线性代数试题三

合集下载

线性代数试题及答案3

线性代数试题及答案3

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于(D)A.m+nB.-(m+n)C.n-mD.m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于(B)A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎭⎫⎝⎛21131D120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A*中位于(1,2)的元素是(B)A.–6B.6C.2D.–24.设A是方阵,如有矩阵关系式AB=AC,则必有(D)A.A=0B.B≠C时A=0C.A≠0时B=CD.|A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于(C)A.1B.2C.3D.46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则(D)A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中(C)A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是(A)A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有(A)A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是(B)A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有(A)A.k≤3B.k<3C.k=3D.k>312.设A是正交矩阵,则下列结论错误的是(B)A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则(D)A.A 与B 相似B.A 与B 不等价C.A 与B 有相同的特征值D.A 与B 合同 14.下列矩阵中是正定矩阵的为(C )A.2334⎛⎝ ⎫⎭⎪ B.3426⎛⎝ ⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪ D.111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数考试题及答案3

线性代数考试题及答案3

2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。

2、闭卷考试。

评阅人:_____________ 总分人:______________ 一、单项选择题。

(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A-=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a【 】5.设矩阵A 与B 等价,则有__________________系__________专业___________班级姓名_______________学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………(C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解的充分必要条件是(A) n r = (B) n r ≥ (C) n r < (D) n r >【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是(A) m a a a ,,,21 中至少有一个零向量(B) m a a a ,,,21 中至少有两个向量成比例(C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示(D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示【 】8. n 阶方阵A 与对角阵相似的充分必要条件是(A)n A R =)( (B)A 有n 个互不相同的特征值(C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵二、填空题。

线性代数试题3

线性代数试题3

一、填空题(本题总计 20 分,每小题 2 分)1. 排列6573412的逆序数是 .2.函数()f x = 21112xx xx x ---中3x 的系数是 . 3.设三阶方阵A 的行列式3A =,则*1()A -= A/3 .4.n 元齐次线性方程组AX=0有非零解的充要条件是 .5.设向量(1,2,1)T α=--,β=⎪⎪⎪⎭⎫ ⎝⎛-22λ正交,则λ= .6.三阶方阵A 的特征值为1,1-,2,则A = .7. 设1121021003A --⎛⎫ ⎪=- ⎪ ⎪⎝⎭,则_________A *=. 8. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________.9.设A 为n 阶方阵,且A =2 则1*1()3A A --+= . 10.已知20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于12B y -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则=x ,=y .二、选择题(本题总计 10 分,每小题 2 分)1. 设n 阶矩阵A 的行列式等于D ,则A -5等于 .(A) (5)n D - (B)-5D (C) 5D (D)1(5)n D --2. n 阶方阵A 与对角矩阵相似的充分必要条件是 .(A) 矩阵A 有n 个线性无关的特征向量(B) 矩阵A 有n 个特征值(C) 矩阵A 的行列式0A ≠(D) 矩阵A 的特征方程没有重根3.A 为m n ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充要条件是 .(A)(,)R A b m < (B)()R A m <(C)()(,)R A R A b n == (D)()(,)R A R A b n =<4.设向量组A 能由向量组B 线性表示,则( )(A).)()(A R B R ≤ (B).)()(A R B R <(C).)()(A R B R = (D).)()(A R B R ≥5. 向量组12,,,s ααα线性相关且秩为r ,则 .(A)r s = (B) r s < (C) r s > (D) s r ≤三、计算题(本题总计 60 分,每小题 10 分)1. 计算n 阶行列式: 22221 =D 22222 22322 21222-n n 2222 . 2.已知矩阵方程AX A X =+,求矩阵X ,其中220213010A ⎛⎫ ⎪= ⎪ ⎪⎝⎭.3. 设n 阶方阵A 满足0422=--E A A ,证明3A E -可逆,并求1(3)A E --.4.求下列非齐次线性方程组的通解及所对应的齐次线性方程组的基础解系:1234123412342342323883295234x x x x x x x x x x x x x x x +++=⎧⎪-++=⎪⎨-+--=-⎪⎪--=-⎩ 5.求下列向量组的秩和一个最大无关组,并将其余向量用最大无关组线性表示.123421234,1,3,5.2012αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.已知二次型:323121232221321844552),,(x x x x x x x x x x x x f --+++=,用正交变换化),,(321x x x f 为标准形,并求出其正交变换矩阵Q .四、证明题(本题总计 10 分,每小题 10 分)设11b a =, 212b a a =+ , , 12r r b a a a =+++, 且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.。

线性代数试题3

线性代数试题3

一、判断题。

在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。

( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。

( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。

( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。

( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。

( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。

A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。

A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。

3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。

A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。

线性代数模拟考试题(4套)

线性代数模拟考试题(4套)

线性代数模拟考试题(4套)模拟试题⼀⼀、判断题:(正确:√,错误:×)(每⼩题2分,共10分)1、若B A ,为n 阶⽅阵,则 B A B A +=+. ……………………( )2、可逆⽅阵A 的转置矩阵T A 必可逆. ……………………………( )3、n 元⾮齐次线性⽅程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶⽅阵,且0=A ,则矩阵A 中必有⼀列向量是其余列向量的线性组合.…………………………………………………………( ) ⼆、填空题:(每空2分,共20分)1、,A B 为 3 阶⽅阵,如果 ||3,||2A B ==,那么 1|2|AB -= .2、⾏列式中元素ij a 的余⼦式和代数余⼦式,ij ij M A 的关系是 .3、在5阶⾏列式中,项5541243213a a a a a 所带的正负号是 .4、已知()??-==256,102B A 则=AB .5、若?--=1225A ,则=-1A . 6、设矩阵--2100013011080101是4元⾮齐次线性⽅程组b Ax =的增⼴矩阵,则b Ax =的通解为 .7、()B A R + ()()B R A R +.8、若*A 是A 的伴随矩阵,则=*AA .9、设=A-500210111t ,则当t 时,A 的⾏向量组线性⽆关.10、⽅阵A 的特征值为λ,⽅阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每⼩题8分,共16分) 1、已知4阶⾏列式1611221212112401---=D ,求4131211132A A A A +-+.2、设矩阵A 和B 满⾜B A E AB +=+2,其中=101020101A ,求矩阵B .四、(10分) 求齐次线性⽅程组=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元⾮齐次线性⽅程组b Ax =的增⼴矩阵为+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ,讨论当λ取何值时,b Ax =⽆解,有唯⼀解和有⽆穷多解,并在⽆穷多解时求出通解.六、(10分) 判断向量组---=? --=? =? -=1622,4647,3221,1123:4321a a a a A 的线性相关性,如果线性相关,求⼀个最⼤⽆关组,并⽤它表⽰其余向量. 七、综合计算:(本题14分)已知⼆次型31232221321422),,(x x x x x x x x f --+= (1)求⼆次型所对应的矩阵A ,并写出⼆次型的矩阵表⽰;(2)求A 的特征值与全部特征向量;(3)求正交变换PY X =化⼆次型为标准形, 并写出标准形;(4)判断该⼆次型的正定性。

线性代数1-8试题2011.10.11

线性代数1-8试题2011.10.11

《线性代数》试题1一、单项选择题(本大题共6小题,每小题3分,共18分,每题只有一个正确答案,错选、多选或未选均不给分。

)1. 若1112132122233132332a a a a a a a a a =,则111211132122212331323133232323a a a a a a a a a a a a ++=+【 】 A .2 B. 4 C. 8 D.16 2.设A 是n 阶方阵,且3A =,则13A =【 】 A .113n -B .13n -C . 3nD .13.设a b A c d ⎛⎫= ⎪⎝⎭且,则A 的伴随矩阵A *=【 】 A .d b ca ⎛⎫⎪⎝⎭ B .a b c d -⎛⎫ ⎪-⎝⎭ C .d b c a -⎛⎫ ⎪-⎝⎭ D. a b c d -⎛⎫ ⎪-⎝⎭4.设给向量组 321,,:αααA ; :B 4321,,,αααα , 则下列命题中正确的是【 】A.若A 线性无关,则B 线性无关;B. 若B 线性无关,则A 线性无关;C.若A 线性无关,则B 线性相关;D. 若B 线性相关,则A 线性相关。

5.设21,ηη是非齐次线性方程组β=Ax 的解,则下列向量中齐次线性方程组0=Ax 的解的是【 】.A . 121233ηη+ B .12ηη+ C .12ηη-D . 122ηη-6.设λ是可逆阵A 的一个特征值,则23A -必有一个特征值是【 】A .23λB .32λC .13λD .23λ二、填空题(本大题共6小题,每小题3分,共18分)1.四阶行列式|a |D ij =中,含有因子1221a a 且带负号的项为 2.若方阵A 满足2230A A E +-=,则=-1A .3.设三阶方阵A 等价于122111231-⎛⎫⎪ ⎪⎪-⎝⎭,则()R A =____ _4.设101n A ⎛⎫= ⎪⎝⎭,则nA = 5.若2112A ⎛⎫= ⎪⎝⎭与00xB y ⎛⎫= ⎪⎝⎭相似,则x = ,y = 。

2023线性代数期末模拟试题(三)

2023线性代数期末模拟试题(三)

期末模拟试题(三)一.判断题(每小题2分,共5小题10分)正确的选“T”,错误的选“F”1. ,,. ( )A B AB O A B O ==若矩阵满足且可逆,则一定有2. . ( )可逆矩阵的逆矩阵不唯一3. ,,. ( )A B AB AB A B 若矩阵满足乘积为方阵则一定有=4. ,. ( )矩阵的行秩与列秩相等但是不等于矩阵的秩 5. ,. ( )n A A 若阶矩阵特征值都为单根则与对角矩阵相似 二.选择题(每小题2分,共10小题20分)1. (),( ).n A B k 对阶可逆矩阵、其中为非零常数下列错误的是A. ()T T T A B A B +=+11B. ()A A--=111C. ()AB A B ---=111. ()D kA A k --=1112131131123213332122232122233132333132332222. ,, ( ).a a a a a a a a a C a a a P PC a a a aa a a a a P +++===⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设矩阵为初等矩阵,若则100A. 020010⎛⎫⎪ ⎪ ⎪⎝⎭100B. 010201⎛⎫⎪ ⎪ ⎪⎝⎭120C. 010001⎛⎫⎪ ⎪ ⎪⎝⎭102D. 010001⎛⎫⎪ ⎪ ⎪⎝⎭3. ,,,,,,( ).P Q R X n P Q PXQ R X ==设都是阶方阵且可逆则矩阵方程的解11A. RP Q --11B. P RQ --11C. RQ P --11D. P Q R--4. ,3,3( ).T A n A A A A ==设为阶方阵若的行列式则A. 3n 1B. 3n +2C. 3n +22D. 3n +3005. ,,()2,512,( ).5646A B R A B x x ===⎛⎫⎪ ⎪ ⎪⎝⎭已知同型矩阵等价且则A. 8B. 4C. 2D. 312126. ,(),( ).,,,,,,,n n b A αααααα= 已知向量组且则下列说法错误的是12A. , ,,,n AX b b ααα= 若有无穷多解则可由线性表出且表示式不唯一12B. , ,,,n AX b b ααα= 若有唯一解则可由线性表出且表示式唯一12C. ,,,,n AX b b ααα= 若无解则不能由线性表出D. ()(),AX b R A R A AX b =≠=若满足条件则有解7. ,0( ).A m n AX ⨯=若为矩阵则方程组仅有零解的充要条件为A. A 的列向量线性无关 B. A 的列向量线性相关C. A 的行向量线性无关D. A 的行向量线性相关8. ,02080,( ).A A I A I A I A -=+=+==设的为三阶矩阵且,,则A.1 B. 2 C.16- D. 8-2009. =020( ).005Λ⎛⎫⎪ ⎪ ⎪⎝⎭下列矩阵与对角矩阵相似的矩阵是200A. 320005⎛⎫⎪ ⎪ ⎪⎝⎭200B. 0210005⎛⎫⎪ ⎪ ⎪⎝⎭246C. 020005⎛⎫⎪ ⎪ ⎪⎝⎭200D. 820315-⎛⎫⎪ ⎪ ⎪⎝⎭22212312312132310. ( ).(,,)22446f x x x x x x x x x x x x =---++二次型的矩阵为122A. 223232----⎛⎫ ⎪ ⎪ ⎪⎝⎭131B. 223332---⎛⎫ ⎪ ⎪ ⎪⎝⎭122C. 223232---⎛⎫ ⎪⎪ ⎪⎝⎭121D. 222242----⎛⎫⎪ ⎪ ⎪⎝⎭三.填空题(每小题2分,共5小题10分)11231. 34,45,(34) .2131T A B A B -==-+⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设则321003702. , .245dc A y A x y z a b=已知四阶行列式则元素的代数余子式的值为1123. , .34A A -==⎛⎫⎪⎝⎭已知矩阵则其逆矩阵1234. (1,2,1,0),(1,1,0,2),(2,1,1,)2, .a a ααα=-===若向量组的秩为则5. ,248, .A 若是三阶方阵其特征值分别为、、则逆矩阵的特征值为四.计算题(第1、2小题每题8分,第3、4、5、6小题每题9分,共52分)130621511. ,,2,2.02121476A A A A ---=--⎛⎫⎪⎪ ⎪ ⎪⎝⎭设矩阵求1212222. ,()2,.15103A A R A a A a -----==--⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭已知矩阵矩阵的秩求的值和矩阵的标准形13. 24, (1) 2320 (2) 030,.003n A B A B B I A I A B -⎛⎫⎪⎪ ⎪ ⎪⎝⎭=---=已知阶矩阵和满足条件证明可逆;已知求12344. (2,0,1),(0,1,1),(1,1,2),(5,0,5),,.T T T T αααα===--=已知向量组求向量组的秩和一个 极大无关组并将其余向量用该极大无关组线性表出12413123415. 22.30x x x x x x x x x -==---=+⎧⎪+⎨⎪⎩求非齐次线性方程组的通解21226. 224,242 (1) (2)()35,()..A f x x x A f A -=---=+-⎛⎫⎪ ⎪ ⎪⎝⎭设矩阵求矩阵的特征向量和特征值;若多项式求方阵的多项式的特征值五.证明题(8分)123123112223313123 ,,,+2,3,,,==+4=5+6,,αααββββααβααβααβββ已知向量组线性无关且向量组满足判定向量组的线性相关性,并证明.,。

线性代数试题3

线性代数试题3

德州学院期末考试试题( 至 学年第 学期)课程名称: 线性代数 考试对象: 试卷类型:(三) 考试时间: 120 分钟 一、填空题(共10道小题,每道小题3分,计30分)1.行列式123102120D =第一行元素的代数余子式分别是 -2 , -3 ,-4 .2.4 2 || A A A A ==设是阶矩阵,且,则.3.若矩阵130241A ⎛⎫= ⎪⎝⎭,123231B ⎛⎫= ⎪⎝⎭,则TB A = . 4.设123102225A ⎛⎫⎪= ⎪ ⎪⎝⎭,且非齐次线性方程组Ax b =无解,则增广矩阵(,)A b 的秩为 3 .5.写出向量(1,2,2)α=-在基 1(1,0,0)ε=,2(0,1,1)ε=,3(0,1,1)ε=-下的坐标X =(1,0.-2)t .6.设100110011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1A -= .7.设123110100A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1312(2)E AE = .8.设λ0是5阶矩阵A 的2重特征值,则矩阵I A λ-0的秩只可能等于 3 . 9.设(1,1,1,1),(1,2,2,0),(0,1,2,3),(0,1,1,1)αβγδ====--,则秩{,,,αβγδ}= 3 .10.已知向量1,-2,32,4,αβλ==(),(),且α与β正交, 则λ= .二、判断题:在正确结论后的括号内打√,否则打⨯.(共5道小题,每道小题2分,计10分) 1.若行列式每一行元素之和都等于零,则此行列式的值等于零.( v )2.n 阶矩阵A 可对角化的充分必要条件是A 有n 个不同的特征值.( x ) 3.若12,,,r ααα线性相关,则12,,,r ααα中任一向量可以表示成其余向量的线性组合.( v ) 4.非零正交向量组一定是线性无关向量组.( v )5.非奇异矩阵A 的特征值都是非零数.( v )三、单项选择题(共5道小题,每道小题2分,计10分)-2 1.设B A ,均为)2(≥n n 阶可逆方阵,则必有 .A.||||||B A B A +=+B. BA AB =C. ||||BA AB =D. 111)(---+=+A B B A 2.给定矩阵32A ⨯ 23B ⨯ 33C ⨯,则下列 运算有意义 A. AC B. BC C. A+B D. AB -BC3.设n 阶方阵A 满足A A 2=,则以下说法正确的是 . A.A 的特征值一定是0 B.A 的特征值一定是1 C.A 的特征值是0或者1 D.I A A =0或= 4.向量组12,,,r ααα⋅⋅⋅线性无关的充要条件是A. 向量组中任意r-1个向量线性无关 B .向量组的秩等于它所含向量的个数rC. 向量组中不含0向量 D.向量组中存在一个向量,它不能由其余向量线性表出 5.一个非齐次线性方程组有解且只有唯一解,则它的导出组 .A. 不一定有解B. 一定无解C. 只有零解D. 一定有非零解 四、计算题(共4道小题,计38分) 1.(8分)计算n 阶行列式 122222222232222nn D = . 2.(8分)解矩阵方程:T211113210X 101111-⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭.3.(12分)问λ取何值时,线性方程组 12312321231x x x x x x x x x λλλλλ++=⎧⎪++=⎨⎪++=⎩(1)有唯一解;(2)无解;(3)有无穷多解,并在有无穷多解时,求出其解.4.(10分) 求矩阵123213321A ⎛⎫⎪= ⎪ ⎪⎝⎭的特征值与特征向量,并说明矩阵A 是否可以对角化.五、证明题(共2道小题,每道小题6分,计12分)1.(6分)证明:实对称矩阵A 对应于两个不同特征值的特征向量是正交的.2.(6分)方阵A 满足220A A I =--,证明:⑴ A 及A I -都可逆,并求它们的逆矩阵.⑵ 2A I A I +和-不同时可逆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.排列53142的逆序数τ(53142)=( ) A .7 B .6 C .5 D .4 2.下列等式中正确的是( )
A .()2
22
B BA AB A B A +++=+
B .()T T T
B A AB =
C .()()2
2
B A B A B A -=+- D .()A A A A 233-=-
3.设k 为常数,A 为n 阶矩阵,则|k A |=( ) A .k|A | B .|k||A |
C .n k |A |
D .n |k ||A |
4.设n 阶方阵A 满足02=A ,则必有( ) A .E A +不可逆 B .E A -可逆 C .A 可逆 D .0=A
5.设⎪
⎪⎪
⎭⎫
⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫ ⎝⎛=321x x x X ,⎪⎪⎪⎭⎫ ⎝⎛=321y y y Y ,则关系式( )
⎪⎩⎪
⎨⎧+=+=+=3332231133
33222211223
312211111y
a y a y a x y a y a y a x y a y a y a x +++
的矩阵表示形式是
A .AY X =
B .Y A X T =
C .YA X =
D .A Y X T = 6.若向量组(Ⅰ):r ,,,αααΛ21可由向量组(Ⅱ):s 21,βββ,,Λ线性表示,则必有( ) A .秩(Ⅰ)≤秩(Ⅱ) B .秩(Ⅰ)>秩(Ⅱ) C .r ≤s D .r>s
7.设21ββ,是非齐次线性方程组b Ax =的两个解,则下列向量中仍为方程组解的是( ) A .21+ββ B .21ββ- C .
222
1ββ+
D .
5
232
1ββ+ 8.设A ,B 是同阶正交矩阵,则下列命题错误..的是( ) A .1-A 也是正交矩阵 B .*A 也是正交矩阵 C .AB 也是正交矩阵 D .B A +也是正交矩阵 9.下列二次型中,秩为2的二次型是( ) A .212x B .212221
44x x x x -+ C .21x x
D .322221
2x x x x ++ 10.已知矩阵⎪⎪⎪

⎫ ⎝⎛--=21111010
0A ,则二次型=Ax x T ( )
A .32212
221
222x x x x x x -++ B .32312
322x x 2x x 2x 2x +-+ C .32312322
222x x x x x x -++
D .32312
321x x 2x x 2x 2x +-+
二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

11.已知A ,B 为n 阶矩阵,A =2,B =-3,则1-B A T =_________________.
12.已知⎪⎪⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=011321βα, ,E 是3阶单位矩阵,则E +T
T αβαβ=_________________.
13.若21αα,线性无关,而321ααα,,线性相关,则向量组32132ααα,,的一个最大线性无关组为
_________________. 14.若向量组()()()t ,,,,,,,,31322101321===ααα 线性无关,则t 应满足条件_________________. 15.设321ααα,,是方程组0Ax =的基础解系,则向量组321ααα,,的秩为_________________. 16.设()T
11221-=,,,α,()T
23511,,,-=α,则21αα与的内积(21αα,)=________________.
17.设齐次线性方程组⎪⎪⎪⎭⎫ ⎝⎛a a a 111111⎪⎪⎪⎭⎫ ⎝⎛321x x x =⎪⎪⎪


⎝⎛000的解空间的维数是2,则a =______________.
18.若实二次型()212
32221
32124x tx x x x x ,x ,x f +++=正定,则t 的取值范围是_________________. 19.实二次型()322
1321x x 2x x x x f +=,,的正惯性指数p =_________________.
20.设A 为n 阶方阵,0≠A ,若A 有特征值λ,则*A 必有特征值_________________. 三、计算题(本大题共8小题,每小题6分,共48分)
21.计算行列式210012100
1210012=D .
22.设实数2121y ,y ,x ,x 满足条件⎪⎪⎭⎫ ⎝⎛-4321x x ⎪⎪⎭⎫
⎝⎛-21
23
y y =⎪⎪⎭⎫ ⎝
⎛-10505,求1x 及2x . 23.求向量组

⎪⎪

⎫ ⎝⎛=2421α, ⎪⎪⎪⎭⎫ ⎝⎛=0112α, ⎪⎪⎪⎭⎫ ⎝⎛=1323α, ⎪⎪⎪⎭⎫
⎝⎛=2534α
的一个最大线性无关组,并把其余向量用该最大线性无关组表示.
24.给定齐次线性方程组
⎪⎩⎪
⎨⎧=-++=-++=+++.
x x x x ,x x x x ,x x x x 000432143214321λλ
(1)当λ满足什么条件时,方程组的基础解系中只含有一个解向量?
(2)当λ=1时,求方程组的通解.
25.设矩阵⎪⎪⎪⎭
⎫ ⎝⎛=653032001A ,求()
.*1
-A
26.设向量()T
1121,,=α和()T
,,2112=α都是方阵A 的属于特征值λ=2的特征向量,又向量
212α+α=β,求β2A .
27.设矩阵⎪⎪⎪

⎫ ⎝⎛=200032023A ,求正交矩阵P ,使AP P 1-为对角矩阵.
28.设二次型()32212
32221
32122332x bx x ax x x x x ,x ,x f ++++=经正交变换Qy x =化为标准形2
3222152y y y f ++=,求a ,b 的值.
四、证明题(本大题共2小题,每小题6分,共12分) 29.设A 为3阶实对称矩阵,且0A 2=.证明:0A =.
30.已知矩阵⎪⎪⎪⎭⎫
⎝⎛=3332
31
232221
131211a a a a a a a a a A 可逆,证明线性方程组⎪⎩⎪
⎨⎧=+=+=+332321
312322212113212111a x a x a a x a x a a x a x a 无解.
线性代数B第三套练习题及答案
7。

相关文档
最新文档