计算器-复数的计算方法
复数公式及运算法则

复数公式及运算法则
复数公式:复数是由实部和虚部组成的数。
复数通常写成a + bi 的形式,其中a和b都是实数,而i是一个虚数单位,满足i² = -1。
复数的运算法则:
1.复数的加法和减法:将实部与实部、虚部与虚部分别相加或相减。
(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) - (c + di) = (a - c) + (b - d)i
2.复数的乘法:使用分配律将两个复数相乘。
(a + bi) * (c + di) = ac + adi + bci + bdi²
因为i²=-1,所以可以将上式简化为:
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
3.复数的除法:用分子分母都乘以分母的共轭复数(实部保持不变,虚部取负数),然后将分母变为实数。
(a + bi) / (c + di) = (a + bi) * (c - di) / (c² + d²)
因为乘法和除法都需要分别计算实部和虚部,所以计算复数的乘
法和除法时需要注意分配律和运用恒等式。
拓展:复数在物理学、工程学、数学等多个领域都有广泛应用,
如在电路分析、信号处理、量子力学等方面。
由于虚部可以表示位移、相位差等概念,复数可以用来表示波形、振动、旋转等物理量。
同时,复数的数学理论也非常丰富,包括复数拓扑学、复变函数论等多个分支。
计算器的复数运算方法

计算器的复数运算方法复数运算是指涉及复数的各种数学运算,包括加法、减法、乘法、除法等。
计算器作为一种便捷的工具,可以通过输入相应的运算表达式进行复数的计算。
以下是关于计算器进行复数运算的详细方法说明。
一、计算器复数运算的基础知识1.复数定义复数是由实数和虚数部分构成的数,一般写成a+bi的形式,其中a 为实数部分,b为虚数部分,i为虚数单位,且i满足i^2 = -1例如,3+2i就是一个复数,其中实数部分是3,虚数部分是22.复数的加法和减法复数的加法和减法规则与实数的加法和减法类似,实数部分和虚数部分分别相加或相减。
例如,(3+2i)+(1+4i)=4+6i,(3+2i)-(1+4i)=2-2i。
3.复数的乘法复数的乘法使用分配律展开,然后根据i的平方等于-1进行计算。
例如,(3+2i)*(1+4i)=3*(1+4i)+2i*(1+4i)=3+12i+2i-8=-5+14i。
4.复数的除法复数的除法需要进行分母分子的有理化,然后进行分子分母的化简和分配律展开。
例如,(3+2i)/(1+4i)=(3+2i)*(1-4i)/(1+4i)*(1-4i)=(-10-5i)/17=-10/17-5i/17二、计算器实际操作步骤1.打开计算器首先按下计算器的开关按钮,打开计算器的电源。
2.选择复数模式计算器可能提供实数和复数两种模式选择,需要选择复数模式来进行复数运算。
通常,选择复数模式需要按下模式选择键,然后选择复数模式。
3.输入复数使用计算器上的数字键盘输入要进行运算的复数。
实数部分和虚数部分的输入可以使用不同的键或符号进行表示,具体使用方法可以参考计算器的使用说明书。
4.选择运算符号输入完复数后,选择相应的运算符号,例如加号、减号、乘号或除号。
5.输入第二个复数继续使用数字键盘输入第二个复数。
6.进行计算当输入完第二个复数后,按下等号键,计算器将进行复数运算,并在屏幕上显示结果。
结果以复数的形式显示,包括实数部分和虚数部分。
计算器的复数运算方法

首先,计算器上要有 首先,计算器上要有CPLX键 键 转换为复数运算模式: 转换为复数运算模式: 2ndF键 键 CPLX键 键
输入数据格式说明: 输入数据格式说明:
♣ 数字 数字1
数据为代数( 数据为代数(直角 坐标)形式。 坐标)形式。
a
数字2 数字
b
(rθ )a
2ndF
数字1 数字1+j数字2 数字2
例2
计算(5+j8.66)+22 −150o 。 计算 2ndF键 键 2ndF b(xy) = CPLX键 键
5 a 8.66 b+22 a 150 +- b / +
结果说明同上
减法及乘除运算方法类同。 减法及乘除运算方法类同。
注意:即使一个复数只有实部, 注意:即使一个复数只有实部,按
完数字键后也必须按a键才能运算。 完数字键后也必须按 键才能运算。
♣ 数字 数字1
数据为指数(极坐 数据为指数( 形式。 标)形式。
a
数字2 数字
b
(xy)b )
2ndF
数字2o 数字1 数字1 数字2
无论做何种运算, 无论做何种运算,都必须将输 入数据转换成直角坐标形式。 入数据转换成直角坐标形式。 的操作如下: 例1 (−3+j4)+(6−j5) 的操作如下: 2ndF键 键 CPLX键 键
3 +- a 4 b+6 a 5 +- b = / / +
注意பைடு நூலகம்
按完“=”键后此时显示屏上 按完“ 键后此时显示屏上 显示的是计算结果( 显示的是计算结果(直角坐标形 实部; 式)的实部;再按 b键,则为计 键 算结果的虚部 虚部。 算结果的虚部。以后再按 a键就 键就 是结果的实部。 是结果的实部。
复数研究

计算复数一、使用方法1.利用计算器进行复数计算必须要用计算器的度,按DRG键,使计算器显示窗中要有“DEG”标致(表示计算器进行所有带角度的运算均以“度”为单位)。
2.让计算器进入复数运算状态,分别按2ndF 和CPLX,显示窗中有“CPLX”标致,表示计算器只能进行复数的运算,而进行其它计算则是无效的。
取消则重复进行即可。
进行复数的加减乘除运算时计算器必须处于复数运算状态。
二、计算说明1.计算器中a、b的分别表示进行复数运算的实部和虑部,进行代数式输入时可以直接按此键。
2.计算器中→rθ、→xy的分别表示进行复数运算的模和角,进行极坐标式输入时必须利用上档键功能进行;同时这两个按键也是代数式和极坐标式转换的功能键。
3.计算器在进行复数运算时均是以代数式形式进行的,就是说在进行极坐标式计算时必须要先化成代数式,计算的结果也是代数式,如果希望得到极坐标式计算完成后也要进行转换。
4.显示结果运算完成后的结果就是代数式且显示的是实部,按b显示虑部,再按a就显示实部,转换成极坐标式后则按a显示模,按b显示角,也可重复显示。
5.在输入带有负号的值时,应先输入数值,再输入负号,输入负号应按+/-键。
三、计算举例1.代数式化成极坐标式例如:3 + j 4 = 5 /53.13º按键步骤:(按键动作用“↓”表示。
)3↓a↓4↓b↓2ndF↓→rθ↓显示模5,b↓显示角53.13º。
2.极坐标式化成代数式例如: 15 /-50º = 9.64- j11.49按键步骤:15↓a↓50↓+/-↓b↓2ndF↓→xy↓显示实部9.64,b↓显示虑部-11.49。
3.代数式的加减乘除例如: ( 5 - j 4 ) × ( 6 + j 3 ) = 42 - j 9 = 42.953/-12.095º按键步骤:5↓a↓4↓+/-↓b↓×↓6↓a↓3↓b↓=↓显示实部42 b↓显示虑部–9。
计算器复数和极坐标

计算器复数和极坐标
计算器常常被用来计算复数和将复数转换为极坐标。
一个复数由实部和虚部组成,可以写成 a+bi 的形式,其中 a 和 b 是实数,i 是虚数单位。
极坐标表示法则是用大小和角度来表示复数,例如 r(cos θ + i sinθ)。
如何使用计算器计算复数和将复数转换为极坐标?
首先,在计算器中输入实部和虚部,然后按下“+”或“-”键,再输入虚数单位“i”。
例如,如果要计算复数 2+3i,可以输入“2+3i”,然后按下“=”键。
计算器将显示复数的实部和虚部,以及复数的模和幅角。
要将复数转换为极坐标,可以使用以下公式:r = √(a+b) 和θ= tan(b/a)。
其中 r 是复数的模,θ是复数的幅角。
输入复数的实部和虚部,然后按下“=”键。
计算器将显示复数的模和幅角,以及以极坐标表示的复数。
综上所述,计算器可以轻松计算复数,并将其转换为极坐标表示。
这对于学习和应用复数非常有用。
- 1 -。
复数计算

正弦电路最大功率传输
标准情况(戴维宁电路的参数不变,负载可调): 标准情况(戴维宁电路的参数不变,负载可调): 负载为实部和虚部都任意可变的阻抗。 (1) 负载为实部和虚部都任意可变的阻抗。采用共轭法 则。 (2)负载为模可变的复数(纯电阻是一种特例)。采用 负载为模可变的复数(纯电阻是一种特例)。采用 )。 模相等法则。 模相等法则。 非标准情况: 非标准情况: (1)求出功率表达式,然后求极大值。 求出功率表达式,然后求极大值。
二、常用三角函数
和角公式: 和角公式: sin(α+β)=sinα cosβ +cosα sinβ
sin(α-β)=sinα cosβ-cosα sinβ cos(α+β)=cosα cosβ-sinα sinβ cos(α-β)=cosα cosβ+sinα sinβ
asinα ±bcosα化为一个三角函数的形式: 化为一个三角函数的形式: 化为一个三角函数的形式
积化和差: 积化和差:
降幂公式: 降幂公式:
1 + cos 2α cos α = 2 1 − cos 2α 2 sin α = 2
2
三、良好的电路解题习惯
1. 电路图和相量图用直尺画。 电路图和相量图用直尺画。 2. 计算结果要标注单位。 计算结果要标注单位。 3. 解题步压方程。关键在于选什么点来列节点电压方 可列出节点电压方程。关键在于选什么点来列节点电压方 。(不能选运放输出点 不能选运放输出点, 程。(不能选运放输出点,但其可以包含在其它节点的方 程里面) 程里面) 2. 虚断用于判断可选节点。 虚断用于判断可选节点。 3. 虚短用于补充方程。 虚短用于补充方程。
一、如何使用计算器计算复数 二、常用三角函数 三、良好的电路解题习惯
卡西欧计算器解复数方程

卡西欧计算器是一种多功能计算器,可以用于解复数方程。
下面是使用卡西欧计算器解复数方程的步骤:
1. 打开卡西欧计算器并输入复数方程的系数和常数。
2. 按下“SHIFT”按键并选择“ACES”模式。
3. 选择“COMPLEX”模式。
此时,计算器将进入复数运算模式。
4. 按下“+”号键将输入方式从实数变为虚数,以便输入复数。
5. 输入复数方程的解,例如:输入方程的系数和常数,再输入复数的虚部。
6. 根据需要使用“+”或“-”键进行加减法运算,或者使用“MUL”或“DIV”键进行乘除法运算。
7. 按下“=”键进行求解。
如果方程有解,计算器将显示结果;如果没有解,将显示错误信息。
需要注意的是,使用卡西欧计算器解复数方程时,需要正确输入复数的系数和常数,以及虚部的值。
同时,还需要根据方程的类型选择合适的运算方式,例如加减法、乘除法等。
此外,还需要注意方程是否有解,如果没有解,需要重新考虑方程的形式或求解方法。
总之,使用卡西欧计算器解复数方程需要一定的数学基础和运算技巧,需要认真阅读说明书并按照正确的步骤进行操作。
如何用简单计算器进行复数计算

一、使用方法1.利用计算器进行复数计算必须要用计算器的度,按DRG键,使计算器显示窗中要有“DEG”标致(表示计算器进行所有带角度的运算均以“度”为单位)。
2.让计算器进入复数运算状态,分别按2ndF 和CPLX,显示窗中有“CPLX”标致,表示计算器只能进行复数的运算,而进行其它计算则是无效的。
取消则重复进行即可。
进行复数的加减乘除运算时计算器必须处于复数运算状态。
二、计算说明1.计算器中a、b分别表示进行复数运算的实部和虑部,进行代数式输入时可以直接按此键。
2.计算器中→rθ、→xy的分别表示进行复数运算的模和角,进行极坐标式输入时必须利用上档键功能进行;同时这两个按键也是代数式和极坐标式转换的功能键。
3.计算器在进行复数运算时均是以代数式形式进行的,就是说在进行极坐标式计算时必须要先化成代数式,计算的结果也是代数式,如果希望得到极坐标式计算完成后也要进行转换。
4.显示结果运算完成后的结果就是代数式且显示的是实部,按b显示虑部,再按a就显示实部,转换成极坐标式后则按a显示模,按b显示角,也可重复显示。
5.在输入带有负号的值时,应先输入数值,再输入负号,输入负号应按+/-键。
三、计算举例1.代数式化成极坐标式例如:3 + j 4 = 5 /53.13º按键步骤:(按键动作用“↓”表示。
)3↓a↓4↓b↓2ndF↓→rθ↓显示模5,b↓显示角53.13º。
2.极坐标式化成代数式例如:15 /-50º = 9.64- j11.49按键步骤:15↓a↓50↓+/-↓b↓2ndF↓→xy↓显示实部9.64,b↓显示虑部-11.49。
3.代数式的加减乘除例如:( 5 - j 4 ) × ( 6 + j 3 ) = 42 - j 9 = 42.953/-12.095º按键步骤:5↓a↓4↓+/-↓b↓×↓6↓a↓3↓b↓=↓显示实部42 b↓显示虑部–9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用计算器计算复数
(KK-82MS-1)
三、计算举例
模式:MODE CLR↓1。
1.代数式化成极坐标式
例如: 3 + j 4 = 5 /53.13º
步骤: POL↓(3,4)。
结果=5;
在按键rcl↓F↓。
结果等于53.13.
2. 极坐标化成代数式
例如: 15 /-50º = 9.64- j11.49
按键步骤:SHIFT↓REC↓(15,-50)。
结果等于9.64.
再按rcl↓F 。
结果等于-11.49.
3. 代数式的加减乘除
例如: ( 5 - j 4 ) × ( 6 + j 3 ) = 42 - j 9 = 42.953/-12.095º
步骤:先进行简单的加减运算得到42 - j 9。
POL↓(42,-9)。
结果等于42.953;
再rcl↓F。
结果等于-12.095.
例 ( 5 - j 4 ) + ( 6 + j 3 ) = 11 - j 1 = 11.045 /-5.1944º
( 5 - j 4 ) - ( 6 + j 3 ) = -1 - j 7 = 7.071 /-98.13º
( 5 - j 4 ) ÷ ( 6 + j 3 ) = 0.4 - j 0.8667 = 0.9545 /-65.2249
º
4.极坐标式的加减乘除
例如:5 /40º + 20 /-30º = 21.15 - j 6.786 =
22.213/-17.788º
步骤:先将5 /40º化成代数式3.83+ 3.214j,将 20 /-30º化成代数式17.32-j10;然后两式相加21.15-j6.786.然后转换成极坐标。
如进行其它运算只需将乘号换成要进行的计算号即可。
这里只给出计算结果请同学自己进行练习对比。
5 /40º - 20 /-30º = -13.49 - j 13.2139 = 22.213/135.5929º
5 /40º×20 /-30º = 98.48 - j 17.3648 = 100/10º
5 /40º÷20 /-30º = 0.0855 - j 0.2349 = 0.25/70º。