10.2.2古典概型 (2)
高二数学必修3知识点整理:古典概型

【导语】以下是⽆忧考为⼤家推荐的有关⾼⼆数学必修3知识点整理:古典概型,如果觉得很不错,欢迎点评和分享~感谢你的阅读与⽀持! 古典概型的基本概念 1.基本事件:在⼀次试验中可能出现的每⼀个基本结果称为基本事件; 2.等可能基本事件:若在⼀次试验中,每个基本事件发⽣的可能性都相同,则称这些基本事件为等可能基本事件; 3.古典概型:满⾜以下两个条件的随机试验的概率模型称为古典概型①所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等; 4.古典概型的概率:如果⼀次试验的等可能基本事件共有n个,那么每⼀个等可能基本事件发⽣的概率都是 1,如果某个事件A包含了其中m个等可能基本事件,那么事件A发⽣的概率为nP(A)?m.n 知识点⼀:古典概型的基本概念 *例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?思路分析: 题意分析:本试题考查⼀次试验中⽤列举法列出所有基本事件的结果,⽽画树状图是列举法的基本⽅法. 解题思路:为了了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都列出来.或者利⽤树状图将它们之间的关系列出来.解答过程:解法⼀:所求的基本事件共有6个: A?{a,b},B?{a,c},C?{a,d}D?{b,c},E?{b,d},F?{c,d} 解法⼆:树状图 解题后的思考:⽤树状图求解⼀次试验中的基本事件数⽐较直观、形象,可做到不重不漏.掌握列举法,学会⽤数形结合、分类讨论的思想解决概率的计算问题. **例2:(1)向⼀个圆⾯内随机地投射⼀个点,如该点落在圆内任意⼀点都是等可能的,你认为这是古典概型吗?为什么? (2)如图,某同学随机地向⼀靶⼼射击,这⼀试验的结果只有有限个:命中10环、命中9环??命中5环和不中环.你认为这是古典概型吗?为什么? 思路分析: 题意分析:本题考查古典概型的概念.应明确什么是古典概型及其应具备什么样的条件.解题思路:结合古典概型的两个基本特征可进⾏判定解决.解答过程: 答:(1)不是古典概型,因为试验的所有可能结果是圆⾯内所有的点,试验的所有可能结果数是⽆限的,虽然每⼀个试验结果出现的“可能性相同”,但这个试验不满⾜古典概型的第⼀个条件. (2)不是古典概型,因为试验的所有可能结果只有7个,⽽命中10环、命中9环??命中5环和不中环的出现不是等可能的,即不满⾜古典概型的第⼆个条件. 解题后的思考:判定是不是古典概型,主要看两个⽅⾯,⼀是实验结果是不是有限的;另⼀个就是每个事件是不是等可能的. ***例3:单选题是标准化考试中常⽤的题型,⼀般是从A,B,C,D四个选项中选择⼀个正确答案.如果考⽣掌握了考查的内容,他可以选择正确的答案.假设考⽣不会做,他随机的选择⼀个答案,问他答对的概率是多少?思路分析: 题意分析:本题考查古典概型概率的求解运算. 解题思路:解本题的关键,即讨论这个问题什么情况下可以看成古典概型.如果考⽣掌握了全部或部分考查内容,这都不满⾜古典概型的第2个条件——等可能性,因此,只有在假定考⽣不会做,随机地选择了⼀个答案的情况下,才可将此问题看作古典概型. 解答过程:这是⼀个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考⽣随机地选择⼀个答案是选择A,B,C,D的可能性是相等的.从⽽由古典概型的概率计算公式得: P(答对\答对所包含的基本事件的个数1==0.25 基本事件的总数4解题后的思考:运⽤古典概型的概率公式求概率时,⼀定要先判定该试题是不是古典概型,然后明确试验的总的基本事件数,和事件A发⽣的基本事件数,再借助于概率公式运算.⼩结:本知识点的例题主要考查对古典概型及其概率概念的基本理解.把握古典概型的两个特征是解决概率问题的第⼀个关键点;理解⼀次试验中的所有基本事件数,和事件A发⽣的基本事件数,是解决概率问题的第⼆个关键点. 知识点⼆:古典概型的运⽤ *例4:同时掷两个骰⼦,计算:(1)⼀共有多少种不同的结果? (2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少? (4)为什么要把两个骰⼦标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?思路分析: 题意分析:本题考查了古典概型的基本运算问题. 解题思路:先分析“同时掷两个骰⼦的所有事件数”,然后分析事件A:向上的点数之和为5的基本事件数,最后结合概率公式运算.同时可以运⽤举⼀反三的思想⾃⾏设问、解答. 解答过程: 解:(1)掷⼀个骰⼦的结果有6种,我们把两个骰⼦标上记号1,2以便区分,由于1号骰⼦的结果都可与2号骰⼦的任意⼀个结果配对,我们⽤⼀个“有序实数对”来表⽰组成同时掷两个骰⼦的⼀个结果(如表),其中第⼀个数表⽰掷1号骰⼦的结果,第⼆个数表⽰掷2号骰⼦的结果.(可由列表法得到)1号骰⼦2号骰⼦1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2) (4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5) (5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)123456由表中可知同时掷两个骰⼦的结果共有36种.(2)在上⾯的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得 P(A)=A所包含的基本事件的个数41== 基本事件的总数369(4)如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别.这时,所有可能的结果将是: (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5) (5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),则所求的概率为 P(A)=A所包含的基本事件的个数2= 基本事件的总数21这就需要我们考察两种解法是否满⾜古典概型的要求了.可以通过展⽰两个不同的骰⼦所抛掷出来的点,感受第⼆种⽅法构造的基本事件不是等可能事件. 解题后的思考:考查同学们运⽤古典概型的概率计算公式时应注意验证所构造的基本事件是否满⾜古典概型的第⼆个条件. 对于同时抛掷的问题,我们要将骰⼦编号,因为这样就能反映出所有的情况,不⾄于把(1,2)和(2,1)看作相同的情况,保证基本事件的等可能性.我们也可将此试验通过先后抛掷来解决,这样就有顺序了,则基本事件的出现也是等可能的. **例5:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后不放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查的是不放回抽样的古典概型概率的运⽤ 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“不放回的,连续的取两次”. 先列举出试验中的所有基本事件数,然后求事件A的基本事件数,利⽤概率公式求解.解答过程: 解法1:每次取出⼀个,取后不放回地连续取两次,其⼀切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品. ⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因⽽P(A)= 42=63解法2:可以看作不放回3次⽆顺序抽样,先按抽取顺序(x,y)记录结果,则x有3种可能,y有2种可能,但(x,y),(y,x)是相同的,所以试验的所有结果有3×2÷2=3种,按同样的⽅法,事件B包含的基本事件个数为2×1÷1=2,因此P(B)= 23解题后的思考:关于不放回抽样,计算基本事件的个数时,既可以看作是有顺序的,也可以看作是⽆顺序的,其结果是⼀样的,但⽆论选择哪⼀种⽅式,观察的⾓度必须⼀致,否则会导致错误. ***例6:从含有两件正品a1,a2和⼀件次品b1的三件产品中,每次任取⼀件,每次取出后放回,连续取两次,求取出的两件产品中恰有⼀件次品的概率.思路分析: 题意分析:本题考查放回抽样的概率问题. 解题思路:⾸先注意到该题中取出的过程是有顺序的.同时明⽩⼀次试验指的是“有放回的,连续的取两次”. 解答过程:每次取出⼀个后放回,连续取两次,其⼀切可能的结果组成的基本事件有9个,即 (a1,a1),(a1,a2)和(a1,b1)(a2,a1),(a2,b1)和(a2,a2)(b1,a1),(b1,a2)和(b1,b1) 其中⼩括号内左边的字母表⽰第1次取出的产品,右边的字母表⽰第2次取出的产品.⽤A表⽰“取出的两件中,恰好有⼀件次品”这⼀事件,则A=[(b1,a1),(b1,a2),(a2,b1),(a1,b1)]事件A由4个基本事件组成,因此P(A)= 4.9解题后的思考:对于有放回抽样的概率问题我们要理解每次取的时候,总数是不变的,且同⼀个体可被重复抽取,同时,在求基本事件数时,要做到不重不漏.⼩结: (1)古典概型概率的计算公式是⾮常重要的⼀个公式,要深刻体会古典概型的概念及其概率公式的运⽤,为我们学好概率奠定基础. (2)体会求解不放回和有放回概率的题型. 知识点三:随机数产⽣的⽅法及随机模拟试验的步骤 **例7:某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?思路分析: 题意分析:本题考查的是近似计算⾮古典概型的概率. 解题思路:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能⽤古典概型的概率公式计算,我们⽤计算机或计算器做模拟试验可以模拟投篮命中的概率为40%.解答过程: 我们通过设计模拟试验的⽅法来解决问题,利⽤计算机或计算器可以⽣产0到9之间的取整数值的随机数. 我们⽤1,2,3,4表⽰投中,⽤5,6,7,8,9,0表⽰未投中,这样可以体现投中的概率是40%.因为是投篮三次,所以每三个随机数作为⼀组. 例如:产⽣20组随机数: 812,932,569,683,271,989,730,537,925,488907,113,966,191,431,257,393,027,556,458 这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表⽰恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为解题后的思考: (1)利⽤计算机或计算器做随机模拟试验,可以解决⾮古典概型的概率的求解问题.(2)对于上述试验,如果亲⼿做⼤量重复试验的话,花费的时间太多,因此利⽤计算机或计算器做随机模拟试验可以⼤⼤节省时间. (3)随机函数(RANDBETWEEN)(a,b)产⽣从整数a到整数b的取整数值的随机数. ⼩结:能够简单的体会模拟试验求解⾮古典概型概率的⽅法和步骤.⾼考对这部分内容不作更多的要求,了解即可.5=25%.20 【同步练习题】 1.(2014•惠州调研)⼀个袋中装有2个红球和2个⽩球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同⾊的概率为()A.12;B.13;C.14;D.25 答案:A[把红球标记为红1、红2,⽩球标记为⽩1、⽩2,本试验的基本事件共有16个,其中2个球同⾊的事件有8个:红1,红1,红1、红2,红2、红1,红2、红2,⽩1、⽩1,⽩1、⽩2,⽩2、⽩1,⽩2、⽩2,故所求概率为P=816=12.] 2.(2013•江西⾼考)集合A={2,3},B={1,2,3},从A,B中各任意取⼀个数,则这两数之和等于4的概率是 ()A.23B.12C.13D.16 答案:C[从A,B中各任取⼀个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中两个数之和为4的有(2,2),(3,1),故所求概率为26=13.故选C.] 3.(2014•宿州质检)⼀颗质地均匀的正⽅体骰⼦,其六个⾯上的点数分别为1、2、3、4、5、6,将这⼀颗骰⼦连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为()A.112B.118C.136D.7108 答案:A[基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P=186×6×6=112.] 4.(2013•安徽⾼考)若某公司从五位⼤学毕业⽣甲、⼄、丙、丁、戊中录⽤三⼈,这五⼈被录⽤的机会均等,则甲或⼄被录⽤的概率为 ()A.23B.25C.35D.910 答案:D[五⼈录⽤三⼈共有10种不同⽅式,分别为:{丙,丁,戊},{⼄,丁,戊},{⼄,丙,戊},{⼄,丙,丁},{甲,丁,戊},{甲,丙,戊},{甲,丙,丁},{甲,⼄,戊},{甲,⼄,丁},{甲,⼄,丙}. 其中含甲或⼄的情况有9种,故选D.] 5.(理)(2014•安徽⽰范⾼中联考)在棱长分别为1,2,3的长⽅体上随机选取两个相异顶点,若每个顶点被选取的概率相同,则选到两个顶点的距离⼤于3的概率为()A.47B.37C.27D.314 答案:B[从8个顶点中任取两点有C28=28种取法,其线段长分别为1,2,3,5,10,13,14.①其中12条棱长度都⼩于等于3;②其中4条,棱长为1,2的⾯对⾓线长度为5<3;故长度⼤于3的有28-12-4=12,故两点距离⼤于3的概率为12C28=37,故选B.]。
高二数学古典概型2

解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)= ≈0.467.
教学目标:1.了解基本事件的概念. 2.理解古典概型及其特征. 3.灵活运用古典概型公式求简单事件的概率
教学重点:本节的重点是古典概型中概率的计算
教学难点:难点是对概率的古典定义的理解.
教学用具:投影仪
教学方法:讲练结合Fra bibliotek教学过程:1.复习提问
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}.
(2)基本事件的总数是8.
(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).
2.例题分析:
例5.课本例3略
例6.课本例4略
例7.现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
古典概型2

古典概型(2)一、知识点剖析1、古典概型的定义与特点 掌握要点:古典概型的两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.在古典概型中,P (A )=试验的基本事件数包含的基本事件数事件A易混易错:要套用古典概型的概率计算公式,首先要确定好基本事件总数。
强调在用古典概型计算概率时,必须要验证所构造的基本事件是否满足古典概型的第二个条件(每个结果出现是等可能的),否则计算出的概率将是错误的.另外如果计算中有重复现象,应注意除掉重复部分.在求事件A 包含的基本事件个数时如果情况不同应注意分类讨论. 2、用排列和组合解决古典概型问题 掌握要点:从n 个不同的元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列。
一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
易混易错:共同点: 都要“从n 个不同元素中任取m 个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤. 3、有些抽样问题存在放回和不放回的区别 掌握要点: 分类计数原理完成一件事,有n 类办法. 在第1类办法中有m 1种不同的方法,在第2类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,则完成这件事共有n m m m N ++=21分步计数原理完成一件事,需要分成n 个步骤。
做第1步有m 1种不同的方法,做第2步有m 2种不同的方法, ……,做第n 步有m n 种不同的方法,则完成这件事共有n m m m N ∙∙∙= 21 易混易错:有放回抽样与无放回抽样都属等可能事件. 对于具体问题,不知用分步还是分类二、典型题型剖析1、古典概型的定义与特点 方法归纳:在古典概型中,P (A )=试验的基本事件总数包含的基本事件数事件A例题:例1、将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果?(2)其中向上的数之和是5的结果有多少种? (3)向上的数之和是5的概率是多少?主要过程:有些等可能事件的概率问题中,有时在求m 时,不采取分析的方法,而是结合图形采取枚举的方法,即数出事件A 发生的结果数,当n 较小时,这种求事件概率的方法是常用的.将抛掷2次的所有结果数一一列举出来,如下表所示由上表可知,将骰子先后抛掷2次,一共有36种不同的结果,其中向上的数之和是5的结果有(1,4),(2,3),(3,2),(4,1)共4种,由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,故向上的数之和是5的概率是.例2、甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少? (2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率. 主要过程:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366 .10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果. 出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365. 强调内容:(1)判断一个试验是否是古典概型,要把握两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.“等可能性”指的是结果,而不是事件. (2)“等可能性”指的是结果,而不是事件.(3)使用计算公式时,关键是准确写出试验的基本事件数. 2、利用排列组合解决古典概型问题 方法归纳:判断排列还是组合:有序用排列,无序用组合 例 题:例2、今有强弱不同的十支球队,若把它们分两组进行比赛,分别计算: (1)两个最强的队被分在不同组内的概率. (2)两个最强的队恰在同一组的概率. 解:将十支球队平均分成两组,因每支球队分到哪一组的可能性完全相同,所以是等可能性事件.所有基本事件个数为5510522C C A . (1)两个最强的队被分在不同组记为事件A ,则A 中含有基本事件数为44284222C C A A ,故两支最强的队被分在不同组内的概率为:.C;故两个最强的队(2)两个最强的队恰在同一组记为事件B,则B中含有基本事件数为38恰在同一组内的概率为:强调内容:(1)什么时候用排列什么时候用组合:事件结果有顺序时用排列,无顺序时用组合(2)公式的运用3、放回与不放回求概率问题方法归纳:求概率时放回的用分步计数原理,不放回的采用排列组合来解决。
古典概型定义及公式

古典概型定义及公式好的,以下是为您生成的文章:咱今儿就来唠唠古典概型,这玩意儿在咱数学里头可是挺重要的角儿。
话说我之前教过一个学生,叫小李。
这小李啊,平时看着挺机灵,但一碰到古典概型的问题,就跟那霜打的茄子——蔫儿了。
有一次课堂测验,有道题是这样的:一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
这小李可好,抓耳挠腮半天,愣是没整明白。
咱先来说说古典概型的定义哈。
简单来讲,古典概型就是那种试验结果有限,而且每个结果出现的可能性相等的概率模型。
比如说掷骰子,骰子就六个面,1 点到 6 点,每次掷出的结果就那么几种,而且出现每个点数的可能性都一样,这就是典型的古典概型。
再比如抽奖,假设箱子里有 100 张奖券,其中 10 张有奖,你随机抽一张,这也是古典概型。
为啥呢?因为结果就那么 100 种,而且每张奖券被抽到的机会均等。
那古典概型的公式是啥呢?就是P(A) = n(A) / n(Ω) 。
这里的 P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 包含的基本事件个数,n(Ω) 表示样本空间Ω包含的基本事件总数。
还是拿前面说的盒子里取球的例子来说。
总共有 8 个球,取出红球这个事件 A 包含 5 个基本事件(也就是 5 个红球),样本空间Ω包含的基本事件总数是 8 个球,所以取出红球的概率 P(取出红球) = 5 / 8 。
咱再举个例子,抛硬币。
抛一次硬币,结果不是正面就是反面,这就是有限的结果,而且出现正面和反面的可能性相等。
假设我们关心的事件 A 是抛出正面,那 n(A) 就是 1 ,n(Ω) 就是 2 ,所以抛出正面的概率 P(抛出正面) = 1 / 2 。
我后来给小李单独辅导的时候,就拿这些例子反复跟他讲。
我让他自己动手多做几道类似的题目,慢慢地,小李好像开了窍。
其实啊,古典概型在生活中也挺常见的。
像买彩票,虽然中奖概率低得可怜,但从概率的角度来看,也能算是古典概型。
第2节古典概型(教师版)

第二节 古典概型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等. (2)概率公式:P(A)=A 包含的基本事件的个数基本事件的总数.:3.一个判定标准:试验结果有限且等可能.4.两种方法(1)列举法:适合于较简单的试验.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.另外在确定基本事件时,(x ,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同.题型一 简单古典概型的概率例题【例1】从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).【答案】D 【解析】由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 15C 14=20个;若个位数为偶数时,这样的两位数共有C 15C 15=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 15×1=5个.所求概率为545=19.:【例2】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为________(用数字作答).【答案】 35【解析】相邻两节文化课之间最多间隔一节艺术课,可以分两类:第一类:文化课之间不排艺术课,设此事件为A ,则P (A )=A 44A 33A 66=15.第二类:文化课之间排艺术课,设此事件为B ,①三节文化课之间有一节艺术课的排列情况总数为2C 13A 33A 33. ②三节文化课中间有两节不相邻艺术课的排列总数为A 33A 23A 22, ∴P (B )=2C 13A 33A 33+A 33A 23A 22A 66=25,∴P =P (A )+P (B )=15+25=35练习题【练1】甲、乙、丙三名同学站成一排,甲站在中间的概率是( ).】【答案】C 【解析】甲、乙、丙三名同学站成一排共有6种站法,甲在中间共有2种站法,故甲站在中间的概率为13.【练2】袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ).【答案】B 【解析】从袋中任取两球有C 26=15种,满足两球颜色为一白一黑的有C 12C 13=6种,概率等于615=25.【练3】从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是( ).【答案】B 【解析】从5个数中任取2个不同的数有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共有10种.其中两个数的和为偶数有:(1,3),(1,5),(2,4),(3,5),故所求概率为:P =410=25.题型二 古典概型与互斥、对立事件的概率综合问题例题【例3】现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.~【解析】(1)从8人中选出日语、俄语和韩语志愿者各1名,共有C 13C 13C 12=18种,用M 表示“A 1恰被选中”这一事件,则包含的结果共有C 13C 12=6种,因而P (M )=618=13.(2)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件,由于N 包含C 13=3个基本事件,所以P (N )=318=16,由对立事件的概率公式得 P (N )=1-P (N )=1-16=56.练习题【练4】在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X 的分布列和数学期望; (2)取出的3件产品中一等品件数多于二等品件数的概率.【解析】(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是【X 的数学期望EX =0×724+1×2140+2×740+3×1120=910.(2) 设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. 题型三 古典概型与统计的综合问题例题【例4】是指大气中直径小于或等于微米的颗粒物,也称为可入肺颗粒物.2012年2月29日,国家环保部发布了新修订的《环境空气质量标准》,其中空气质量等级标准见下表:日均值k (单位:微克) 空气质量等级 k ≤35一级、35<k ≤75 二级k >75超标某环保部门为了解近期甲、乙两居民区的空气质量状况,在过去30天中分别随机抽测了5P724 2140 740 1120天的日均值作为样本,样本数据如茎叶图所示(十位为茎,个位为叶).(1)分别求出甲、乙两居民区日均值的样本平均数,并由此判断哪个小区的空气质量较好一些; (2)若从甲居民区这5天的样本数据中随机抽取2天的数据,求恰有1天空气质量超标的概率. 【解析】(1)甲居民区抽测的样本数据分别是37,45,73,78,88;乙居民区抽测的样本数据分别是32,48,65,67,80.!故x 甲=37+45+73+78+885=,x 乙=32+48+65+67+805=.则x 甲>x 乙.由此可知,乙居民小区的空气质量要好一些.(2)由茎叶图知,甲居民区5天中有3天空气质量未超标,有2天空气质量超标.记未超标的3天的样本数据为a ,b ,c ,超标的2天为m ,n .则从5天中抽取2天的所有情况为:(a ,b ),(a ,c ),(a ,m ),(a ,n ),(b ,c ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(m ,n ),基本事件数为10.记“5天中抽取2天,恰有1天空气质量超标”为事件A ,可能结果为:(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),基本事件数为6.则P (A )=610=35.练习题【练5】某校从参加高三年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100),4.(1)请把给出的样本频率分布表中的空格都填上;(2)估计成绩在85分以上学生的比例; (3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩[90,100)中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率. 样本频率分布表【解析】(1)样本的频率分布表:(2)估计成绩在85分以上的有6+4=10人,估计成绩在85分以上的学生比例为1050=15.¥(3)[40,50)内有2人,记为甲、A .[90,100)内有4人,记为乙、B 、C 、D .则“二帮一”小组有以下12种分组办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ),(甲,B ,C ),(甲,B ,D ),(甲,C ,D ),(A ,乙,B ),(A ,乙,C ),(A ,乙,D ),(A ,B ,C ),(A ,B ,D ),(A ,C ,D ).其中甲、乙两同学被分在同一小组有3种办法:(甲,乙,B ),(甲,乙,C ),(甲,乙,D ). 所以甲、乙两同学恰好被安排在同一小组的概率为 P =312=14.题型四 正难则反法求古典概型的概率例题【例5】有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地抽取并排摆放在书架的同一层上,则同一科目的书都不相邻的概率是( ).【答案】B 【解析】[一般解法] 第一步先排语文书有A 22=2(种)排法.第二步排物理书,分成两类.一类是物理书放在语文书之间,有1种排法,这时数学书可从4个空中选两个进行排列,有A 24=12(种)排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3种排法.因此同一科目的书都不相邻共有2×(12+2×2×3)=48(种)排法,而5本书全排列共有A 55=120(种),同一科目的书都不相邻的概率是48120=25.[优美解法] 语文、数学只有一科的两本书相邻,有2A 22A 22A 23=48种摆放方法.语文、数学两科的两本书都相邻,有A 22A 22A 33=24种摆放方法.而五本不同的书排成一排总共有A 55=120种摆放方法.故所求概率为1-48+24120=25,故选B.|练习题【练6】甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个检验,求至少有一个是一等品的概率. 【解析】(1)设A 、B 、C 分别为“甲、乙、丙三台机床各自加工的零件是一等品”的事件.由题设条件,知⎩⎪⎨⎪⎧P A·[1-P B ]=14,PB ·[1-PC ]=112,PA·P C =29,解之得⎩⎪⎨⎪⎧P A =13,PB =14,PC =23.即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为“从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个是一等品”的事件,则P (D )=1-P (D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56,故从甲、乙、丙三台机床加工的零件中各取一个检验,至少有一个是一等品的概率为56一、选择题1.一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为 ( ).【答案】A 【解析】由题意知,基本事件有A 242=12个,满足条件的基本事件就一个,故所求概率为P =112.2.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( ).【答案】C 【解析】基本事件有C 25=10个,同色球的有C 23+C 22=4个概率为410=25. 3.甲、乙两人各写一张贺年卡,随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( ).【答案】A 【解析】(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁),共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以P =24=12. 4.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,则这班参加聚会的同学的人数为( ). A .12B .18C .24D .32【答案】B 【解析】设女同学有x 人,则该班到会的共有(2x -6)人,所以x 2x -6=23,得x =12,故该班参加聚会的同学有18人,故选B.5.甲、乙两人喊拳,每人可以用手出0,5,10三种数字,每人则可喊0,5,10,15,20五种数字, 当两人所出数字之和等于甲所喊数字时为甲胜,当两人所出数字之和等于乙所喊数字时为乙胜,若甲喊10,乙喊15时,则( ).A .甲胜的概率大B .乙胜的概率大C .甲、乙胜的概率一样大D .不能确定【答案】A 【解析】两人共有9种出数的方法,其中和为10的方法有3种,和为15的方法有2种,故甲胜的概率要大,应选A.6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事件发生的概率为( ).【答案】C 【解析】由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14. 二、填空题7.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.【答案】13【解析】由题意得到的P (m ,n )有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个,在圆x 2+y 2=9的内部的点有(2,1),(2,2),所以概率为26=13.8.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎦⎤0,π2的概率是________.【答案】712【解析】∵m ,n 均为不大于6的正整数,∴当点A (m ,n )位于直线y =x 上及其下方第一象限的部分时,满足θ∈⎝⎛⎦⎤0,π2的点A (m ,n )有6+5+4+3+2+1=21个,点A (m ,n )的基本事件总数为6×6=36,故所求概率为2136=712.9.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________. 【答案】16【解析】e =1+b 2a 2>5,∴b >2a ,符合b >2a 的情况有:当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.则所求概率为636=16. 10.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是________(结果用最简分数表示).【答案】23【解析】根据条件求出基本事件的个数,再利用古典概型的概率计算公式求解.因为每人都从三个项目中选择两个,有(C 23)3种选法,其中“有且仅有两人选择的项目完全相同”的基本事件有C 23C 13C 12个,故所求概率为C 23C 13C 12C 233=23. 三、解答题11.某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析, ①列出所有可能的抽取结果; ②求抽取的2所学校均为小学的概率.【解析】(1)由分层抽样的定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.故从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A 1,A 2,A 3,2所中学分别记为A 4,A 5,1所大学记为A 6,则抽取2所学校的所有可能结果为(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B )的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种.所以P (B )=315=15.12.在某次测验中,有6位同学的平均成绩为75分.用x n 表示编号为n (n =1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩x n7076727072(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【解析】(1)∵这6位同学的平均成绩为75分,∴16(70+76+72+70+72+x 6)=75,解得x 6=90,这6位同学成绩的方差s 2=16×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49,∴标准差s =7.(2)从前5位同学中,随机地选出2位同学的成绩共有C 25=10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为410=,即恰有1位同学成绩在区间(68,75)中的概率为.13.袋内装有6个球,这些球依次被编号为1,2,3,…,6,设编号为n 的球重n 2-6n +12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响). (1)从袋中任意取出一个球,求其重量大于其编号的概率; (2)如果不放回的任意取出2个球,求它们重量相等的概率.【解析】(1)若编号为n 的球的重量大于其编号.则n 2-6n +12>n ,即n 2-7n +12>0. 解得n <3或n >4.∴n =1,2,5,6.∴从袋中任意取出一个球,其重量大于其编号的概率P =46=23. (2)不放回的任意取出2个球,这两个球编号的所有可能情形共有C 26=15种.设编号分别为m 与n (m ,n ∈{1,2,3,4,5,6},且m ≠n )球的重量相等,则有m 2-6m +12=n 2-6n +12,即有(m -n )(m +n -6)=0.∴m =n (舍去)或m +n =6.满足m +n =6的情形为(1,5),(2,4),共2种情形.由古典概型,所求事件的概率为215.14.某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率; (2)若抽到的女教师的人数为ξ,求P (ξ≤2).【解析】由于男教师甲和女教师乙不能同时被抽调,所以可分以下两种情况:①若甲和乙都不被抽调,有C 48种方法;②若甲和乙中只有一人被抽调,有C 12C 38种方法,故从10名教师中抽调4人,且甲和乙不同时被抽调的方法总数为C 48+C 12C 38=70+112=182.这就是基本事件总数.(1)记事件“抽调的4名教师中含有女教师丙,且恰有2名男教师,2名女教师”为A ,因为含有女教师丙,所以再从女教师中抽取一人,若抽到的是女教师乙,则男教师甲不能被抽取,抽调方法数是C 25;若女教师中抽到的不是乙,则女教师的抽取方法有C 12种,男教师的抽取方法有C 26种,抽调的方法数是C 12C 26.故随机事件“抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师”含有的基本事件的个数是C 25+C 12C 26=40.根据古典概型概率的计算公式得P (A )=40182=2091.(2)ξ的可能取值为0,1,2,3,4,所以P (ξ≤2)=1-P (ξ>2)=1-P (ξ=3)-P (ξ=4),若ξ=3,则选出的4人中,可以含有女教师乙,这时取法为C 23C 15种,也可以不含女教师乙,这时有C 33C 16种,故P (ξ=3)=C 23C 15+C 33C 16182=21182=326;若ξ=4,则选出的4名教师全是女教师,必含有乙,有C 44种方法,故P (ξ=4)=C 44182=1182,于是P (ξ≤2)=1-21182-1182=160182=8091.`。
古典概型课件

分为 150 50
(1)为了调查评委对7位歌手 的支持情况,现用分层抽样方 级别 A B C D E
法从各组中抽取若干评委,其 人数 50 100 150 150 50
中从B组中抽取了6人.请将其余 抽取人数 各组抽取的人数填入下表.
6
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1 号歌手,现从这两组被抽到的评委中分别任选1人,求这2人 都支持1号歌手的概率.
首先要确定随机数的范围和用哪些数代表不同的试验结果. 我们可以从以下三方面考虑:
(1)当试验的基本事件出现的可能性相等时,基本事件总数即 为产生随机数的范围,每个随机数代表一个基本事件. (2)研究等可能事件的概率时,用按比例分配的方法确定表示 各个结果的数字个数及总个数. (3)当每次试验结果需要n个随机数表示时,要把n个随机数作 为一组来处理,此时一定要注意每组中的随机数字能否重复.
古典概型
一.基本事件的定义及特点
1.基本事件有如下特点: (1)任何两个基本事件是互斥的; (2)任何事件(除不可能事件)都可以表示成基本事件的和.
2. 随机事件都是由基本事件为元素构成的集合.基本事件是“最 小”的,不可以再分割成其他两个事件.
3. 两个事件互斥,就是相应的集合没有公共的基本事件.即互斥 事件的交集为空集.
(2)记“恰好摸出 1 个黑球和 1 个红球”为事件 A, 则事件 A 包含的基本事件为(a,c),(a,d),(a,e), (b,c),(b,d),(b,e),共 6 个基本事件,
所以
P(A)=
6 10
=0.6,
即恰好摸出 1 个黑球和 1 个红球的概率为 0.6.
(3)记“至少摸出 1 个黑球”为事件 B,
第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)

a,b,a, x, a, y , a, z , b, x , b, y , b, z , x, y , x, z , y, z 两名组长分别选自 20, 40和 40,60的共有以下 6种情况: a, x,a, y , a, z , b, x , b, y , b, z
B.3
10
5
C.2
D.1
5
5
解析:选 C 若函数 f(x)=(a2-2)ex+b 为减函数,则 a2-2<0,又 a∈{-2,0,1,2,3}, 故只有 a=0,a=1 满足题意,又 b∈{3,5},所以函数 f(x)=(a2-2)ex+b 为减函数的概率是 2×2=2. 5×2 5
2.从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取 1 张,则抽到的 2 张卡片上的数奇偶性不同的概率是( )
5
【答案】(1)3,2,2(2)(i)见解析(ii)
21
【解析】(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为 3∶2∶2,由于采用 分层抽样的方法从中抽取 7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人. (Ⅱ)(i)从抽出的 7 名同学中随机抽取 2 名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B, F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F}, {E,G},{F,G},共 21 种. (ii)由(Ⅰ),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年级的是 D,
A.
B.
古典概型知识点总结

古典概型知识点总结在概率论中,古典概型是一个基础且重要的概念。
它为我们理解和解决许多概率问题提供了简单而直观的方法。
接下来,让我们一起深入探讨古典概型的相关知识点。
一、古典概型的定义古典概型是指试验中所有可能出现的基本事件是有限的,并且每个基本事件出现的可能性相等的概率模型。
例如,掷一枚均匀的硬币,出现正面和反面就是两个基本事件,且它们出现的可能性相等,这就是一个古典概型的例子。
二、古典概型的概率计算公式如果一个古典概型中,一共有 n 个基本事件,事件 A 包含的基本事件数为 m,那么事件 A 发生的概率 P(A) = m / n 。
这个公式是古典概型计算概率的核心,通过确定基本事件总数和事件 A 包含的基本事件数,就可以计算出事件 A 的概率。
三、古典概型的特点1、有限性:试验中所有可能出现的基本事件是有限的。
2、等可能性:每个基本事件出现的可能性相等。
这两个特点是判断一个概率模型是否为古典概型的关键。
四、计算古典概型概率的步骤1、确定试验的基本事件总数 n 。
2、确定所求事件 A 包含的基本事件数 m 。
3、代入公式 P(A) = m / n 计算概率。
例如,一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
基本事件总数 n = 8 (5 个红球+ 3 个白球),事件“取出红球”包含的基本事件数 m = 5 ,所以取出红球的概率 P =5 / 8 。
五、古典概型的常见题型1、摸球问题比如,一个袋子里有若干个不同颜色的球,从中摸出特定颜色球的概率。
2、掷骰子问题计算掷出特定点数或特定点数组合的概率。
3、抽奖问题在抽奖活动中,计算中奖的概率。
4、排列组合问题与古典概型的结合通过排列组合的方法确定基本事件总数和事件包含的基本事件数。
六、古典概型的应用1、决策分析在面临不确定性的决策时,可以通过计算不同结果的概率来辅助决策。
2、风险评估评估某些事件发生的可能性和风险程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当结果有限时,列举法是很常用的方法
例1
某口袋内装有大小相同的5只球,其中3只白球,2只黑 球,从中一次摸出2只球. (1)共有多少个基本事件?
(2)摸出的2只球都是白球的概率是多少?
1 出现的可能性都相等,那么每一个基本事件的概率都是 n
3.如果一次试验中可能出现的结果有n个,而且所有结果 ;
如果某个事件A包括的结果有m个,那么事件A的概率P(A) m = n .
判断下列命题正确与否: (1)掷两枚硬币,等可能出现“两个正面”,“两个反面”,“一 正一反”3种结果;
(2)某袋中装有大小均匀的三个红球、两个黑球、一个白球,
那么每种颜色的球被摸到的可能性相同;
(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0和不小于
0的可能性相同; (4)分别从3名男同学,4名女同学中各选一名做代表,那么每 个同学当选的可能性相同; (5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的 可能性肯定不同.
求古典概型的步骤:
解 : (1)分别记白球为1,2,3号,黑球为4,5号,从中 摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4),
(3,5),(4,5).
因此,共有10个基本事件. (2)如下图所示,上述10个基本事件的可能性相同,且只有3 个基本事件是摸到2只白球(记为事件A),
例4
解
练习
1.从分别写着1,2,3,4,5的5张卡片中任意抽两次,每次抽 一张,抽出卡片记下数字后放回再抽第二次,求: (1)两次抽出的卡片上的数字都是偶数的概率。 (2)两次抽出的卡片上的数字和为偶数的概率。 2.一枚硬币连续抛三次,求: (1)三次都是正面的概率。 (2)一次正面朝上,二次背面朝上的概率。 (3)至少有一次正面朝上的概率。 3.某公司内线电话号码为四位数,数字是1到4的四个数中 任意一个,某人任意拨一个号码给一部门,电话号码的正 确率是多少?
即基本事件总数是90.
(1)记“甲抽到选择题,乙抽到判断题”为事件A,下面求事
件A包含的基本事件数:甲抽选择题有6种抽法,乙抽判断题有4 种抽法,所以事件A的基本事件数为6×4=24.
A
例3.
5张奖券中有2张是中奖的,首先由甲,然后由乙各抽一张,
求:(1)甲中奖的概率P(A);(2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率. 解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只
பைடு நூலகம்
例2.甲、乙两人参加法律知识竞答,共有10道不同的题目,其
中选择题6道,判断题4道,甲、乙两人依次各抽一题. (1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少? 解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有
10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,
有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的
概率为P1=
2 5
.
(2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽 法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包 含的基本事件只有2种,故P2=
2 1 20 10
.
(3)由(2)知,甲、乙各抽一张奖券,共 有20种抽法,只有乙中奖的事件包含“甲未 中”和“乙中”两种情况,故共有3×2=6种 基本事件,∴P3= . (4)由(1)可知,总的基本事件数为5,中 2 奖的基本事件数为2,故P4= 5 .
古典概型习题课
1.基本事件有如下两个特点:
(1)任何两个基本事件是 互斥 的. (2)任何事件(除不可能事件)都可以表示 成 基本事件的和 . 2.一般地,一次试验有下面两个特征:
(1)有限性,即在一次试验中,可能出现的结果只有有限
个,即只有有限个不同的基本事件; (2)等可能性,每个基本事件发生的可能性是均等的; 称这样的试验为古典概型. 判断一个试验是否是古典概型,在于该试验是否具有古典 概型的两个特征:有限性和等可能性.