第11章 一元线性回归
《一元线性回归》课件

使用评价指标对模型的性能进行评估。
《一元线性回归》PPT课 件
一元线性回归是一种用于探索变量之间关系的统计方法。本课件将介绍一元 线性回归的基本概念、模型、参数估计、模型评估以及Python实现。
一元线性回归-简介
一元线性回归是一种分析两个变量之间线性关系的方法。在这一节中,我们 将介绍一元线性回归的定义、使用场景以及它的重要性。
决定系数
4
方的平均值。
衡量模型对观测值的解释能力,取值范 围从0到1。
一元线性回归-Python实现
导入数据
使用Python的pandas库导入数据集。
划分数据集
将数据集划分为训练集和测试集。
预测结果
使用测试集数据对模型进行预测。
特征工程
选择合适的特征并对其进行处理。
训练模型
使用训练集数据训练线性Байду номын сангаас归模型。
一元线性回归-线性回归模型
1
简单线性回归模型
一个自变量和一个因变量之间的线性关
多元线性回归模型
2
系。
多个自变量和一个因变量之间的线性关
系。
3
线性回归模型的假设
包括线性关系、平均误差为零、误差具 有相同的方差、误差相互独立等。
一元线性回归-模型参数估计
1
最小二乘法
通过最小化观测值和模型预测值之间的平方误差来估计模型参数。
2
矩阵求导
使用矩阵求导的方法来计算模型参数的最优解。
3
梯度下降法
通过迭代的方式逐步优化模型参数,使得模型预测值与观测值之间的差距最小。
一元线性回归-模型评估
1
对模型误差的描述
通过各种指标来描述模型预测值和观测
定量分析方法(11-1)

第十一章 回 归 分 析本章以一元线性回归模型为重点介绍回归分析方法,对于一元线性回归模型所建立的理论与方法作适当的修改便可推广到多元线性回归模型。
§1 回归的概念一、变量之间的关系现实中,各种变量相互依赖、相互影响,存在着某种关系。
如:价格与需求量、利率与投资、收入与消费,等等。
大致可以归纳为两类关系:确定性关系(函数关系),非确定性关系(统计关系)。
1. 确定性关系:变量之间存在着某种完全确定的关系。
如:总收益Y 与产量X 之间的关系:X P Y ⋅=当价格一定时,Y 由X 完全确定。
表现在图形上,()Y X ,的所有点位于一条直线上。
一般地:()n X X X f Y ,,21= (多元函数)2. 非确定性关系:变量之间由于受到某些随机因素的影响而呈现出一种不确定的关系。
如:农业产量主要受到降雨量、施肥量、温度等的影响,但决定产量的并非完全是这些因素,还要受到许多其它因素的影响,如冰雹、蝗灾等自然灾害。
非确定性关系可以分为两大类:1) 相关关系:两个变量处于完全对等的位置,且两个变量皆为随机变量,常用相关系数来度量。
如:计量经济学成绩与统计学成绩,物价水平和股票价格,等等。
2) 回归关系:一个变量的变化是另一个变量变化的原因,而不是相反。
如:消费量Y 与可支配收入X 之间便是一种回归关系。
一般来讲,随着可支配收入的增加,消费增加,可支配收入是影响消费的主要因素,但并非唯一的因XYPX Y =素,影响消费的因素还有消费习惯、地区差异、年龄构成、宗教信仰等等。
同样收入的家庭,有的支出多,有的支出少,即使是同一家庭,其每个月的收入相同的话,各个月的支出也不会完全一样。
这样,对应于一个X 的值,Y 有多个不同的值相对应,X 与Y 呈现出不确定性的关系。
此时:()u X f Y += (u 为随机影响)表现在图形上,()Y X ,的点不是完全处于一条直线(或曲线)上,而是围绕在一条理论线的两旁变化。
第十章 一元线性回归

第十一章 一元线性回归一、填空题1、对回归系数的显著性检验,通常采用的是 检验。
2、若回归方程的判定系数R 2=0.81,则两个变量x 与y 之间的相关系数r 为_________________。
3、若变量x 与y 之间的相关系数r=0.8,则回归方程的判定系数R 2为____________。
4、对于直线趋势方程bx a y c +=,已知∑=,0x ∑=130xy ,n=9,1692=∑x, a=b ,则趋势方程中的b=______。
5、回归直线方程bx a y c +=中的参数b 是_____________。
估计待定参数a 和 b 常用的方法是-_________________。
6、相关系数的取值范围_______________。
7、在回归分析中,描述因变量y 如何依赖于自变量x 和误差项的方程称为 。
8、在回归分析中,根据样本数据求出的方程称为 。
9、在回归模型εββ++=x y 10中的ε反映的是 。
10、在回归分析中,F 检验主要用来检验 。
11、说明回归方程拟合优度检验的统计量称为 。
二、单选题1、年劳动生产率(x :千元)和工人工资(y :元)之间的回归方程为1070y x =+,这意味着年劳动生产率没提高1千元,工人工资平均( )A 、 增加70元B 、 减少70元C 、增加80元D 、 减少80元 2、两变量具有线形相关,其相关系数r=-0.9,则两变量之间( )。
A 、强相关B 、弱相关C 、不相关D 、负的弱相关关系 3、变量的线性相关关系为0,表明两变量之间( )。
A 、完全相关B 、无关系C 、不完全相关D 、不存在线性关系 4、相关关系与函数关系之间的联系体现在( )。
A 、相关关系普遍存在,函数关系是相关关系的特例 B 、函数关系普遍存在,相关关系是函数关系的特例C 、相关关系与函数关系是两种完全独立的现象D 、相关关系与函数关系没有区别 5、已知x 和y 两变量之间存在线形关系,且δx =10, δy =8, δxy2=-7,n=100,则x 和y 存在着( )。
一元线性回归PPT演示课件

196.2
15.8
16.0
102.2
12.0
10.0
本年固定资产投资额 (亿元) 51.9 90.9 73.7 14.5 63.2 2.2 20.2 43.8 55.9 64.3 42.7 76.7 22.8 117.1 146.7 29.9 42.1 25.3 13.4 64.3 163.9 44.5 67.9 39.7 97.1
6. r 愈大,表示相关关系愈密切.
例 11.7
根据例11.6的样本数据,计算不良贷款、贷款余额、应收 贷款、贷款项目、固定资产投资额之间的相关系数.
解:用Excel计算的相关系数矩阵如下.
三、相关系数的显著性检验
(一) r 的抽样分布
当样本数据来自正态总体,且 0 时,则
t r n 2 ~ t(n 2) 1 r2
时,yˆ ˆ0 .
二、参数的最小二乘估计
假定样本数据 (xi , yi ) , i 1,2,, n ,满足一元线性回归模 型, 根据(11.6)式则样本回归方程为
yˆi ˆ0 ˆ1xi , i 1,2,, n
(11.7)
最小二乘法是使因变量的观察值 yi 与估计值 yˆi 之间的离差平
i1 i1
n
n
n
n
n xi2 ( xi )2 n yi2 ( yi )2
i 1
i 1
i 1
i 1
( 11.1 ) ( 10.2 )
相关系数的取值范围及意义
1. r 的取值范围为[-1,1].
2. r 1 ,称完全相关,既存在线性函数关系.
r =1,称完全正相关. r =-1,称完全负相关. 3. r =0,称零相关,既不存在线性相关关系. 4. r <0,称负相关. 5. r >0,称正相关.
统计学-第11章一元线性回归学习指导

第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。
函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。
因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。
起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。
因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。
相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。
线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。
()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。
β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。
其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。
()代替。
用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。
回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。
一元线性回归模型的参数估计

斜率(β1)
表示 x 每变化一个单位,y 平均变化的数量。
一元线性回归模型的假设
线性关系
因变量 y 和自变量 x 之间存在线性关系。
误差项独立
误差项 ε 之间相互独 立,且与 x 独立。
误差项的正态性
误差项 ε 的分布是正 态的。
误差项的无偏性
误差项 ε 的期望值为 0,即 E(ε) = 0。
有限的方差
回归分析的分类
一元回归分析
研究一个自变量和一个因变量之间的关系。
多元回归分析
研究多个自变量和一个因变量之间的关系。
线性回归模型
线性回归模型是一种常用的回归分析方法,它假设自变量和因变量之间存在线性关系,即可以用一条 直线来描述它们之间的关系。
在一元线性回归模型中,自变量和因变量之间的关系可以表示为一条直线,即 y = ax + b,其中 a 是斜 率,b 是截距。
确定样本数据
收集用于估计参数的样本数据。
构建估计量
根据模型和样本数据构建用于估计参数的统计量。
计算估计值
通过计算统计量的值得到参数的估计值。
评估估计质量
通过统计检验和图形方法评估估计的质量和可靠性。
05 模型的评估与检验
模型的拟合度评估
决定系数(R^2)
衡量模型解释变量变异程度的指标,值越接 近1表示模型拟合度越好。
数据整理
将数据整理成适合进行统计分析 的格式,如表格或图形,以便后 续分析。
建立一元线性回归模型
确定自变量和因变量
根据研究问题选择合适的自变量和因变量,确 保它们之间存在一定的关联性。
散点图分析
绘制散点图,观察自变量和因变量之间的关系, 初步判断是否适合建立一元线性回归模型。
一元线性回归分析

一元线性回归分析摘要:一元线性回归分析是一种常用的预测和建模技术,广泛应用于各个领域,如经济学、统计学、金融学等。
本文将详细介绍一元线性回归分析的基本概念、模型建立、参数估计和模型检验等方面内容,并通过一个具体的案例来说明如何应用一元线性回归分析进行数据分析和预测。
1. 引言1.1 背景一元线性回归分析是通过建立一个线性模型,来描述自变量和因变量之间的关系。
通过分析模型的拟合程度和参数估计值,我们可以了解自变量对因变量的影响,并进行预测和决策。
1.2 目的本文的目的是介绍一元线性回归分析的基本原理、建模过程和应用方法,帮助读者了解和应用这一常用的数据分析技术。
2. 一元线性回归模型2.1 模型表达式一元线性回归模型的基本形式为:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。
2.2 模型假设一元线性回归模型的基本假设包括:- 线性关系假设:自变量X与因变量Y之间存在线性关系。
- 独立性假设:每个观测值之间相互独立。
- 正态性假设:误差项ε服从正态分布。
- 同方差性假设:每个自变量取值下的误差项具有相同的方差。
3. 一元线性回归分析步骤3.1 数据收集和整理在进行一元线性回归分析之前,需要收集相关的自变量和因变量数据,并对数据进行整理和清洗,以保证数据的准确性和可用性。
3.2 模型建立通过将数据代入一元线性回归模型的表达式,可以得到回归方程的具体形式。
根据实际需求和数据特点,选择适当的变量和函数形式,建立最优的回归模型。
3.3 参数估计利用最小二乘法或最大似然法等统计方法,估计回归模型中的参数。
通过最小化观测值与回归模型预测值之间的差异,找到最优的参数估计值。
3.4 模型检验通过对回归模型的拟合程度进行检验,评估模型的准确性和可靠性。
常用的检验方法包括:残差分析、显著性检验、回归系数的显著性检验等。
4. 一元线性回归分析实例为了更好地理解一元线性回归分析的应用,我们以房价和房屋面积之间的关系为例进行分析。
贾俊平第四版统计学-第十一章一元线性回归练习答案

第十一章一元线性回归练习题答案二.填空题 1. 不能;因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验;t 检验;2.图1;不能;因为图1反映的是线性相关关系,图2反映的是非线性性相关关系,相关系数只能反映线性相关变量间的相关性的强弱,不能反映非线性相关性的强弱。
三.计算题1.(1) SSR 的自由度是1,SSE 的自由度是18。
(2)2418/6080220/1/==-=SSE SSR F(3)判定系数%14.57140802===SST SSR R 在y 的总变差中,由57.14%的变差是由于x 的变动说引起的。
(4)7559.05714.02-=-=-=R r相关系数为-0.7559。
(5)线性关系显著和:线性关系不显著和y x y x H 10H :因为414.424=>=αF F,所以拒绝原假设,x 与y 之间的线性关系显著。
2.(1)方差分析表df SS MS F Significance F回归分析 1 425 425 85 0.017 残差 15 75 5 - - 总计16500---(2)判定系数%8585.05004252====SST SSR R表明在维护费用的变差中,有85%的变差可由使用年限来解释。
(3)9220.085.02===R r二者相关系数为0.9220,属于高度相关(4)x y248.1388.6ˆ+= 分布;显著。
的自由度为t n r n r t 2);12||2---=回归系数为1.248,表示每增加一个单位的产量,该行业的生产费用将平均增长1.248个单位。
(5)线性关系显著性检验:线性关系显著:生产费用和产量之间性关系不显著生产费用和产量之间线10:H H因为Significance F=0.017<05.0=α,所以线性关系显著。
(6)348.3120248.1388.6248.1388.6ˆ==⨯++=x y当产量为10时,生产费用为31.348万元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章一元线性回归
1.具有相关关系的两个变量的特点是()
A.一个变量的取值不能由另一个变量唯一确定
B.一个变量的取值由另一个变量唯一确定
C.一个变量的取值增大时,另一个变量的取值也一定增大
D.一个变量的取值增大时,另一个变量的取值肯定变小
2.下面的各问题中,哪个不是相关分析要解决的问题()
A.判断变量之间是否存在关系
B.判断一个变量数值的变化对另一个变量的影响
C.描述变量之间的关系强度
D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系
3.下面的假定中,哪个属于相关分析中的假定()
A.两个变量之间是非线性关系
B.两个变量都是随机变量
C.自变量是随机变量,因变量不是随机变量
D.一个变量的数值增大,另一个变量的数值也应增大
4.如果变量之间的关系近似地表现为一条直线,则称两个变量之间为()A.正线性相关关系
B.负线性相关关系
C.线性相关关系
D.非线性相关关系
5.如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,称为两个变量之间为()
A.完全相关关系
B.正线性相关关系
C.非线性相关关系
D.负线性相关关系
6.下面的陈述哪一个是错误的()
A.相关系数是度量两个变量之间线性关系强度的统计量
B.相关系数是一个随机变量
C.相关系数的绝对值不会大于1
D.相关系数不会取负值
7.如果相关系数r=0,则表明两个变量之间()
A.相关程度很低
B.不存在任何关系
C.不存在线性相关关系
D.存在非线性相关关系
8.在回归分析中,被预测或被解释的变量称为()
A.自变量
B.因变量
C.随机变量
D.非随机变量
9.在回归分析中,描述因变量y如何依赖于自变量x和误差项的方程称为()A.回归方程
B.估计的回归方程
C.回归模型
D.经验回归方程
中,ε反映的是10. 在一元回归模型ε
β
β+
+
y
=x
1
A. 由于x 的变化引起的y 的线性变化部分
B. 由于y 的变化引起的x 的线性变化部分
C. 由于x 和y 的线性关系对y 的影响
D. 除x 和y 的线性关系之外的随机因素对y 的影响
11. 在一元线性回归模型y x =++ββε01中,对ε有三个基本假定,即正态性、方差齐性和独立性。
其中的独立性是指
A. 对于一个特定的x 值,它所对应的ε与其他x 值所对应的ε不相关
B. 对于一个特定的y 值,它所对应的ε与其他y 值所对应的ε不相关
C. 对于所有的x 值,ε的方差2σ都相同
D. 对于所有的y 值,ε的方差2
σ都相同
12. 在一元线性回归方程中,回归系数1β的实际意义是( )
A. 当x=0时,y 的期望值
B. 当x 变动1个单位时,y 的平均变动数量
C. 当x变动1个单位时,y增加的总数量
D. 当y变动1个单位时,x的平均变动数量
13. 对不同年份的产品成本拟合的直线方程
ˆ =-1.75表示为yˆ=280-1.75x,回归系数
1
()
A. 时间每增加1个单位,产品成本平均增加1.75个单位
B. 产品成本每变动1个单位,平均需要
1.75年时间
C. 时间每增加1个单位,产品成本平均下降1.75个单位
D. 时间每减少1个单位,产品成本平均增加1.75个单位
14. 在回归分析中,F检验主要是用来检验()
A. 相关系数的显著性
B. 回归系数的显著性
C. 估计标准误差的显著性
D. 线性关系的显著性
15. 说明回归方程拟合优度的统计量是()
A. 相关系数
B. 回归系数
C. 判定系数
D. 估计标准误差
16. 在因变量的总离差平方和中,如果回归平方和所占比重大,则两变量之间()
A. 相关程度高
B. 相关程度低
C. 完全相关
D. 完全不相关
17. 在回归分析中,残差平方和是指
A. 各实际观测值i y与其均值y的离差平方和
B. 各实际观测值i y与回归值i yˆ的离差平方和
C. 回归预测值i yˆ与因变量均值y的离差平方和
D. 因变量i y与自变量i x的平方和
18. 在一元线性回归中,如果估计标准误差
=
s,则意味着
e
A. 回归系数0=β
B. 回归系数1=β
C. 相关系数0=r
D. 相关系数1=r
19. 根据两个变量之间的一元线性回归,得到的回归平方和285
SSE。
SSR,残差平方和75=
=
则判定系数2R等于
A. 20.83%
B. 79.17%
C. 26.32%
D. 33.25%
标准答案:1. A 2. B 3. B 4. C 5. A
6. D
7. C
8. B
9. C 10. D 11.A 12.
B 13.
C 14.
D 15. C 16. A 17. B
18. D 19. B。