多元统计分析重点
第五章 多元统计分析(提纲)

第五章多元统计分析第一节多元描述统计一、列表法二、多元数据的图示法1.轮廓图作图步骤为:(1)作平面坐标系,横坐标取A个点表示A个变量。
(2)对给定的一次观测值,在P个点上的纵坐标(即高度)和它对应的变量取值成正比。
(3)连接P个高度的顶点得一折线,则一次观测值的轮廓为一条多角折线形。
n次观测值可画出M条折线.构成轮廓图。
2.雷达图(蛛网图)作图步骤是:(1)作一圆,并把圆周分为P等分。
(2)连接圆心和各分点,把这十条半径依次定义为各变量的坐标轴,并标以适当的刻度。
(3)对给定的—次观测值,把它的P个分量值分别点在相应的坐际轴上,然后连接成一个P 边形,这个P边形就是P元观测值的图示,n次观测值可画出M个多边形。
将上例数据用雷达图表示如下(值得注意的是,这里坐标轴只有正半袖,因而只能表示非负数据,若有负数据.只能通过合理变换使之非负才行):3.脸谱图(切尔诺夫脸)人们的反应表现在脸上。
切尔诺夫假定用二维平面的脸来表示多维观测结果,脸的特征(如脸的形状,嘴的弯曲率,鼻子的长度,服睛的大小,瞳孔的位置等等)是由P个变量的测量值所决定的。
按照最初的设计.切尔诺夫脸可处理多达18个变量。
脸部容貌对应的变量的分配是由实验者完成的,不同选择会产生不同的结果。
为了取得令人满意的表示常常需要一些重复步骤。
第二节综合评价方法一、综合评价及其要素1.综合评价根据多个指标,对评价对象进行客观、公正、合理的全面评价。
2.综合评价的要素(1)被评价的对象(2)评价指标(3)权重系数(4)综合评价模型(5)评价者二、综合评价的原则1.评价目标:总结性、发展性(预测性)2.评价对象采样:普遍、可比、可测性3.评价指标选择原则:相关性、全面性、可操作、与评价方法相协调。
三、综合评价的步骤:1.确定反映要研究的对象的主要方面及各方面的主要指标,建立评价指标体系。
2.评价指标的转换与综合的方法3.确定各种评估方法所需要的参数4.加权合成指标评价值,进行评估分析,得出评估结论五、评价指标的正向化与无量纲化1.正向指标、逆向指标与正向化正向指标是指数值越大越好的指标,逆向指标是数值越小越好的指标。
多元统计分析学习笔记——概论及数据描述知识点回顾

多元统计分析学习笔记——概论及数据描述知识点回顾这个系列的笔记是疫情期间在家听的⽹络课程——多元统计分析,由经院刘婧媛、钟威两位⽼师主讲,从中国⼤学mooc上可以搜到。
笔记将对课程的主要知识点进⾏总结和整理,记录⼀些课程截图,也会从⽹上搜集⼀些相关的资料,⽬的是加深认识,防⽌遗忘。
今后如果对相关内容有了更深的理解和认识,可能会对内容进⾏更正和补充。
本⽂为前两章的总结多元统计分析是同时考量多个变量,从多元数据集中获取信息的统计⽅法。
⼀个经典的例⼦就是鸢尾花数据集,其中的每个样本包含了四个特征和⼀个对应的标签,如下图所⽰,通过统计分析,⼈们可以找到鸢尾花类型(标签)与四个特征之间的关系,从⽽实现未来利⽤新数据已知的特征变量对未知的花类型进⾏预测的⽬标。
多元统计分析在市场营销、⾦融⾏业、医疗及学术研究等各个领域都有着⼴泛的应⽤。
1 随机变量数据描述样本就是通过采样获得的部分数据点。
随机采样的样本均值可以⽤来估计总体均值。
样本⽅差是对总体⽅差的⽆偏估计。
对于多元随机向量,样本的期望是由各个分量的期望组成的向量随机向量:由多个随机变量组成的向量。
⼀般⽤来代表整个数据集对应的样本向量Y = (y1,……,y n)。
随机样本:是指总体中的每个个体都有同等的机会被选中。
⼀般代表数据集中任意⼀个样本对应的特征向量。
y n = (y n1,……,y np)对于⼆元随机变量,协⽅差等于变量乘积的均值减去变量均值的乘积。
变量间正相关则协⽅差cov(x,y) > 0,负相关cov(x,y) < 0,不相关则cov(x,y) = 0,此处所谓正相关负相关皆属于线性相关关系。
相关系数实际上是消除了量纲的协⽅差,将度量尺度标准化为[1,-1]区间,其中σ=0时说明X与Y不相关(线性独⽴)。
值得注意的是,σ=0时只能说明X与Y线性独⽴,⽽仍有可能以某种⾮线性的⽅式关联,但如果X和Y服从⼆元正态分布,并满⾜σ=0,则可认为是相互独⽴的。
多元统计分析知识点多元统计分析课件精品

多元统计分析知识点多元统计分析课件精品多元统计分析(1)题目:多元统计分析知识点目录第一章绪论 (1)§1.1什么是多元统计分析 ............................ 1 §1.2多元统计分析能解决哪些实际问题 .... 2 §1.3主要内容安排 ........................................ 2 第二章多元正态分布 .. (2)§2.1基本概念 ................................................ 2 §2.2多元正态分布的定义及基本性质 .. (8)1.(多元正态分布)定义 ..................... 92.多元正态变量的基本性质 ............... 10 §2.3多元正态分布的参数估计12(,,,)p X X X X '= (11)1.多元样本的概念及表示法 ............... 122. 多元样本的数值特征 ..................... 123.μ和 ∑的最大似然估计及基本性质.............................................................. 15 4.Wishart 分布 (17)第五章 聚类分析 (18)§5.1什么是聚类分析 .................................. 18 §5.2距离和相似系数 . (19)1.Q —型聚类分析常用的距离和相似系数 (20)2.R型聚类分析常用的距离和相似系数 (25)§5.3八种系统聚类方法 (26)1.最短距离法 (27)2.最长距离法 (30)3.中间距离法 (32)4.重心法 (35)5.类平均法 (37)6.可变类平均法 (38)7.可变法 (38)8.离差平方和法(Word方法) (38)第六章判别分析 (39)§6.1什么是判别分析 (39)§6.2距离判别法 (40)1、两个总体的距离判别法 (40)2.多总体的距离判别法 (45)§6.3费歇(Fisher)判别法 (46)1.不等协方差矩阵两总体Fisher判别法 (46)2.多总体费歇(Fisher)判别法 (51)§6.4贝叶斯(Bayes)判别法 (58)1.基本思想 (58)2.多元正态总体的Bayes判别法 (59)§6.5逐步判别法 (61)1.基本思想 (61)2.引入和剔除变量所用的检验统计量 (62)3.Bartlett近似公式 (63)第一章绪论§1.1什么是多元统计分析在自然科学、社会科学以及经济领域中,常常需要同时观察多个指标。
多元统计分析期末复习

多元统计分析期末复习多元统计分析期末复习Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵:当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。
随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X ); E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. )',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=qp ij r Y X ?=)(),(ρ(3).X 的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质 (1).若 ,则E(X)= ,D(X)= . 特别地,当为对角阵时,相互独立。
(2).若,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立. (4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计(1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量样本均值向量=样本离差阵S=样本协方差阵V= S ;样本相关阵R(3) ,V分别是和的最大似然估计;(4)估计的性质是的无偏估计; ,V分别是和的有效和一致估计;;S~,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计分析期末考试考点整理

二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指变量的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
多元统计分析知识点多元统计分析课件复习课程

多元统计分析(1)题目:多元统计分析知识点研究生专业指导教师完成日期 2013年 12月目录第一章绪论 (1)§1.1什么是多元统计分析 ....................................................................................................... 1 §1.2多元统计分析能解决哪些实际问题 ............................................................................... 2 §1.3主要内容安排 ................................................................................................................... 2 第二章多元正态分布 .. (2)§2.1基本概念 ........................................................................................................................... 2 §2.2多元正态分布的定义及基本性质 .. (8)1.(多元正态分布)定义 ................................................................................................ 9 2.多元正态变量的基本性质 (10)§2.3多元正态分布的参数估计12(,,,)p X X X X '=L ....................... 错误!未定义书签。
多元统计分析讲义(第一章)

Equation Chapter 1 Section 1 Array《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发(******************)统计学院应用统计学教研室School of Statistics2004年9月第一章绪论【教学目的】1.让学生了解什么是多元统计分析?它的发展与现状;2.让学生了解多元统计分析的主要范畴、功能;3.回顾相关的矩阵理论和多元正态分布理论;4.阐述多元数据的表示方法。
【教学重点】1.从一元到多元的过度;2.多元正态理论及其相关命题。
§1 引言一、什么是多元统计分析在实践中,常会碰到需要同时观测若干指标的问题。
例如衡量一个地区的经济发展水平:总产值、利润、效益、劳动生产率等;在医学诊断中,有病还是无病,需做多项检测:血压、体温、心跳、白血球等①。
提出问题:如何同时对多个随机变量的观测数据进行有效的分析和处理?有两种做法:分开研究;同时研究。
但前者会损失一定的信息量。
多元统计分析就是研究多个随机变量之间相互依赖关系以及内在统计规律的一门学科,利用其中的不同方法可对研究对象进行分类和简化。
二、多元统计分析的产生和发展1.1928年Wishert发表论文《多元正态总体样本协方差阵的精确分布》,是多元统计分析的开端;2.20世纪30年代,Fisher, Hotelling, 许宝碌等奠定了多元统计分析的理论基础;3.20世纪40年代,在心理学、教育学、生物学等方面有不少应用,但由于计算量大,发展受到限制;4.20世纪50年代中期,随着计算机的出现和发展,使多元分析方法在地质、气象、医学和社会学方面得到广泛应用;5.20世纪60年代,通过应用和实践又完善和发展了理论,使得它的应用范围更广;6.20世纪70年代初期,才在我国受到各个领域的极大关注,近30多年在理论上和应用上都取得了若干新进展。
三、多元统计分析的主要范畴(研究内容)在对社会、经济、技术系统的认识过程中,都需要收集和分析大量表现系统特征和运行状态的数据信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析重点宿舍版第一讲:多元统计方法及应用;多元统计方法分类(按变量、模型、因变量等) 多元统计分析应用选择题:①数据或结构性简化运用的方法有:多元回归分析,聚类分析,主成分分析,因子分析 ②分类和组合运用的方法有:判别分析,聚类分析,主成分分析 ③变量之间的相关关系运用的方法有:多元回归,主成分分析,因子分析, ④预测与决策运用的方法有:多元回归,判别分析,聚类分析 ⑤横贯数据:{因果模型(因变量数):多元回归,判别分析相依模型(变量测度):因子分析,聚类分析多元统计分析方法选择题:①多元统计方法的分类:1)按测量数据的来源分为:横贯数据(同一时间不同案例的观测数据),纵观数据(同样案例在不同时间的多次观测数据) 2)按变量的测度等级(数据类型)分为:类别(非测量型)变量,数值型(测量型)变量3)按分析模型的属性分为:因果模型,相依模型 4)按模型中因变量的数量分为:单因变量模型,多因变量模型,多层因果模型第二讲:计算均值、协差阵、相关阵;相互独立性第三讲:主成分定义、应用及基本思想,主成分性质,主成分分析步骤主成分定义:何谓主成分分析 就是将原来的多个指标(变量)线性组合成几个新的相互无关的综合指标(主成分),并使新的综合指标尽可能多地反映原来的指标信息。
主成分分析的应用 :(1)数据的压缩、结构的简化;(2)样品的综合评价,排序主成分分析概述——思想:①(1)把给定的一组变量X1,X2,…XP ,通过线性变换,转换为一组不相关的变量Y1,Y2,…YP 。
(2)在这种变换中,保持变量的总方差(X1,X2,…Xp 的方差之和)不变,同时,使Y1具有最大方差,称为第一主成分;Y2具有次大方差,称为第二主成分。
依次类推,原来有P 个变量,就可以转换出P 个主成分(3)在实际应用中,为了简化问题,通常找能够反映原来P 个变量的绝大部分方差的q (q<p )个主成分。
主成分性质:1)性质1:主成分的协方差矩阵是对角阵:(2)性质2:主成分的总方差等于原始变量的总方差(3)性质3:主成分Yk 与原始变量Xi 的相关系数为:ρ(YK,Xi )=√λ√σiitki,并称之为因子负荷量(或因子载荷量)。
主成分分析的具体步骤:①将原始数据标准化;②建立变量的相关系数阵;③求的特征根为**10p λλ≥≥≥,相应的特征向量为***12,,,p T T T ;④由累积方差贡献率确定主成分的个数(m ),并写出主成分为**()i i Y T '=X ,1,2,,i m =第四讲:因子分析定义,因子载荷统计意义,因子分析模型及假设,因子旋转因子分析定义:因子分析就是通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子的多元统计方法。
因子载荷统计意义: 1.因子载荷ija 的统计意义对于因子模型1122i i i ij j im m iX a F a F a F a F ε=++++++ 1,2,,i p =我们可以得到,iX 与jF 的协方差为:1Cov(,)Cov(,)mi j ik k i j k X F a F F ε==+∑=1Cov(,)Cov(,)mik k j i j k a F F F ε=+∑=ija如果对iX 作了标准化处理,iX 的标准差为1,且jF 的标准差为1,因此,Cov(,)Cov(,)i j X F i j ijX F r X F a === (7.6)那么,从上面的分析,我们知道对于标准化后的iX ,ija 是iX 与jF 的相关系数,它一方面表示iX 对jF 的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量iX 对公共因子jF 的相对重要性。
了解这一点对我们理解抽象的因子含义有非常重要的作用。
2.变量共同度2i h 的统计意义设因子载荷矩阵为A ,称第i 行元素的平方和,即2211,2,,miij j h a i p===∑ (7.7)为变量iX 的共同度。
由因子模型,知2221122()()()()()i i i im m i D X a D F a D F a D F D ε=++++22212()i i im i a a a D ε=++++22i i h σ=+ (7.8)这里应该注意,(7.8)式说明变量iX 的方差由两部分组成:第一部分为共同度2i h ,它描述了全部公共因子对变量iX 的总方差所作的贡献,反映了公共因子对变量iX 的影响程度。
第二部分为特殊因子i ε对变量i X 的方差的贡献,通常称为个性方差。
如果对iX 作了标准化处理,有221i i h σ=+ (7.9) 3、公因子jF 的方差贡献2jg 的统计意义设因子载荷矩阵为A ,称第j 列元素的平方和,即2211,2,,pjij i g a j m===∑为公共因子jF 对X 的贡献,即2jg 表示同一公共因子jF 对各变量所提供的方差贡献之总和,它是衡量每一个公共因子相对重要性的一个尺度。
因子分析模型及假设数学模型:每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:Xi=ai1*F1+a12*F2+…+aim*Fm+εi (i=1,2,…,p)式中的F1,F2,…Fm 称为公共因子,εi 称为Xi 的特殊因子。
该模型可用矩阵表示为:X=AF+ε,且满足:(1)m ≤p(2)Cov(F,ε)=0,即公共因子与特殊因子是不相关的;(3)DF=D(F)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1...0,0,0....0...0,1,00...0,0,1=Im,即各个公共因子不相关且方差为1;(4)D ε=D(ε)=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡σσσ22221...0,0,0....0...0,,00...0,0,p ,即各个特殊因子不相关,方差不要求相等。
因子旋转因子旋转的目的:初始因子的综合性太强,难以找出因子的实际意义,因此需要通过坐标旋转,使因子负荷两极分化, 要么接近于0,要么接近于∓1,从而降低因子的综合性,使其实际意义凸现出来,以便于解释因子。
因子旋转的基本方法:一类是正交旋转(保持因子间的正交性,3种,常用最大方差旋转),一类是斜交旋转(因子间不一定正交)公共因子提取个数:(1)选特征值大于等于1的因子(主成分)作为初始因子,通过求响应的标准化正交特征向量来计算因子载荷(2)碎石图:删去特征值变平缓的那些因子(3)累计方差贡献率大于85%第五讲:聚类类型,系统聚类、K-均值聚类思想及步骤,系统聚类方法,相似性测度方法聚类类型:根据分类的对象可将聚类分析分为:系统Q 型与R 型(即样品聚类与变量聚类)系统聚类、K-均值聚类思想及步骤:①系统聚类的基本思想:距离相近的样本(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
②聚类过程及步骤:假设总共有n个样品(或变量),第一步将每个样品(或变量)独自聚成一类,共有n类;第二步根据所确定的样品(或变量)“距离”公式,把距离较近的两个样品(或变量)聚合为一类,其它的样品(或变量)仍各自聚为一类,共聚成n-1类;第三步将“距离”最近的两个类进一步聚成一类,共聚成n-2类;…,以上步骤一直进行下去,最后将所有的样品(或变量)全聚成一类。
最后可以画谱系图分析。
③快速聚类的基本思想,步骤:(也称为K-均值法,逐步聚类,迭代聚类),基本思想是将每一个样品分配给最近中心(均值)的类中,具体的算法步骤如下:(1)将所有的样品分成K个初始类;(2)通过欧氏距离将某个样品划入离中心最近的类中,并对获得样品与失去样品的类,重新计算重心坐标。
(3)重复步骤2,直到所有的样品都不能再分配时为止。
系统聚类方法:最短距离法(单连接),最长距离法(完全连接),中间距离法,类平均法(组间平均连接法),可变类平均法,重心法,可变法,离差平方和法相似性测度方法:不同样本相似性度量:距离测度里包括:明氏,马氏,和兰式不同变量相似度的度量:包括:夹角余弦,相关系数。
第六讲:判别分析及各判别方法思想,判别分析假设条件,距离判别与贝叶斯判别关系判别分析定义:一种进行统计判别和分组的技术手段。
它可以就一定数量案例的一个分组变量和相应的其他多元变量的已知信息,确定分组与其他多元变量之间的数量关系,建立判别函数(discriminant Function )。
然后便可以利用这一数量关系对其他已知多元变量信息、但未知分组类型所属的案例进行判别分组。
各判别方法思想:①距离判别:求新样品X 到G 1的距离与到G 2的距离之差,如果其值为正,X 属于G 2;否则X 属于G 1 ②Bayes 判别:由于k 个总体出现的先验概率分别为kq q q ,,,21 ,则用规则R 来进行判别所造成的总平均损失为∑==ki i R i r q R g 1),()(∑∑===k i kj i R i j P i j C q 11),|()|( (4.12)所谓Bayes 判别法则,就是要选择,使得(4.12)式表示的总平均损失)(R g 达到极小。
③Fisher 判别的基本思想和步骤:从K 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数:U(X)=X pXp X X '...2211μμμμ=+++,其中系数μ=(μ1,μ2,…,μp )’确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
有了线性判别函数后,对于一个新的样品,将它的p 个指标值代入线性判别函数式中求出U(X)值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
判别分析假设条件:判别分析的假设之一,是每一个判别变量(解释变量)不能是其他判别变量的线性组合。
即不存在多重共线性问题。
判别分析的假设之二,是各组变量的协方差矩阵相等。
判别分析最简单和最常用的形式是采用线性判别函数,它们是判别变量的简单线性组合。
在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显著性检验。
判别分析的假设之三,是各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布。
在这种条件下可以精确计算显著性检验值和分组归属的概率。
当违背该假设时,计算的概率将非常不准确。
距离判别与贝叶斯判别关系:距离判别中两个总体的距离判别规则为:12,()0,()0G W G W ∈≥⎧⎨∈<⎩X X X X 如果如果,而贝kG G G ,,,21 kR R R ,,,21叶斯判别规则为:⎩⎨⎧<∈≥∈dV G d V G )(,)(,21x x x x 当当,二者唯一差别仅在于阀值点,从某种意义上讲,距离判别是贝叶斯判别的特殊情形。
题型及分数:一、判断对错并改正(4题,8分) 二、不定项选择(10题,20分) 三、简答题(4题,32分) (六选四)主成分基本思想,系统聚类,K-均值聚类基本思想及过程,判别分析及费希尔基本思想,比较聚类与回归、判别,因子分析及因子旋转聚类与回归、判别:①判别与回归:联系:都是根据已有数据判别未来趋势。