多元统计分析简介
多元统计分析的基本方法及应用

多元统计分析的基本方法及应用多元统计分析是一种基于多个变量的统计分析方法。
它是对各个变量之间关系进行分析,并进行统计推断和验证的过程。
多元统计分析涉及到多种统计方法和技术,包括多元回归分析、因子分析、聚类分析、判别分析、主成分分析、多维尺度分析等。
这些方法和技术可以用于数据挖掘、市场分析、信用风险评估、社会科学、心理学等领域的研究和应用。
一、多元回归分析多元回归分析是一种常用的统计工具,它可以通过控制一些其他变量,来了解某个变量与另一个变量的关系。
多元回归分析可以用来解决预测问题、描述性问题和推理性问题。
多元回归分析可以针对具有多个解释变量和一个目标变量的情况进行分析。
在多元回归分析中,常用的方法包括线性回归、非线性回归、逻辑回归等。
二、因子分析因子分析是一种多元统计方法,它可以用来描述一组变量或观测数据中的共同性和特征。
因子分析的基本思想是将多个相关变量归纳为一个因子或因子组合。
因子分析可以用于数据压缩、变量筛选和维度识别等方面。
当研究者需要解释多个变量间的关系时,因子分析可以起到非常有效的作用。
三、聚类分析聚类分析是一种基于数据相似性的分析技术。
它通过对数据集进行分类,寻找数据集内的同类数据,以及不同类别之间的差异。
聚类分析可以用于寻找规律、发现规律、识别群体、分类分析等方面。
聚类分析常用的方法包括层次聚类和K均值聚类。
四、判别分析判别分析是一种多元统计方法,它可以用来判别不同群体之间的差异。
这种方法可以用于市场研究、医学研究、生物学研究、工业控制等方面。
判别分析可以通过寻找差异来帮助研究者识别一组变量或因素,以及预测这些结果的影响因素,从而帮助他们更好地理解数据和结果。
五、主成分分析主成分分析是一种多元统计分析方法,它可以用来简化一组变量或因子数据。
这种方法通过对数据进行降维操作,找出影响数据最大的因素和变量组合,从而达到简化数据的目的。
主成分分析可以用于数据可视化、数据分析、特征提取等方面。
多元统计分析在市场调研中的应用

多元统计分析在市场调研中的应用市场调研是企业在决策制定、产品开发、市场推广等环节中必不可少的一项工作。
通过市场调研,企业可以了解消费者需求、竞争对手情况以及市场趋势,为企业决策提供可靠依据。
多元统计分析作为一种强大的数据分析工具,在市场调研中发挥着重要作用。
本文将探讨多元统计分析在市场调研中的应用。
一、多元统计分析简介在进入具体讨论之前,首先我们需要了解多元统计分析的概念及其基本原理。
多元统计分析是一种通过对多个变量进行分析,揭示变量之间相互关系及对研究对象的影响的方法。
它可以帮助我们理解数据背后的模式、趋势和规律,从而作出准确的推断和预测。
二、多元统计分析在市场调研中的应用1. 因子分析因子分析是一种通过寻找多个变量之间的潜在关系,将这些变量归纳为更少的几个因子的方法。
在市场调研中,因子分析可以帮助我们发现消费者对产品的偏好或特定要素的重视程度。
通过对大量问卷数据的统计分析,可以将众多变量归纳为几个关键因子,从而帮助企业更好地了解消费者需求,优化产品设计。
2. 聚类分析聚类分析是一种根据观察对象之间的相似性将它们分组的方法。
在市场调研中,聚类分析可以帮助我们将消费者划分为不同的客户群体,从而更好地针对不同群体制定市场营销策略。
通过对消费者的购买行为、兴趣爱好等进行多元统计分析,可以发现潜在的市场细分,提高市场推广的精准度。
3. 判别分析判别分析是一种通过构建一个分类模型,从而将观测对象划分到不同的组别中的方法。
在市场调研中,判别分析可以帮助企业对消费者进行分类,比如将消费者分为潜在客户和非潜在客户等。
通过多元统计分析,可以建立一个准确的分类模型,为企业提供有针对性的市场推广方案。
4. 回归分析回归分析是一种通过建立变量之间的数量关系,进而预测目标变量值的方法。
在市场调研中,回归分析可以帮助企业建立销售额与广告投放、促销活动等因素之间的关系模型。
通过多元统计分析,可以找到对销售额具有显著影响的因素,从而制定出更加有效的市场推广方案。
多元统计分析

多元统计分析
多元统计分析(multivariate statistical analysis)是指使用多种统计方法来分析多个变量之间关系的方法。
它是应用数学、
计算机和统计学原理对多个变量之间的相互关系展开的一种基于数
据挖掘的分析方法。
它通过对多个变量进行综合分析来发现数据隐
藏的规律和模式,以及变量之间的相关性和因果关系。
多元统计分析可以应用于许多领域,如社会科学、商业、医学、金融等。
其主要方法包括因子分析、主成分分析、聚类分析、回归
分析、判别分析等。
多元统计分析有助于提高数据分析的深度和广度,并在数据分
析上寻找新的解决方法。
同时,它也使得决策者更加理性地分析和
理解结果,以便做出更准确的决策。
多元统计分析 第1章 多元分析概述

多元统计分析的应用举例
反映城镇居民消费水平的八项指标:
➢人均粮食支出、人均副食支出、 ➢人均烟酒茶支出、人均衣着商品支出、 ➢人均日用品支出、人均燃料支出、 ➢人均非商品支出、人均出行支出
为什么要多元、多指标? 指标归并聚类分析
多元统计分析的应用
第一章 多元统计分析概述
多元统计分析--ቤተ መጻሕፍቲ ባይዱ言
多元统计分析是运用数理统计方法来研究 解决多指标问题的理论和方法。
一元(单变量)到多变量? 大数据时代的需要 多变量带来的问题?
多元统计分析--历史
1928年Wishart发表论文《多元正态总体样 本协差阵的精确分布》
R. A. Fisher 、H. Hotelling、S. N. Roy、许 宝騄……
上世纪50年代中期,随着电子计算机的出 现和发展,使多元分析方法得到广泛应用
多元统计分析—核心内容
基于多元正态总体
➢参数估计 ➢假设检验 ➢判别分析 ➢聚类分析 ➢主成分分析 ➢因子分析 ➢对应分析 ➢典型相关分析 ➢多维标度法等
应用背景
统计学的生命力在于应用 多元统计分析方法的应用
Application Driven (Data Driven)
评价企业经济效益
➢百元固定资产原值实现产值、 ➢百元固定资产原值实现利税、 ➢百元资金实现利税、 ➢……
指标太多、错综复杂主成分分析或因子 分析
多元统计分析的应用
考察两个部门工作效率是否有显著差异
➢多元正态总体均值向量和协差阵的假设检验
有100种酒,品尝家可以对每两种酒进行品 尝对比,给出一种相近程度的得分以分析 这100种酒之间的结构关系
多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
多元统计分析

聚类分析根据对象的特征和距离度量将相似的对象归为一类 。常见的聚类方法包括层次聚类、K均值聚类和密度聚类等。 聚类分析有助于发现数据的内在结构,用于分类、模式识别 和决策支持。
判别分析
总结词
判别分析是一种有监督学习方法,通过已知分类的数据建立判别函数,用于预 测新数据的分类。
详细描述
判别分析利用已知分类的数据建立判别函数,用于预测新数据的分类。常见的 判别分析方法包括线性判别分析和二次判别分析等。判别分析广泛应用于分类、 模式识别和决策支持等领域。
市场研究的定义和过程
市场研究定义
市场研究是一种系统的方法,用于收 集和分析关于消费者、市场和竞争对 手的数据,以帮助企业了解市场趋势、 消费者需求和竞争态势,从而做出更 好的商业决策。
市场研究过程
市场研究过程包括确定研究目标、设 计研究方案、收集数据、分析数据和 报告结果等步骤。
多元统计分析在市场研究中的应用实例
多元统计分析
目录
• 引言 • 多元统计分析的基本方法 • 多元统计分析在数据挖掘中的应用 • 多元统计分析在市场研究中的应用 • 多元统计分析的未来发展 • 结论
01 引言
多元统计分析的定义
多元统计分析是研究多个随机变量之 间关系的统计方法。它通过使用各种 技术和模型来分析多个变量之间的关 系,以揭示数据中的模式和结构。
对应分析
总结词
对应分析是一种多元统计方法,用于研 究变量间的关系和分类。
VS
详细描述
对应分析通过降维技术将多个变量的分类 数据转换为低维空间的点,并利用点间的 距离度量变量间的关系。对应分析能够揭 示变量间的潜在联系和分类结构,广泛应 用于市场研究、社会科学和医学等领域。
多元统计分析

多元统计分析在当今这个数据驱动的时代,多元统计分析成为了理解和处理复杂数据的强大工具。
它就像是一把神奇的钥匙,能够帮助我们打开隐藏在海量数据背后的秘密之门。
那么,什么是多元统计分析呢?简单来说,多元统计分析是研究多个变量之间相互关系和内在规律的一种统计方法。
当我们面对的不再是单一的变量,而是多个相互关联的变量时,传统的统计方法可能就显得力不从心了,这时候多元统计分析就派上了用场。
想象一下,我们要研究一个人的健康状况。
如果只考虑一个因素,比如体重,可能得出的结论是片面的。
但如果同时考虑体重、血压、血糖、血脂等多个变量,就能更全面、更准确地评估这个人的健康水平。
这就是多元统计分析的魅力所在,它能够综合多个变量的信息,提供更深入、更全面的洞察。
多元统计分析包含了许多具体的方法,比如主成分分析、因子分析、聚类分析、判别分析、典型相关分析等等。
每种方法都有其独特的用途和适用场景。
主成分分析就像是一个“数据压缩器”。
在面对众多相关的变量时,它能够提取出几个主要的成分,这些成分能够解释大部分数据的变异。
这不仅减少了变量的数量,简化了问题,还能帮助我们抓住数据的主要特征。
因子分析则更像是在寻找数据背后的“潜在因素”。
它试图找出那些影响多个变量的共同因素,从而揭示变量之间更深层次的关系。
聚类分析像是一个“分类器”,它可以根据数据的相似性将对象分成不同的组或类别。
这对于市场细分、客户分类等方面非常有用。
判别分析则是相反的过程,它根据已知的类别和相关变量,建立判别函数,来判断新的观测值属于哪个类别。
典型相关分析则用于研究两组变量之间的相关性。
多元统计分析在各个领域都有着广泛的应用。
在医学领域,医生可以通过多元统计分析来评估药物的疗效,综合考虑多个症状和生理指标的变化。
在经济领域,分析师可以利用它来研究市场趋势,综合考虑多种经济指标和市场因素。
在教育领域,教育工作者可以通过分析学生的多个学习成绩和个人特征,来制定更个性化的教育方案。
多元统计分析方法及其应用场景

多元统计分析方法及其应用场景多元统计分析是一种应用数学方法,用于研究多个变量之间的关系和模式。
它可以帮助我们理解和解释数据中的复杂关系,从而提供有关数据集的深入见解。
在各个领域,多元统计分析方法都得到了广泛的应用,包括社会科学、自然科学、医学和工程等。
一、主成分分析(PCA)主成分分析是一种常用的多元统计分析方法,用于降低数据维度和提取主要特征。
它通过将原始数据转换为一组新的无关变量,称为主成分,来实现这一目标。
主成分是原始变量的线性组合,它们按照解释方差的大小排序。
主成分分析可以帮助我们理解数据中的主要变化模式,并且在数据可视化和特征选择方面非常有用。
主成分分析的应用场景非常广泛。
例如,在生物学研究中,主成分分析可以用于分析基因表达数据,帮助鉴别不同组织或疾病状态下的基因表达模式。
在金融领域,主成分分析可以用于分析股票组合的风险和收益,从而帮助投资者进行资产配置。
二、聚类分析聚类分析是一种无监督学习方法,用于将数据集中的观测对象分成不同的组或簇。
聚类分析通过计算观测对象之间的相似性或距离来实现这一目标。
常用的聚类算法有层次聚类和k均值聚类。
层次聚类通过构建层次树来表示不同的聚类结构,而k均值聚类将数据分为k个簇,每个簇中的观测对象与该簇的质心最为相似。
聚类分析可以在很多领域中得到应用。
例如,在市场研究中,聚类分析可以用于对消费者进行分群,从而帮助企业制定针对不同群体的市场策略。
在医学领域,聚类分析可以用于对患者进行分类,从而帮助医生进行个体化治疗。
三、判别分析判别分析是一种监督学习方法,用于确定一组变量对于区分不同组别的观测对象是最有效的。
判别分析通过计算不同组别之间的差异性和相似性来实现这一目标。
它可以帮助我们理解和解释不同组别之间的差异,并且在分类和预测方面非常有用。
判别分析在许多领域中都有应用。
例如,在医学诊断中,判别分析可以用于根据一组生物标志物来区分健康和疾病状态。
在社会科学研究中,判别分析可以用于根据个人特征来预测其所属的社会经济阶层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 聚类分析
1. 聚类分析
Cluster History表示聚类的具体过程,NCL表示当前系统 存在类的总个数,Clusters Joined表示当前加入的编号,例如 NCL等于20时,是类1,2聚为一类,FREQ表示新类的元素个 数。SPRSQ表示类与类间规格化最短距离,RSQ表示R2统计量, ERSQ表示半偏R2统计量,CCC统计量值。PSF为伪F统计量, PST2为伪t2统计量。Tie表示“节”,是指当前类间最小距离不 止一个的时候,此时可以任意选择一对最短距离进行聚类,在 计算其他类与新类的距离。从CCC统计量的结果可以看出,最 大值对应的类数为4。从四类合并为三类时,伪t2统计量显著的 增加,伪F统计量下降显著,综合各方面的结果,因此分4类最 为合适。
1. 聚类分析
3) 研究样品之间的关系。通常有两种方法: 相似系数。性质相近的相似系数的绝对值越接近 于1,彼此不相关的相似系数的绝对值越接近于0。 常用相似系数有:夹角余弦;相关系数;指数相 似系数;非参数方法灯 计算距离。将样品看作P维空间的一点,通过计算 不同样品的距离,距离越接近的点归为一类,距离 远的点归为不同类。 常用距离有:明科夫斯基距离;欧氏距离;绝对值 距离;切比雪夫距离;兰氏距离;马氏距离。 4)计算距离矩阵或相似性系数矩阵D。
3 主成分分析
假定你是一个公司的财务经理,掌握了公司的 所有数据,比如固定资产、流动资金、每一笔借贷 的数额和期限、各种税费、工资支出、原料消耗、 产值、利润、折旧、职工人数、职工的分工和教育 程度等等。 如果让你向上面介绍公司状况,你能够把这些 指标和数字都原封不动地摆出去吗? 当然不能。 你必须要把各个方面作出高度概括,用一两个 指标简单明了地把情况说清楚。
1. 聚类分析
聚类分析前的预处理步骤: 1)确定聚类类型:对样品聚类称Q型聚类; 对变量聚类称R型聚类。 2)数据预处理 原因:实际应用所使用的样本资料中,由于不同 的变量具有不同的计量单位(或量纲),并且具 有不同的数量级,为了使具有不同计量单位和数 量级的数据能够放在一起进行比较分析,通常都 要对数据进行变换处理。 常用方法有:中心化变换;规格化变换(极 差正规化);标准化变换;对数变换等
多元统计分析简介
1.聚类分析 2.判别分析 3.主成分分析 4.典型相关分析
1. 聚类分析
聚类分析又称群分析,它是研究分类问题的一 种多元统计方法。所谓类,通俗地说,就是指相似 元素的集合。那么要将相似元素聚为一类,通常选 取元素的许多共同指标,然后通过分析元素的指标 值来分辨元素间的差距,从而达到分类的目的。 聚类分析可以分为:Q型(样品分类)分类、 R型(指标分类)分类。这里介绍的是Q型(样 品分类)分类。
1. 聚类分析
聚类分析的一般步骤(Q-型分类) 1) 每个样本独自成类,Gi { X i } i 1,2,..n
2) 由距离矩阵或相似性系数矩阵D,找到当前
最小的Dij, 并将类Gi、Gj合为一类得到一个新类
Gr={Gi、Gj}
3) 从新计算类间的距离,得到新的矩阵D。
4) 重复第2步直到全部合为一类。
1. 聚类分析
ccc表示要计算半偏R2,R2和ccc立方聚类标准 统计量,这三个统计量和下面的伪F和伪t2统计量, 主要用于检验聚类的效果。当把数据从G+1类合并 为G类时,半偏R2统计量说明了本次合并信息的损 失程度,统计量大表明损失程度大。 R2统计量反映 类内离差平方和的大小,统计量大表明类内离差平 方和小。 ccc统计量的值大说明聚类的效果好。 Pseudo说明要计算伪F和伪t2统计量。一般认为, 伪F统计量出现峰值时的所对应的分类是较佳的分类 选择。当把数据从G+1类合并为G类时,伪t2统计量 的值大,说明不应该合并这两类。
2.计算类内协方差矩阵S及其逆矩阵S-1 ;
3.计算Bayes判别函数中,各个变量的系数及常数项并 写出判别函数; 4.计算类内协方差矩阵W及总各协方差矩阵T作多个变 量的全体判别效果的检验; 5.各个变量的判别能力的检验; 6.判判别法
在判别问题中,当判别变量个数较多时,如果 不加选择地一概采用来建立判别函数,不仅计算量 大,还由于变量之间的相关性,可能使求解逆矩阵 的计算精度下降,建立的判别函数不稳定。因此适 当地筛选变量的问题就成为一个很重要的事情。凡 具有筛选变量能力的判别分析方法就统称为逐步判 别法。
3 主成分分析
100个学生的数学、物理、化学、语文、历史、英语 的成绩如下表(部分)。
3 主成分分析
目前的问题是,能不能把这个数据的6个变量 用一两个综合变量来表示呢? 这一两个综合变量包含有多少原来的信息呢? 能不能利用找到的综合变量来对学生排序呢? 这一类数据所涉及的问题可以推广到对企业,对学 校进行分析、排序、判别和分类等问题。
2 判别分析
逐步判别法的步骤:
1.计算各总体中各变量的均值和总均值以及似然统 计量,规定引入变量和剔除变量的临界值F进、F出。 2.逐步计算,计算全部变量的判别能力,在已入选 变量中考虑剔除可能存在的最不显著变量。在未选 入变量中选出最大判别能力的变量,对变量作F检验 通过检验则接受,否则剔除变量。直到能剔除又不 能增加新变量,逐步计算结束。 3.建立判别式,使用第2步中选入的变量,用Bayes 判别法建立判别式。 4.对待判样本进行判别分类。
1. 聚类分析
进行聚类分析时,由于对类与类之间的距离的 定义和理解不同,并类的过程中又会产生不同的聚
类方法。常用的系统聚类方法有8种:
最短距离法; 最长距离法;
中间距离法;重心法;
类平均法;可变类平均法;
可变法;离差平方和法。
2 判别分析
判别分析方法最初应用于考古学, 例如要根据挖 掘出来的人头盖骨的各种指标来判别其性别年龄等. 近年来, 在生物学分类, 医疗诊断, 地质找矿, 石油钻 探, 天气预报等许多领域, 判别分析方法已经成为一种 有效的统计推断方法。 判别分析是一种在一些已知研究对象用某种方法 已经分成若干类的情况下,确定新的样品的观测数据 属于哪一类的统计分析方法。
判别规则
P (Gh | x0 ) max P (Gi | x0 )
1 i k
则 x0判给 Gh。
2 判别分析
Bayes判别法的一般步骤 : 1.计算各类中变量的均值 x j 及均值向量 x h ( h 1,2,..k ) , 各变量的总均值 x j ( j 1,2.. p)及均值向量 x;
1. 聚类分析
动态聚类图
1. 聚类分析
综合以上分析,可以得到结果,将工厂分为4类,
分别为
第1类:f1,f2,f3,f4,f5,f6;
第2类:f7,f8,f9,f10
第3类:f11,f12,f13,f14,f15;
第4类:f16,f17,f18,f19,f20,f21。
3 主成分分析
选择越少的主成分,降维就越好。什么是 标准呢?那就是这些被选的主成分所代表的主 轴的长度之和占了主轴长度总和的大部分。有 些文献建议,所选的主轴总长度占所有主轴长 度之和的大约 80%即可,其实,这只是一个大 体的说法;具体选几个,要看实际情况而定。
3 主成分分析
主成分分析是一种通过降维技术把多个 变量化为少数几个主成分(即综合变量)的统 计分析方法。 一般来说,我们希望这些主成分能够反 映原始变量的绝大部分信息(它们通常表示为 原始变量的某种线性组合),并具有最大的方 差。
工厂
指标1 指标2
12
-2 2
13
-3 2
14
-3 0
15
-5 2
16
1 1
17
0 -1
18
0 -2
19
-1 -1
20
-1 -3
21
-3 -5
1. 聚类分析
data ex;input x1 x2 factory$@@; cards; /*数据省略*/ ; proc cluster data=ex method=ward ccc pseudo outtree=tree; id factory; run; proc tree data=tree horizontal; id factory; run;
2 判别分析
逐步判别法其基本思路类似于逐步回归分析,按 照变量是否重要逐步引入变量,每引入一个“最重要” 的变量进入判别式,同时要考虑较早引入的变量是否 由于其后的新变量的引入使之丧失了重要性变得不再 显著了(例如其作用被后引入地某几个变量的组合所 代替),应及时从判别式中把它剔除,直到判别式中 没有不重要的变量需要剔除,剩下来的变量也没有重 要的变量可引入判别式时,逐步筛选结束。也就是说 每步引入或剔除变量,都作相应的统计检验,使最后 的判别函数仅保留“重要”的变量。
3 主成分分析
每个人都会遇到有很多变量的数据。 比如全国或各个地区的带有许多经济和社会变 量的数据;各个学校的研究、教学等各种变量的数 据等等。 这些数据的共同特点是变量很多,在如此多的 变量之中,有很多是相关的。人们希望能够找出它 们的少数“代表”来对它们进行描述。 在引进主成分分析之前,先看下面的例子。
典型相关分析基本思想
通常情况下,为了研究两组变量
( x1 , x2 ,, x p ) ( y1 , y2 ,, yq )
的相关关系,可以用最原始的方法,分别计算两组变量之间 的全部相关系数,一共有 pq 个简单相关系数,这样又烦琐 又不能抓住问题的本质。如果分别找出两组变量的各自的某 个线性组合,讨论线性组合之间的相关关系,则更简捷。
4 典型相关分析
首先分别在每组变量中找出第一对线性组合, 使其具有最大相关性,
u1 a11 x1 a21 x2 a p1 x p v1 b11 y1 b21 y2 bq1 yq
然后再在每组变量中再找出第二对线性组合,使其分 别与本组内的第一线性组合不相关,第二对本身具有 次大的相关性,即u2和v2与u1和v1相互独立,但u2和v2 相关, u a x a x a x