解析几何一题多解教给学生通性通法

合集下载

一题多解 发展思维——一道中考几何题的解法探究

一题多解 发展思维——一道中考几何题的解法探究

一题多解发展思维——一道中考几何题的解法探究
刘钦娜
【期刊名称】《中学数学教学参考》
【年(卷),期】2024()6
【摘要】数学是思维的体操,如何通过解题活动培养学生的思维能力是数学教学的中心问题。

针对一道中考几何题,引导学生通过一题多解开阔思路、发散思维,同时借助多解归一加深对数学原理、通性通法的认识,帮助他们在变式中寻找通法、在探究中提升能力。

【总页数】3页(P57-59)
【作者】刘钦娜
【作者单位】河南省驻马店市泌阳县花园中心学校
【正文语种】中文
【中图分类】G63
【相关文献】
1.一题多解拓思维,数形结合来渗透——一道正方形几何证明解法探究
2.一题多解,提高学生思维与逻辑推理能力——2012年安徽省中考第23题的解法探究
3.关注一题多解强化思维训练--对一道中考几何题的探究
4.一题多解阔思路,发散思维形成中——对一道几何题多种解法的探索
5.一题多解,发散思维,多解归一,能力升华——以一道几何探究题为例
因版权原因,仅展示原文概要,查看原文内容请购买。

一节“一题多解”课的听课感悟

一节“一题多解”课的听课感悟

一节“一题多解”课的听课感悟作者:范叔旺来源:《学习与科普》2019年第14期摘要:习题课的教学,尤其高三数学课,以复习课为主,为达到攻克重点、难点,教师大多采用一题多解、一题多变的形式教学。

但是,在一题多解课上,一道题有很多种解法,是不是每种解法都要讲,讲到什么程度,怎样取舍对学生更好在课堂上怎样体现学生的主体地位,怎样把握好这个度,一直是笔者思考的问题。

前一阶段,笔者听了堂一题多解课,颇有感触。

关键词:解题思路感悟1.题目展现由于不同学生思考问题的角度不完全一样,因此展示两类方法6种解法,帮助学生建立相对完整的处理这类问题的方法体系,这样的体系,具有导向作用。

虽然坐标法和基底法都是处理向量问题的通行通法,但是由于处理的方式不一样,导致运算量不同。

这说明通性通法虽然思路具有较强的规律性,但解题效率存在着差异。

因此,一题多解的实质不在方法的罗列,而在思路的分析和方法的对比,在对比中揭示方法的优劣,让学生在今后的解题活动中,有序提取解题方法,有效提高解题效率。

从而也挖掘了习题的内涵,激发学生学习的兴趣,使不同层次的学生的数学思维能力都得到提高。

2.评说2.1精炼选题,让学生有充分的发挥空间整节课只有一个例子,后面的也是这道题的变式,此例虽然是一道老题,但有分量,有代表性,基本上能将向量的思想与方法体现出来,体现了转化与化归思想,做到了少而精。

2.2学生参与度高学生积极参与,能力较强,向量的基本方法(两边平方与坐标法)掌握得不错,教师在这方面下的工夫得到了体现,作为一所省二级重点高中的中等学生来说,非常难得。

2.3教学环节流畅自然课堂内容饱满,学生思维活跃,教师讲解到位,精想讲、精炼、废话很少,能将大部分时间还给学生,使学生有充分时间思考、解题。

课堂衔接自然、流畅,整节课下来,教师没有多余的话语,让学生多动、多想、多写,学生的活动充斥整个课堂,思路清晰,课堂效果不错。

2.4没有小结没有课堂小结.笔者认为,并不是每堂课都要有小结,但对于这节课来讲,小结是必要的。

最新解决解析几何问题的六种通法

最新解决解析几何问题的六种通法

解决解析几何问题的六种通法中点问题点差法已知点A 、B 的坐标分别是(-1,0)、(1,0),直线AM 、BM 相交于点M ,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.【解】 (1)设M (x ,y ),因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1), 即为动点M 的轨迹方程. (2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,则C ⎝⎛⎭⎫12,62,D ⎝⎛⎭⎫12,-62,此时CD 的中点不是N ,不合题意.故设直线l 的方程为y -1=k ⎝⎛⎭⎫x -12, 将C (x 1,y 1),D (x 2,y 2)代入2x 2+y 2=2(x ≠±1)得2x 21+y 21=2,① 2x 22+y 22=2,②①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1,所以直线l 的方程为y -1=(-1)×⎝⎛⎭⎫x -12, 即所求直线l 的方程为2x +2y -3=0.直线y =kx +m 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,其中点为M (x 0,y 0),这类问题最常用的方法是“点差法”,即A ,B 在圆锥曲线上,坐标适合圆锥曲线方程,得两个方程作差,通过分解因式,然后使用中点坐标公式、两点连线的斜率公式建立求解目标方程,解方程解决问题.对称问题几何意义法已知椭圆C :x 216+y 29=1,直线l :y =2x +b ,在椭圆上是否存在两点关于直线l对称,若存在,求出b 的取值范围.【解】设椭圆C :x 216+y 29=1上存在两点P (x 1,y 1),Q (x 2,y 2)关于直线l :y =2x +b 对称,P ,Q 的中点为M (x 0,y 0).因为PQ ⊥l ,所以可设直线PQ 的方程为y =-12x +a ,代入C 化简整理得13x 2-16ax+16a 2-144=0.由根与系数的关系得x 1+x 2=1613a ,y 1+y 2=1813a ,故得M ⎝⎛⎭⎫8a 13,9a 13. 因为Δ>0,所以(-16a )2-4×13(16a 2-144)>0, 解得-13<a <13.又因为M ⎝⎛⎭⎫8a 13,9a 13在直线l :y =2x +b 上, 所以9a 13=16a 13+b ,所以b =-713a ,因此b 的取值范围是⎝⎛⎭⎫-71313,71313.故在椭圆C 上存在两点关于直线l 对称,且b 的取值范围是⎝⎛⎭⎫-71313,71313.圆锥曲线上存在两点,关于某条直线对称,求参数的取值范围,这类问题常见的解法是:设P (x 1,y 1),Q (x 2,y 2)是圆锥曲线上关于直线y =kx +b 对称的两点,则PQ 的方程为y =-1kx +m ,代入圆锥曲线方程,得到关于x (或y )的一元二次方程,其中P ,Q 的横(或纵)坐标即为方程的根,故Δ>0,从而求得k (或b )的取值范围.最值(范围)问题不等式法已知拋物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.【解】 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,p =2,所以抛物线C的方程为x 2=4y .(2)易知直线AB 的斜率存在.设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4.从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1,又y 1=x 214,所以x M =2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 2 25t 2+6t+1>2 2. 当t <0时,|MN |=2 2⎝⎛⎭⎫5t +352+1625≥852. 综上所述,当t =-253,即k =-43时,|MN |取得最小值852.解析几何最值(范围)问题,有时需要使用双参数表达直线方程,解决方法:一是根据直线满足的条件,建立双参数之间的关系,把问题化为单参数问题;二是直接使用双参数表达问题,结合求解目标确定解题方案.定点问题参数法已知椭圆C :x 24+y 2=1,过椭圆C 的右顶点A 的两条斜率之积为-14的直线分别与椭圆交于点M ,N ,问:直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过定点,请说明理由.[点拨] 法一,以双参数表达直线MN 的方程,求解双参数满足的关系.法二,以直线AM 的斜率为参数表达直线MN 的方程.【解】 法一:直线MN 过定点D .当直线MN 的斜率存在时, 设MN :y =kx +m ,代入椭圆方程得(1+4k 2)x 2+8kmx +4m 2-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.根据已知可知y 1x 1-2·y 2x 2-2=-14,即4y 1y 2+(x 1-2)(x 2-2)=0,即(1+4k 2)x 1x 2+(4km -2)(x 1+x 2)+4m 2+4=0,所以(1+4k 2)·4m 2-41+4k2+(4km -2)⎝⎛⎭⎫-8km 1+4k 2+4m 2+4=0, 即(4km -2)(-8km )+8m 2(1+4k 2)=0, 即m 2+2km =0,得m =0或m =-2k . 当m =0时,直线y =kx 经过定点D (0,0).由于AM ,AN 的斜率之积为负值,故点M ,N 在椭圆上位于x 轴两侧,直线MN 与x 轴的交点一定在椭圆内部,而当m =-2k 时,直线y =kx -2k 过定点(2,0),故不可能.当MN 的斜率不存在时,点M ,N 关于x 轴对称,此时AM ,AN 的斜率分别为12,-12,此时M ,N 恰为椭圆的上下顶点,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0). 法二:直线MN 恒过定点D .根据已知直线AM ,AN 的斜率存在且不为零,A (2,0). 设AM :y =k (x -2),代入椭圆方程,得(1+4k 2)x 2-16k 2x +16k 2-4=0, 设M (x 1,y 1),则2x 1=16k 2-41+4k 2,即x 1=8k 2-21+4k 2,y 1=k (x 1-2)=-4k1+4k 2, 即M ⎝ ⎛⎭⎪⎫8k 2-21+4k 2,-4k 1+4k 2.设直线AN 的斜率为k ′,则kk ′=-14,即k ′=-14k ,把点M 坐标中的k 替换为-14k ,得N ⎝ ⎛⎭⎪⎫2-8k 24k 2+1,4k 4k 2+1. 当M ,N 的横坐标不相等,即k ≠±12时,k MN =2k 1-4k 2,直线MN 的方程为y -4k 4k 2+1=2k1-4k 2⎝ ⎛⎭⎪⎫x -2-8k 24k 2+1,即y =2k 1-4k 2x ,该直线恒过定点(0,0).当k =±12时,M ,N 的横坐标为零,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0).证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点.定值问题变量无关法已知点M 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433.(1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.【解】 (1)在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163.由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|·cos 60°=(|MF 1|+|MF 2|)2-2|MF 1|·|MF 2|(1+cos 60°),解得|MF 1|+|MF 2|=4 2.从而2a =|MF 1|+|MF 2|=42,即a =2 2. 由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1.(2)证明:当直线l 的斜率存在时,设斜率为k ,则其方程为y +2=k (x +1), 由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k 1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)·4k (k -2)2k 2-8k =4.当直线l 的斜率不存在时,可得A (-1,142), B (-1,-142),得k 1+k 2=4. 综上,k 1+k 2为定值.定值问题就是证明一个量与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表达求证目标,通过运算求证目标的取值与变化的量无关.探索问题直推法已知曲线T :x 22+y 2=1(y ≠0),点M (2,0),N (0,1),是否存在经过点(0,2)且斜率为k 的直线l 与曲线T 有两个不同的交点P 和Q ,使得向量OP →+OQ →与MN →共线?若存在,求出k 值;若不存在,请说明理由.【解】 假设存在,则l :y =kx +2,代入椭圆方程得 (1+2k 2)x 2+42kx +2=0.因为l 与椭圆有两个不同的交点,所以Δ=(42k )2-8(1+2k 2)>0, 解得k 2>12,由题意知直线l 不经过椭圆的左、右顶点,即k ≠±1,亦即k 2>12且k 2≠1.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-42k1+2k 2.得y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+22=221+2k 2. 所以OP →+OQ →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-42k 1+2k 2,221+2k 2, 又MN →=(-2,1),向量OP →+OQ →与MN →共线等价于x 1+x 2=-2(y 1+y 2), 所以-42k 1+2k 2=(-2)·221+2k 2,解得k =22,不符合题意,所以不存在这样的直线.解决此类问题,首先假设所探求的问题结论成立或存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答;如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.。

新高考数学解析几何试题分析及教学建议

新高考数学解析几何试题分析及教学建议

新高考数学解析几何试题分析及教学建议作者:***来源:《广东教育(综合)》2021年第09期2021年是广东省实施新高考改革的第一年,高考数学不再分文理科,不同选科(3+1+2)的考生都采用同一套试题. 新高考仍然坚持中国高考评价体系“一核、四层、四翼”的命题指导思想,试题将“四层”的考查内容及学科关键能力的考查与思想道德的渗透有机结合,通过科学设置“学科核心素养”考查的总体布局,实现融知识、能力、价值的综合测评,从而使“立德树人”真正在高考评价实践中落地. 新高考数学试卷呈现新的特点:首先表现在试卷结构上,全卷共22道试题,其中选择题(单选)8道,选择题(多选)4道,填空题4道,解答题6道;其次在试卷的考查内容上,依据课程标准的要求,取消了原来高考数学试题中的选做题(坐标系与参数方程、不等式选讲);在具体题目的设计上也有新的变化. 本文对2021年新高考全国数学Ⅰ卷解析几何试题进行分析并提出教学建议.一、2021年新高考数学解析几何考查的知识点和核心素养情况由右上表可知,2021年新高考全国卷解析几何试题特点为:从内容来看,覆盖了直线、圆、椭圆、双曲线、抛物线等知识,着力于圆锥曲线的定义、方程、几何性质等主干知识的价值和考查力度;从思想方法来看,突出对数形结合、函数与方程、化归与转化、分类与整合等数学思想、方法的理解与应用;从核心素养来看,试题体现对数学运算、直观想象、逻辑推理等核心素养的考查. 其中,特别凸显直观想象与数学运算素养的考查,解析几何中的逻辑推理可利用“形”的特征,结合曲线的定义与平面几何的有关性质予以证明或转化为代数运算来证明. 也就是说,逻辑推理核心素养的考查一般寓于直观想象和数学运算之中. 由于每道试题的解法多样,不同的解法体现不同的数学核心素养,同一解法中也不只涉及一种核心素养. 一道试题的完成需要学生具有良好的数学素养,要综合运用多方面的核心素养分析问题并解决问题. 上表中试题体现的数学核心素养的水平判断,是依据《普通高中数学课程标准(2017版2020年修订)》中核心素养水平的界定原则而确定的.二、2021年新高考数学解析几何典型试题分析新高考数学解析几何试题解法入口宽,且隐含着一般性结论. 也就是说,命题者是将一般化的结论特殊化处理后得到了高考试题.例1.(2021年新高考全国数学Ⅰ卷第5题)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则MF1·MF2的最大值为()A. 13B. 12C. 9D. 6分析:这是一道单选题,解题方法多,既可用基本不等式也可用二次函数最值进行求解.解法1:由椭圆定义得MF1+MF2=2a=6,再根据基本不等式MF1·MF2≤()2(等号当且仅当MF1=MF2=3时成立),故选C.解法2:设MF1=t,则MF2=6-t,则MF1·MF2=-(t-3)2+9,由二次函数性质知,MF1·MF2的最大值为9,故选C.此题隐含的一般结论为:定理1:已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,点M在C上,则MF1·MF2的最大值为a2,最小值为b2.证明:设MF1=t,则MF2=2a-t,且a-c≤t≤a+c,c为半焦距.则MF1·MF2=-(t-a)2+a2,而a-c≤t≤a+c,当t=a时,MF1·MF2的最大值为a2,当t=a+c 或t=a-c时,MF1·MF2的最小值为a2-c2,即为b2.例2.(2021年新高考全国数学Ⅰ卷第21题)在平面直角坐标系xOy中,已知点F1(-,0),F2(,0),点M满足MF1-MF2=2. 记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=上,过T的两条直线分别交C于A,B两点和P,Q两点,且TA·TB=TP·TQ,求直线AB的斜率与直线PQ的斜率之和.分析:本题第1问,利用双曲线的定义即可求解,但要注意双曲线定义的严谨性,由于MF1-MF2=2<2=F1F2,故只能是双曲线的右支;第1问还可以直接建立动点M的方程,然后通过化简得出所求的轨迹.当然,这种方法在化简方程时较为繁琐. 第一种方法比较快捷.(1)因为MF1-MF2=2<2=F1F2,所以轨迹C是以F1,F2为焦点,实轴长2a=2的双曲线的右支,则a=1,c=,所以b2=c2-a2=16,所以C的方程为x2-=1(x≥1).第2问可根据两点间的距离公式,直接求出TA·TB以及TP·TQ,从而得出直线AB的斜率与直线PQ的斜率关系;也可利用平面几何知识转化为A,B,P,Q四点共圆问题,从而找出经过A,B,P,Q四点的曲线方程,根据圆的方程特征,确定直线AB的斜率与直线PQ的斜率关系.(2)解法1:用直线的点斜式方程和弦长公式求解.设点T(,t),若过点T的直线的斜率不存在,此时该直线与曲线C无公共点,不妨设直线AB的方程为y-t=k1(x-),即y=k1x+t-k1,联立y=k1x+t-k1,16x2-y2=16,消去y并整理可得:(k12-16)x2+k1(2t-k1)x+(t-k1)2+16=0設点A(x1,y1)、B(x2,y2),则x1>且x2>. 由韦达定理可得x1+x2=,x1x2= 所以:TA·TB=(1+k12)·x1-·x2-=(1+k12)·(x1x2-+)=.设直线PQ的斜率为k2,同理可得TP·TQ=,因为TA·TB=TP·TQ,即=,整理得k12=k22,即(k1-k2)(k1+k2)=0,显然k1-k2≠0,故k1+k2=0. 因此,直线AB与直线PQ的斜率之和为0.解法2:用圆的方程特征求解.因为点T在直线x=上,故设T(,n),设过点T的直线AB的方程为y-n=k1(x-),设过点T的直线PQ的方程为y-n=k2(x-),则直线AB,PQ的方程为(k1x-y+n-k1)(k2x-y+n-k2)=0.又A,B,P,Q四点在曲线C上,即x2-=1,所以A,B,P,Q四点在如下的曲线上,(k1x-y+n-k1)(k2x-y+n-k2)+x2--1=0.因为TA·TB=TP·TQ,根据圆的切割线定理的逆定理,知A,B,P,Q四点共圆,所以上面这个方程表示过A,B,P,Q四点的圆,所以左边展开后x2,y2项的系数相等,且xy项的系数为零. 而xy项的系数为-(k1+k2),故 k1+k2=0.解法2充分利用了曲线与方程的关系,结合圆的方程的特征得出结论.此题第2问隐含的一般结论为:定理2:过点T的两条直线分别交曲线C:ax2+by2=c(a≠b)于A,B两点和P,Q两点,且TA·TB=TP·TQ,则直线AB的斜率与PQ直线的斜率之和为零.定理3:设两条直线y=kix+bi(i=1,2)与曲线ax2+by2+cx+dy+e=0(a≠b)有四个不同的交点,若这四个交点共圆,则k1+k2=0.定理2与定理3本质相同,因为由平面几何切割线定理的逆定理知:TA·TB=TP·TQ等价于A,B,P,Q四点共圆.证明:两直线组成的曲线方程为(k1x-y+b1)(k2x-y+b2)=0,则过四个交点的曲线方程可设为:(k1x-y+b1)(k2x-y+b2)+λ(ax2+by2+cx+dy+e)=0……①若四点共圆,则方程①表示圆,那么①式左边展开式中xy项的系数为零,即有k1+k2=0.显然,例2是定理2、定理3的一个特例,近年高考命题常以一般结论为源,将其特殊化而得. 由于将一般命题特殊化的题目往往有多种解法,为不同水平的考生提供展示才能的机会.三、新高考数学解析几何的教学建议解析几何是高中数学的重要内容,也是高考数学的重点和难点,学生得分一直不太理想. 教师要加强研究,明晰高考解析几何的试题特点,调整教学策略,提升学生数学核心素养.(一)注重通性通法,强化四种意识解析几何的教学要狠抓基础,熟练方法. 对定义法、待定系数法、数形结合、求轨迹的几种常见方法、定点、定值、最值等基本方法要牢固掌握;解析几何教学与复习要强化四种意识.1. 回归定义的意识圆锥曲线定义体现了圆锥曲线的本质属性,运用圆锥曲线定义解题是一种最直接、最本质的方法,往往能收到立竿见影之效. 回归定义与数形结合相得益彰,成为解题中最美的风景,体现几何直观与数学推理的素养. 教师要提醒学生千万不可“忘本忘形”. 波利亚说:“当你不能解决一个问题时,不妨回到定义去.”定义是解决问题的原动力. 不可忽视定义在解题中的应用. 凡涉及圆锥曲线焦点、准线、离心率与曲线上的点的有关问题,可考虑借助圆锥曲线定义来转化.2. 数形结合意识华罗庚先生曾这样描述数形关系:“数与形,本是相倚依,焉能分作兩边飞. 数缺形时少直觉,形少数时难入微. 数形结合百般好,隔裂分家万事非. 切莫忘,几何代数统一体,永远联系,切莫分离!”数形结合是解析几何的基本方法,是直观想象与数学运算、逻辑推理的具体体现.3. 设而不求的意识用解析法处理几何问题,常常设出点的坐标而不具体求出. 根据点在曲线上,坐标是有关方程解的代数特征,灵活运用方程理论,通过整体思想处理坐标关系,是设而不求的实质. 如果涉及曲线交点的问题,可不求出交点的坐标,而是转化为利用韦达定理或“点差法”的形式,可快速做出正确的解答.4. 应用“韦达定理”的意识如果直线与二次曲线的位置关系,联立直线方程和二次曲线方程,消去一个变量后得到一个一元二次方程,利用判别式和韦达定理. 其中判别式是前提,通过判别式确定参数范围,应引起重视.(二)活用四种思想,加强知识联系高考解析几何解答题综合性强,需要综合运用多种数学思想,对学生的数学素养要求高. 函数思想、方程思想、不等式思想以及化归与转化思想等在解析几何中有着广泛的应用. 解析几何中的参数范围、圆锥曲线的几何性质以及直线与圆锥曲线的位置关系,一直是高考考查的热点. 求解的关键是根据圆锥曲线的有关性质,构造方程或不等式,根据直线与圆锥曲线的位置关系确立目标函数,将问题化归为目标函数的最大值或最小值等问题. 这些都需要灵活运用函数、方程、不等式以及化归与转化等数学思想.注:本文系广东省教育科研“十三五”规划课题“高中数学核心素养的培养及评价研究”(课题批准号:2017 YQJK023)的阶段性成果.责任编辑罗峰。

关于解析几何内容的备考探究

关于解析几何内容的备考探究

关于解析几何内容的备考探究作者:***来源:《数学教学通讯·高中版》2023年第12期[摘要]解析几何复习备考阶段,需要对其知识与方法进行梳理,回归教材基础,归纳简算方法,开展一题多解,总结二级结论. 研究者对解析几何内容进行综合分析,结合高考提出四点复习建议,以期对教师教学与学生备考有所帮助.[关键词]解析几何;备考;教材;简算;多解;结论综合分析解析几何是高中数学的重难点知识,在高考中有极为重要的地位,常作为压轴题出现,考查学生的综合能力. 小题中以基本概念和性质为主,大题中则更关注其综合性,如弦长问题、存在性问题、定值定点问题等. 备考探究中需要对解析几何知识进行整合,明确高考大纲及常规考查方式,下面为新课标与高考大纲对解析几何复习与考查的要点的整合.(1)结合平面直角坐标系,认识直线、曲线的几何特征,建立对应的标准方程.(2)运用代数法认识几何图形的性质,了解直线与曲线之间的位置关系,运用几何法解决数学问题、实际问题,感悟其中的数形结合思想.(3)根据几何问题的图形特点,利用代数语言将几何问题代数化,通过分析几何问题及其图象,探索问题解决思路.(4)运用代数法分析几何图形,推导常用的结论,并对代数相关结论进行合理的几何剖析,构建几何与代数的对应关系.(5)探究并重视解析几何中的数学思想,注重提升学生的直观想象、数学运算、逻辑推理、数学建模和数学抽象等素养.复习建议关于解析几何的备考探究,要注重学生知识与能力的全面提升. 实际教学中要围绕高考考点,梳理整合重点知识,明确教学目标. 总体上可细分为三大要点:一是直线的倾斜角、斜率及方程的整合;二是曲线的定义、标准方程、几何性质的整合;三是构建直线与曲线的知识联系,探求综合性问题的破解方法. 下文围绕解析几何经典问题,对解析几何备考内容进行探索,提出相应的备考建议.1. 追本溯源,夯实基础高考经典问题为复习备考提供了指向,考题实际上源于教材又高于教材,常以教材习题为背景而整合命制. 因此复习备考时可对考题进行溯源探究,关注其命制过程,总结解析思路、破解方法.例1 设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若AF=BF,则AB=()溯源:本题为2022年高考全国乙卷理数第5题,为抛物线焦点问题. 实际上,本题与人教A版选择性必修第一册3.3.2中的例4相似. 本题解析的关键是将线段相等(AF=BF)转化为两点(点A,B)间的距离.备考建议:复习备考要引导学生回归教材,重视教材的核心价值;要认真研究并立足教材中的例题和习题,但不能拘泥于教材;要适度开发教材,引领学生再理解例题和习题、知识内容、数学思想等,使学生从问题中突破,在解题中升华;要让学生注意知识间的内在关系,帮助学生完善知识体系.2. 优化过程,强调运算“运算过程烦琐、复杂”是解析几何的特征,对学生的运算能力有较高要求. 学生在考场上需要快速确定解题思路,找到优化过程的方法. 因此,复习备考要引导学生构建运算过程,优化运算方法,总结运算技巧,强化运算训练,不断提升学生的运算能力.(1)求C的方程;(2)点M,N在C上,且AM⊥AN,证明:直线MN过定点.解析本题为一道解析几何综合题,第(2)问为核心之问,其证明过程中的运算较为烦琐,需要优化运算方法、关注简算技巧.①简算技巧1——整体代入.②简算技巧2——因式分解.(**)式为含参方程,需要对其进行因式分解,是解题的关键和难点之一.(**)式可先通分,再整理为4k2+8km+3m2-2m-1=0,将两个参数中的一个视为未知量,另一个视为常数,然后对其进行因式分解.备考建议:“过程优化,简算推导”是解析几何问题分析运算的关键,有助于考场节约时间,提高解题效率. 解析几何问题中的简算技巧有很多,教学中要指导学生总结归纳,充分掌握简算技巧的精髓. 在此总结常用的四种:(1)设而不求,整体代入. 该技巧常用于直线方程与曲线方程联立推导中,如上述问题利用该技巧将向量积转化为含参方程.(2)活用定义,巧用性质. 对于部分解析几何问题,要灵活运用其定义和性质,如涉及解析几何焦点、准线的问题,可以尝试直接运用对应定义转化距离条件.(3)借用几何性质. 数形结合是研究解析几何的重要方法,对于其中的运算问题,必要时可以借用对应的几何性质,直接推导结论. 如中位线的几何意义、向量积为零的几何意义等.(4)主元設定,灵活转换. 该技巧常用于含有两个参数的方程的简算,对于方程中的两个未知数,可以设定主元,灵活转换,对方程进行因式分解. 如上述简算技巧2中的因式分解,方便求解参数关系.3. 一题多解,思路拓展复习备考需要注意解析几何问题的多解探索,帮助学生拓展思路. 既需要注重通性通法,还需要重视一题多解的探究. 一题多解的探究可以从两个方面进行:一是探究多解的方法;二是探究多解的思路构建.(1)求C的方程;解析本题是一道解析几何综合题,第(2)问为核心之问,求解两直线的斜率之和,可采用不同的方法来设定直线的方程.方法1:设直线的点斜式方程.方法2:设直线的斜截式方程.方法3:设双直线二次曲线系方程.备考建议:开展一题多解的探究是复习备考的重要环节. 在该环节中,要指导学生完成两方面的内容:一是总结类型题的常规解法,即通性通法;二是在此基础上开展多解思路、多解视角、多解方法、多解技巧等的分析.总结归纳,活用二级结论面对圆锥曲线问题时,活用一些二级结论可以简化解题过程,提高解题效果. 因此复习备考时应整理一些关于圆锥曲线的二级结论,包括两点:一是二级结论的内容,二是二级结论的类型.备考建议:圆锥曲线的二级结论较多,涉及众多知识内容,教学探究中需要引导学生注意两点:一是总结归纳二级结论的类型;二是探索证明二级结论,挖掘其背后的性质原理,深刻理解其内涵.圆锥曲线的二级结论类型丰富,包括与“焦点三角形”面积相关的二级结论,与“中心弦”性质相关的二级结论,与“中点弦”性质相关的二级结论,与“焦点弦”性质相关的二级结论.写在最后解析几何的知识内容较多,涉及众多考点,复习备考阶段需要对考点内容进行梳理. 教学中教师要围绕高考大纲引导学生夯实知识基础,总结归纳方法,拓展解题思维. 上文所提的四大备考建议是基于考向的总结,教学时可结合考题进行强化,促进学生知识与能力的全面提升.。

浅谈几何题多解探究的有效途径

浅谈几何题多解探究的有效途径

浅谈几何题多解探究的有效途径发表时间:2020-08-05T05:54:25.591Z 来源:《当代教育家》2020年12期作者:向鹏[导读] 数学知识的综合性学习要结合具体的可操作环节(如例题)进行,学生才能最容易接受。

开展“一题多解”的探究,使学生在解答题目的过程中,现实的、具体的去综合运用所学知识,做到有的放矢,从抽象理论到具体运用,是综合学习与运用知识的最佳选择。

开展“一题多解”的探究,既能运用到所学的多种知识,又能使多种知识有机地串联起来,达到综合学习的目的,能够起到举一反三、强化记忆、触类旁通、拓展思维的作用和效果。

向鹏湖北省恩施市舞阳中学数学知识的综合性学习要结合具体的可操作环节(如例题)进行,学生才能最容易接受。

开展“一题多解”的探究,使学生在解答题目的过程中,现实的、具体的去综合运用所学知识,做到有的放矢,从抽象理论到具体运用,是综合学习与运用知识的最佳选择。

开展“一题多解”的探究,既能运用到所学的多种知识,又能使多种知识有机地串联起来,达到综合学习的目的,能够起到举一反三、强化记忆、触类旁通、拓展思维的作用和效果。

例:在四边形ABCD中,AB⊥BC,AD⊥CD,且AD=CD,AB=2,BC=4,求四边形ABCD的对角线BD之长。

(如图)此题需要通过作辅助线才能完成,于是我把该题作为一道课外练习布置给学生的,要求学生用多种方法解答,通过同学们独立思考和共同探究,找到了十几种解答方法,通过展示与交流,同学们都觉得受益匪浅,因此,在解题过程中,只要有正确的思维方法,积极钻研,就能拓宽自己的思路,提高解题的技能技巧。

以下是其中几种解法:解法1:(如图1)此种解法的好处是解答思路清晰,条理清楚,结合图形,易于理解;不足的是过程显得比较繁琐。

解法2(如图2)(1)按解法1(1)先求出:AC=2,AD=CD=.(2)过点D作DE⊥BC于E,过点A作AF⊥DE于F,∵AD⊥DC,容易证得 Rt△ADF≌Rt△DCE .于是AF=DE,DF=CE. 又∵四边形ABEF是矩形(作图知),所以有 AF=BE,∴DE=BE .△BED 是等腰直角三角形。

基于通性通法 探求一题多解

基于通性通法 探求一题多解

(16)2021年第1期中学数学教学参考(中旬>f 题探索基#通性通法探求一题多解*付粉娟(陕西省西安铁一中分校)陈法超(陕西师范大学附属中学)摘要:解决几何计算题应首先联想基本图形和基本定理,确定图形中不变的量和关系,进而明晰图形的基本结构;其次,借助几何中常用的计算工具——勾股定理、相似三角形、三角函数、面积法,基于解决几何计算题的通性通法,探求一题多解;最后,通过解后反思加深对通性通法的认识,优化解题路径,形成解决几何计算题的一般方法。

关键词:确定性分析;通性通法;几何计算;一题多解文章编号:1002-2171(2021)1-0016-042020年陕西中考数学第25题打破了陕西中考 压轴题多年考查最值问题的模式,涉及三角形、四边 形、圆的图形构成,以几何计算题的形式呈现,考查学 生的数学抽象、逻辑推理、数学运算等核心素养及创 新应用所学知识解决问题的能力。

笔者立足于通性 通法,探究本题第(3)问的多种解法,并通过解后反 思,尝试提炼总结出解决此类题的一般方法和程序。

1试题呈现问题提出(1) 如图 1,在 RtAABC 中,ZACB = 90°,AC > BC ,Z A C B 的平分线交于点D ,过点D 分别作丄AC ,DF 丄BC ,垂足分别为£,F ,在图1中与线段C E 相等的线段是_____。

问题探究(2) 如图半圆0的直径,AB = 8,P 是^上一点,•^ = 2^,联结 A P ,P B 。

的平分线交于点C ,过点C 分别作C £丄A P ,C F 丄垂足分别为£,F ,求线段C F 的长。

*图1图2问题解决(3)图3是某公园内“少儿活 动中心”的设计示意图,已知©〇 的直径AB = 70 m ,点C 在©O 上,且CA = CB ,P 是上一点,联结C P 并延长,交©O 于点D ,联结AD ,BD 。

解析几何中的通性通法

解析几何中的通性通法

(ii)韦达定理法:局部过程 (iii)构造法:构造函数、等式、不等式、构造弦长、构造 面积、构造曲线系方程等等.
谢谢聆听!
1(1)几种曲线(直线、圆、椭圆、双曲线及抛物 线)概念中的通性 (i)直线:两点确定一条直线;一点和方向确定一条 直线
(ii)圆:到圆心的距离等于半径
(iii)椭圆:到两个焦点的距离之和为长轴长
(iv)双曲线:到两个焦点的距离之差的绝对值为实轴 长
(v)抛物线:到焦点的距离与到准线的距离相等
1(2)曲线方程中的通性 (i)标准方程、一般方程 标准方程的本质:方程代数结构的特殊性体现决定 性的几何特征 一般方程的本质:标准方程化简的结果
解析几何中的通性通法
《解析几何中的通性通法》讲座提纲
1.解析几何中的通性 (1)几种曲线(直线、圆、椭圆、双曲线及抛物线)概念 中的通性;
(2)曲线方程中的通性 (i)标准方程、一般方程; (ii)曲线系方程; (iii)曲线方程组问题. 2.解析几何中的通法 (1)判别式法; (2)几何法; (3)设而不求法 (i)点差法; (ii)韦达定理法; (iii)构造法;
直线
圆的标准方程与一般方程;
椭圆、双曲线、抛物线的标准方程:
(ii)曲线系方程
(iii)曲线方程组问题
2(1)判别式法
2(2)几何法
在解析几何问题的过程中,不用“坐标法”解决问题的方 法.
2(3)设而不求法(坐标法) (i)点差法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何一题多解 教给学生通性通法
问题:已知椭圆18
162
2=+y x ,若A,B 分别是椭圆的右顶点、上顶点,M 是第一象限内的椭圆上任意一点,O 是坐标原点,求四边形OAMB 面积的最大值.
解法1:如图1,连接OM ,设(,)M x y 且0,0x y >>,
则OAMB OAM MOB S S S S ∆∆==+11
42222
y x =⋅⋅+⋅⋅=22y x +.又
22
221,216.168
x y x y +=∴+=2162((0,22))x y y ∴=-∈222162S y y ∴=+-①,2
228y S y
'∴=-
-,由0S '=,
得2y =(负值舍去).当02y <<时,0S '>,当2y >时,
0S '<,所以2y =时,S 有最大值,)max (28S S ==.
解法2:遇根式考虑平方,可以将繁化简,减少计算量 对①式两边平方得:2243288S y y =+- ②, 再令24()8f y y y =-,由()0f y '=,得2y =,……. 解法3:对②式没必要用导数,可以用配方法.
对②式配方得222328(4)16S y =+--+,而20,8y ∈(),
所以,24y =时,2
max
64S =.于是,max 8S =. 解法4:用椭圆的参数方程,目标函数就是一元函数,比较简单.
由点M 在椭圆18
162
2=+y x 上, 可设(4cos ,22sin ),M θθ其中(0,)2π
θ∈.
则42sin 42cos 8sin()4
S π
θθθ=+=+.
4
π
θ∴=
时,max 8S =. 解法5:如图2,设M 到直线AB 的距离为d ,
则426OAMB OAB MAB S S S S d ∆∆==+=+,因此要使S 最大,只需d 最大.直线
A
B
M
l
o
x y
图2
A
B
M
o
x
y
图1
AB 的方程为:2144
x y
+
=.设与AB 平行的直线l 的方程为: 2x y λ+=. 将其带入18
1622=+y x 得22(2)216y y λ-+=,所以 22422160y y λλ-+-=. 由0∆=解得42λ=±.直线l 应在AB 的上方,所以l 的方程为:
2420x y +-=.从而d 的最大值为两平行直线间的距离.
所以,max d =
4213-().于是,4(21)
42683
-+=max S =. 解法6:借助线性规划的思想方法来求解.
由解法1得22S y x =+,将S 看成目标函数,则变量,x y 满足约束条件
18
162
2=+y x 且0x >且0y >.如图3,将直线0:220l y x +=向上平移至与曲线 AMB 相切时S 最大.类似于解法5,求出切点(22,2)M ,所以
max 222228S =⨯+⨯=.
解法7:可以用导数来求切线 l 的方程或切点坐标.
设00,)M
x y (,曲线AMB 的方程是:22
16(04)2
y x x =
-<<,则切线l 的斜率0|x x k y ='=,由0l l 得方程:02222
22216x x -⋅=-
-,解得022x =.
解法8:更简单的解法.将18
162
2=+y x 变形为22216x y +=,问题实质即为已知条件等式22216x y +=(0,0x y >>),求代数式22y x +的最大值.
由不等式22
22
a b a b ++≤
得,222(2)(2422y x y x ++≤=2
), 当且仅当224y x ==时等号成立.因此,max 248S =⨯=.
x y
B
M
A
O
l l 0
图3。

相关文档
最新文档