随机抽取1张卡片,抽到卡片编号为B 的概率为,故答案为:; (3分)(2)画树状图如下:- (3分)共有12种等可能的结果数,其中小明、小丽两人中恰好有一人讲述钟南山抗疫故事的有6种结果,所以小明、小丽两人中恰好有一人讲述钟南山抗疫故事的. (答2分) 22.(10分)解:(1) 甲组的平均成绩为 8.7 分,甲组成绩的中位数是 8.5 , 乙组图中m = 3 ,乙组成绩的众数是 8 ; (2+2+2+2分) (2)∴乙组的成绩更加稳定. (2分) 23.(10分)(1)证明:如图,连接OC , ∵P A 是半⊙O 的切线, ∴P A ⊥OA , ∴∠OAP =90°,∵OD ⊥AC ,OD 经过圆心O , ∴CD =AD , ∴PC =P A ,∵OC =OA ,OP =OP , ∴△OCP ≌△OAP (SSS ), ∴∠OCP =∠OAP =90°,∵PC 经过⊙O 的半径OC 的外端,且PC ⊥OC , ∴PC 是⊙O 的切线. (方法不唯一) (5分) (2)∵AB 是⊙O 的直径,且AB =10, ∴OA =OB =5,∵∠ADO =90°,∠CAB =30°, ∴OD =OA =23,∴AC=2AD=33, ∴S △AOC =349233321=⨯⨯, ∵∠COB =2∠CAB =60°, ∴∠AOC =180°﹣60°=120°,∴S 扇形AOC =ππ336031202=⨯, ∴S =S 扇形AOC ﹣S △AOC=3493-π(5分) 24.(10分)解:(1)若⊙O 的半径为5,OP 的长为3,则AB 的长为 8 .(2分) (2)其中所有正确结论的序号是 ② .(2分) (3) 90° (3分) (4)可以作2条. (3分) 25.(10分)解:(1)设每千克应涨价x 元,由题意,得 (10+x )(500﹣20x )=6000, 整理,得x 2﹣15x +50=0, 解得:x =5或x =10,(4分) ∵超市规定每千克涨价不能超过8元, ∴x =5,答:该超要保证每天盈利6000元,那么每千克应涨价5元;(5分) (2)设超市每天可获得利润为w 元, 则w =(10+x )(500﹣20x ) =﹣20x 2+300x +5000 =﹣20(x ﹣)2+6125,∵﹣20<0, ∴当x ==7.5时,w 有最大值,最大值为6125,答:当每千克水果涨价7.5元时,超市每天可获得最大利润,最大利润是6125元.(5分) 26.(12分)解: (1)证明:连接AB ,∵OP ⊥BC , ∴BO =CO , ∴AB =AC , 又∵AC =AD , ∴AB =AD , ∴∠ABD =∠ADB , 又∵∠ABD =∠ACF , ∴∠ACF =∠ADB .(3分) (2)∵AC =AD , ∴∠ACD =∠ADC , ∵∠ACF =∠ADF ,∵∠ACD -∠ACF =∠ADC -∠ADF , ∴即∠FCD =∠FDC , ∴CF =DF (3分) (3)∠CBD =45°(3分) (4)15(3分)27.(14分)解:(1)∴抛物线解析式为y =x 27x +6;(4分) (2)当y =x 2﹣7x +6=0时, 解得:x 1=1,x 2=6,∴B (6,0), ∴直线BC 的解析式为:y =﹣x +6,设M (m ,m 2﹣7m +6),则N 为(m ,﹣m +6),∴MN =﹣m +6﹣(m 2﹣7m +6)=﹣m 2+6m =()932+--m ,∴当M 运动到(3,-6)时,线段MN 的长度最大为9;(4分) (3)①∵A (1,0),B (6,0),∴AB =6﹣1=5, ∵将线段AB 绕A 点顺时针旋转90°, ∴B 点的对应点的坐标为(1,﹣5);(2分)②如图2,连接BP ,过点A 作AQ ⊥AB ,并截取AQ =AB =5,连接DQ , ∵∠P AD =∠BAQ =90°, ∴∠BAP =∠QAD ,AE FDO B CGPA E FDO B CGPQH∵AB =AQ ,AP =AD ,∴△BAP ≌△QAD (SAS ),∴PB =DQ =2,∴点D 在以Q 为圆心,以2为半径的圆上运动, ∴当Q 在线段DF 上时,DF 最长,Rt △AQF 中,AQ =4,AF =5+2=7,∴QF =745722=+,∴此时DF 的最大值是2+74;(2分) 当D 在线段QF 上时,DF 的长最小,同理可得DF 的最小值是74﹣2;(1分) ∴FD 的取值范围是:274274+≤≤-DF .(答1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省盐城市亭湖区景山中学九年级(上)期末数学试卷一.选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项的字母代号填涂在答题纸相应位置上)1.(3分)若x=2y,则的值为()A.2B.1C.D.2.(3分)若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是()A.k>﹣1B.k≥﹣1C.k<﹣1D.k≤﹣13.(3分)两个相似三角形的面积比是9:16,则这两个三角形的相似比是()A.9:16B.3:4C.9:4D.3:164.(3分)已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2B.15πcm2C.cm2D.10πcm25.(3分)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是()A.88,90B.90,90C.88,95D.90,956.(3分)在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°7.(3分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为()A.B.C.D.8.(3分)如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B 和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBCQ的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.(3分)cos30°=.10.(3分)抛物线y=(x﹣2)2﹣3的顶点坐标是.11.(3分)在Rt△ABC中,∠C=90°,AC=6,BC=8,则其外接圆的半径为.12.(3分)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x﹣1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).13.(3分)某一时刻身高160cm的小王在太阳光下的影长为80cm,此时他身旁的旗杆影长10m,则旗杆高为.14.(3分)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为cm.(保留2位小数)15.(3分)将抛物线y=﹣2x2+1向左平移三个单位,再向下平移两个单位得到抛物线.16.(3分)从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t ﹣6t2,则小球运动到的最大高度为米.17.(3分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣1,x2=2,则二次函数y=x2+mx+n 中,当y<0时,x的取值范围是.18.(3分)如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为.三.解答题19.(8分)解方程或计算(1)解方程:3y(y﹣1)=2(y﹣1)(2)计算:sin60°cos45°+tan30°.20.(9分)在Rt△ABC中,∠C=90°,a=6,b=6.解这个三角形.21.(10分)小明、小林是景山中学九年级的同班同学,在六月份举行的招生考试中,他俩都被亭湖高级中学录取,并将被编入A、B、C三个班,他俩希望编班时分在不同班.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人不在同班的概率.22.(10分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求⊙O的半径长及图中阴影部分的面积.23.(10分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.24.(10分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC 与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)25.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?26.(13分)我们不妨约定:如图①,若点D在△ABC的边AB上,且满足∠ACD=∠B(或∠BCD=∠A),则称满足这样条件的点为△ABC边AB上的“理想点”.(1)如图①,若点D是△ABC的边AB的中点,AC=2,AB=4.试判断点D是不是△ABC边AB上的“理想点”,并说明理由.(2)如图②,在⊙O中,AB为直径,且AB=5,AC=4.若点D是△ABC边AB上的“理想点”,求CD的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,﹣3),C为x轴正半轴上一点,且满足∠ACB=45°,在y轴上是否存在一点D,使点A是B,C,D三点围成的三角形的“理想点”,若存在,请求出点D的坐标;若不存在,请说明理由.27.(14分)如图,抛物线y=﹣x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(﹣1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.2019-2020学年江苏省盐城市亭湖区景山中学九年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项的字母代号填涂在答题纸相应位置上)1.【解答】解:∵x=2y,∴==2;故选:A.2.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k=0没有实数根,∴△<0,即(﹣2)2﹣4×1×(﹣k)<0,解得k<﹣1,∴k的取值范围是k<﹣1.故选:C.3.【解答】解:∵两个相似三角形的面积比为9:16,∴它们对应的相似比是3:4.故选:B.4.【解答】解:设底面半径为rcm,3π×5=15π(cm2),故选:B.5.【解答】解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95,故中位数为:90,众数为:90.故选:B.6.【解答】解:由题意得,sin A﹣=0,﹣cos B=0,即sin A=,=cos B,解得,∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°,故选:C.7.【解答】解:在直角△ABC中,AB===5.∵在Rt△ABC中,∠C=90°,CD⊥AB于D.∴∠ACD=∠B,∴cosα=cos B==.故选:A.8.【解答】解:根据题意,得AP=AQ=x,AB=AC=4,y=S△ABC﹣S△APQ=4×4﹣x2=﹣x2+8,∴此函数图象是开口向下的抛物线,与y轴交点坐标为(0,8)∵0≤x≤4,所以符合题意的图象为C.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9.【解答】解:cos30°=.故答案为:.10.【解答】解:∵抛物线y=(x﹣2)2﹣3∴该抛物线的顶点坐标为:(2,﹣3),故答案为:(2,﹣3).11.【解答】解:∵∠C=90°,AC=6,BC=8,∴BA=10,∴其外接圆的半径为5.12.【解答】解:∵a=1>0,∴二次函数的图象开口向上,由二次函数y=(x﹣1)2+1可知,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y随x的增大而增大,∵x1>x2>1,∴y1>y2.故答案为:>.13.【解答】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160:80=x:10,解得x=20.故答案是:20m.14.【解答】解:∵书的宽与长之比为黄金比,长为20cm,∴它的宽=20•=10(﹣1)≈12.36(cm).故答案为12.36.15.【解答】解:抛物线y=﹣2x2+1的顶点坐标为(0,1),∵向左平移3个单位,向下平移两个单位∴平移后的抛物线的顶点坐标为(﹣3,﹣1),∴所得到的抛物线解析式是y=﹣2(x+3)2﹣1.故答案为:y=﹣2(x+3)2﹣1.16.【解答】解:h=12t﹣6t2=﹣6(t2﹣2t)=﹣6(t﹣1)2+6,则小球运动到的最大高度为6m.故答案为:6.17.【解答】解:∵x2+mx+n=0的两个实数根分别为x1=﹣1,x2=2,∴二次函数y=x2+mx+n与x轴的两个交点坐标分别为(﹣1,0),(2,0),∵a=1>0,∴抛物线开口向上,∴y<0时,x的取值范围是:﹣1<x<2.故答案为:﹣1<x<2.18.【解答】解:∵AB是半圆O的直径,∴∠ACB=90°,在Rt△ACB中,sin∠CAB=,即=,解得,BC=8,由勾股定理得,AC===6,当点E在AC上,△CED∽△CAB时,==,∴CE=3,∴AE=6﹣3=3,当点E在AC上,△CDE∽△CAB时,=,即=,解得,CE=,∴AE=6﹣=,当点E在AC的延长线上,△CED∽△CAB时,==,∴CE=3,∴AE=6+3=9,当点E在AC上,△CDE∽△CAB时,=,即=,解得,CE=,∴AE=6+=,综上所述,△CDE与△ACB相似时,线段AE的长为3或9或或,故答案为:3或9或或.三.解答题19.【解答】解:(1)∵3y(y﹣1)﹣2(y﹣1)=0,∴(y﹣1)(3y﹣2)=0,则y﹣1=0或3x﹣y=0,解得y=1或y=;(2)原式=××+=+=.20.【解答】解:由勾股定理得,c====12,∵tan A===,∴∠A=30°,∴∠B=90°﹣∠A=90°﹣30°=60°,即:c=12,∠A=30°,∠B=60°;21.【解答】解:(1)画树状图如下:由树形图可知所以等可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC,共9种;(2)由(1)可知两人不在同班的情况数有6种,则两人不在同班的概率是=.22.【解答】(1)证明:连接OB,∵sin∠OCB=,∴∠OCB=45°,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠BOC=90°,∵四边形OABC是平行四边形,∴AB∥OC,∴∠BOC=∠ABO=90°,∵B在⊙O上,∴AB与⊙O相切;解:(2)设⊙O的半径为r,则OB=OC=r,在Rt△OBC中,r2+r2=102,∴r=5,∴S阴影部分=S扇形OBC﹣S△OBC=﹣×=π﹣25,答:⊙O的半径长5,阴影部分的面积为.23.【解答】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴=,=,又∵CD=EF,∴=,∵DF=3m,FG=4m,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴=,∴BD=9,BF=9+3=12,∴=,解得AB=6.答:路灯杆AB的高度是6m.24.【解答】解:(1)∵在RT△ACD中,AC=45cm,DC=60cm,∴AD==75,∴车架档AD的长为75cm,(2)过点E作EF⊥AB,垂足为点F,∵AE=AC+CE=45+20(cm)∴EF=AE sin75°=(45+20)sin75°≈62.7835≈63cm,∴车座点E到车架档AB的距离是63cm.25.【解答】解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),即y=﹣x2+24x+3200;(2)由题意,得﹣x2+24x+3200=4800.整理,得x2﹣300x+20000=0.解这个方程,得x1=100,x2=200.要使百姓得到实惠,取x=200元.∴每台冰箱应降价200元;(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,当x=150时,y最大值=5000(元).所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.26.【解答】解:(1)结论:点D是△ABC的“理想点”.理由:如图①中,∵D是AB中点,AB=4,∴AD=DB=2,∵AC2=(2)2=8,AD•AB=8,∴AC2=AD•AB,∴=,∵∠A=∠A,∴△ACD∽△ABC,∴∠ACD=∠B,∴点D是△ABC的“理想点”,(2)如图②中,∵点D是△ABC的“理想点”,∴∠ACD=∠B或∠BCD=∠A,当∠ACD=∠B时,∵∠ACD+∠BCD=90°,∴∠BCD+∠B=90°,∴∠CDB=90°,当∠BCD=∠A时,同法证明:CD⊥AB,∵AB是直径,∴∠ACB=90°,∵AB=5,AC=4,∴BC==3,∵AB•CD=AC•BC,∴CD=.(3)如图③中,存在.有三种情形:过点A作MA⊥AC交CB的延长线于M,作MH⊥y轴于H.∵∠MAC=∠AOC=∠AHM=90°,∠ACM=45°,∴∠AMC=∠ACM=45°,∴AM=AC,∵∠MAH+∠CAO=90°,∠CAO+∠ACO=90°,∴∠MAH=∠ACO,∴△AHM≌△COA(AAS),∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,﹣3),∴OA=MH=2,OB=3.AB=5,OC=AH=a,BH=a﹣5,∵MH∥OC,∴=,∴=,解得a=6或﹣1(舍弃),经检验a=6是分式方程的解,∴C(6,0),OC=6,①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”.设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴CD12=D1A•D1B,∴m2+62=(m﹣2)(m+3),解得m=42,∴D1(0,42).②当∠BCA=∠CD2B时,点A是△BCD2的“理想点”.易知:∠CD2O=45°,∴OD2=OC=6,∴D2(0,6).综上所述,满足条件的点D坐标为(0,42)或(0,6).27.【解答】解:(1)将点A的坐标代入y=﹣x2+bx+3得:0=﹣1﹣b+3,解得:b=2,将点A的坐标代入y=x+c并解得:c=1,故抛物线和直线的表达式分别为:y=﹣x2+2x+3,y=x+1;联立上述两式得:,解得:,故点D(2,3);(2)如图1,设直线CE交x轴于点H,设点E(m,﹣m2+2m+3),而点C(0,3),将点E、C坐标代入一次函数表达式y=sx+t得:,解得:,故直线CE的表达式为:y=(2﹣m)x+3,令y=0,则x=,故点H(,0),△CBE的面积=BH×(x C﹣y E)=×(3﹣)(3+m2﹣2m﹣3)=6,解得:m=2,故点E(2,3);(3)点C、E的纵坐标相同,故CD∥x轴,t秒时,AP=t,则点P在x轴和y轴方向移动的距离均为t,故点P(t﹣1,t),当x=t﹣1时,y=﹣x2+2x+3=﹣t2+4t,故点Q(t﹣1,﹣t2+4t),则PQ=﹣t2+4t﹣t=﹣t2+3t,∵﹣1<0,故PQ有最大值,此时,t=,则点P(,),故直线PQ表达式为:x=;设点M(,m),点N(n,0),而点D(2,3);①当∠DMN为直角时,(Ⅰ)当点M在x轴上方时,如图2,设直线PQ交x轴于点H,交CD于点G,∵∠DMG+∠GDM=90°,∠DMG+∠HMN=90°,∴∠HMN=∠GDM,MN=MD,∠DGM=∠MHN=90°,∴△DGM≌△MHN(AAS),∴GD=MH,NH=GM,即:,解得:,故点N(2,0);(Ⅱ)当点M在x轴下方时,如图3,过点M作x轴的平行线交过点与y轴的平行线于点H,交过点N与y轴的平行线于点E,同理可得:△MEN≌△DHM(AAS),故:NE=MH,EM=DH,即,解得:,故点N(﹣4,0);②当∠DNM为直角时,(Ⅰ)当点N在x轴左侧时,如图4,过点N作y轴的平行线交过点C与x轴的平行线于点H,交过点M与x轴的平行线于点R,同理可得:△DHN≌△NRM(AAS),∴RM=NH,即3=﹣n,解得:n=﹣2.5;(Ⅱ)当点N在x轴右侧时,如图5,过点N作y轴的平行线交过点M与x轴的平行线于点H,交过点D与x轴的平行线于点G,同理可得:△MHN≌△NGD(AAS),∴MH=GN,即n﹣=3,解得:n=3.5,综上,N的坐标为:(2,0)或(﹣4,0)或(﹣2.5,0)或(3.5,0).。