大涡模拟的fluent算例
fluent算例模拟燃烧

计算流体力学作业FLUENT 模拟燃烧问题描述:长为2m、直径为的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为 m,高 m的薄板,以利于甲烷与空气的混合。
燃烧火焰为湍流扩散火焰。
在燃烧器中心有一个直径为 m、长为 m、壁厚为 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。
空气从喷嘴周围以 m/s的速度进入燃烧器。
总当量比大约是(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为×103。
假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。
利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。
1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件2、使用非耦合求解器求解燃烧问题3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果4、利用分布云图检查反应流的计算结果5、预测热力型和快速型的NO X含量6、使用场函数计算器进行NO含量计算一、利用GAMBIT建立计算模型第1步启动GAMBIT,建立基本结构分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的二维结构就可以了,几何结构如图2所示。
(1)建立新文件夹在F盘根目录下建立一个名为combustion的文件夹。
(2)启动GAMBIT(3)创建对称轴①创建两端点。
A(0,0,0),B(2,0,0)②将两端点连成线(4)创建小喷嘴及空气进口边界①创建C、D、E、F、G点②连接AC、CD、DE、DF、FG。
(5)创建燃烧筒壁面、隔板和出口①创建H、I、J、K、L、M、N点(y轴为,z轴为0)。
②将H、I、J、K、L、M、N向Y轴负方向复制,距离为板高度。
③连接GH、HO、OP、PI、IJ、JQ、QR、RK、KL、LS、ST、TM、MN、NB。
FLUENT算例——TurbulentPipeFlow(LES)圆管湍流流动(大涡模拟)

FLUENT 算例——TurbulentPipeFlow (LES )圆管湍流流动(⼤涡模拟)Turbulent Pipe Flow (LES) 圆管湍流流动(⼤涡模拟)以ANSYS 17.0为例问题描述考虑通过圆形截⾯直管道的流动问题,圆管直径,长度。
管道进⼝处的平均流速为,假设流体密度为定值,,流体动⼒粘性系数。
那么基于圆管直径、平均流速、流体密度、动⼒粘性系数算得该问题的Reynold数(Re)为接下来咱们⽤ANSYS FLUENT中的LES⽅法来求解该流动问题,绘制在距离进⼝处下游截⾯上随着半径变化的平均速度和均⽅根速度,并⽐较由LES⽅法和⽅法模拟得到的平均速度。
1 预分析和准备⼯作预分析在⼤涡模拟中,瞬时速度被分解为滤波后的分量以及剩余的残差分量,滤波后的速度分量表征了⼤尺度的⾮定常运动。
在LES中,⼤尺度的湍流运动被直接表征,⽽⼩尺度的湍流运动则⽤模型近似。
关于滤波速度的滤波⽅程可以从Navier-Stokes⽅程推出,由于残差操作,动量⽅程中的⾮线性对流项引⼊了⼀个应⼒张量的残差项,该残差应⼒张量需要通过构造模型来完成⽅程组的封闭,⽽FLUENT中提供了从易到难的多种模型。
既然咱们要求解,那么LES就是个⾮定常的模拟过程,需要在时域内向前推进。
为了收集统计平均量,⽐如平均和均⽅根(root mean square(r.m.s.))速度,咱们需要⾸先达到统计上的稳定状态(然后再开展统计平均的处理)。
作为对⽐,模型求得的平均速度也⼀并给出。
关于LES的详细理论和⽅程可以再很多湍流的书籍中找到。
准备⼯作LES是三维⾮定常计算(只能适⽤于三维问题和⾮定常问题),那么计算域是全部的管道。
在打开ANSYS之前,先创建⼀个⽂件夹turbulent_pipe_LES,然后⾥⾯在创建⼀个ICEM⽂件夹和FLUENT⽂件夹,分别⽤来存放ICEM的建模和画⽹格⽂件,以及FLUENT的计算⽂件。
2 构建⼏何模型打开ICEM CFD 17.0软件,在其中完成建模⼯作,咱们计算域是圆管内部流道,也就是⼀个圆柱体,让圆柱体的轴线沿着⽅向,进⼝截⾯位于上,圆⼼位于坐标原点。
(完整word版)Fluent风机计算教程

离心风机数值计算教程西北工业大学航海学院编制1. 流场建模1.1蜗壳部分流场建模(1)草绘蜗壳轮廓(2)拉伸草图,绘制流域(3)扣除叶轮部分(4)增加风机出口1.2叶轮流场建模(1)拉伸草图(2)扣除叶轮电机和进风口(3)扣除叶片和叶轮盘(4)静态线框图1.3保存(1)建立的三维模型需要保存成iges 、step或X-T等三维模型通用格式,便于导入CFD前处理软件。
2.CFD前处理2.1 Gambit软件介绍(1)Gambit 快捷键快捷键功能鼠标左键旋转鼠标中键平移鼠标右键缩放Shift+鼠标左键选中Shift+鼠标中键框选、反向、替换换当先选中项Shift+鼠标右键确定(相当于点击Apply按钮)(2)各按钮功能简要介绍几何体操作按钮,激活后第二排分别为点、线、面、体和几何组按钮,分别激活可以进一步操作。
网格划分操作按钮,激活后第二排分别为边界层网格、边网格、面网格、体网格和几何组网格按钮,分别激活可以进一步操作。
边界条件设置操作按钮,激活后第二排分别为边界边界条件设置(进出口设置)和区域类型设置(定区域、静区域设置)按钮,分别激活可以进一步操作。
常用工具操作按钮,激活后第二排分别为坐标系设置、函数法生成网格、轴流叶轮工具等,分别激活可以进一步操作。
对于该模型,没有使用这一项。
功能按钮区,常用的有:适应窗口大小、调整显示坐标方向、隐藏几何体、转换静态线框模型和和实体模型、撤销和重做以及网格质量统计等功能。
2.2 文件导入(1)打开Fluent前处理软件Gambit 2.4.6,分别导入蜗壳和叶轮部分的step 文件woke.stp和yelun.stp。
File→Import→STEP...(2)先导入叶轮部分,再导入蜗壳部分(3)全部导入后发现建模时,叶轮和蜗壳的坐标系不统一,二者位置关系不正确。
此时需要将蜗壳部分相对于xoy平面翻转180度。
(4)以实体图显示:(5)将叶轮部分两端凹进部分补齐,分别作为叶轮进口。
LES大涡模拟-【转载】第一部分Eddies(涡)的解析

LES⼤涡模拟-【转载】第⼀部分Eddies(涡)的解析原⽂地址:第⼀部分 Eddies(涡)的解析湍流流动中包含了许多的涡,他们所包含的能量、他们的⼤⼩都各异。
image在LES中,我们需要在计算⽹格中解析这些涡中的⼀部分。
如何做到这件事?⾸先我们需要考虑的是怎么在⼀个CFD⽹格中解析⼀个涡。
事实上,解析⼀个涡,我们⾄少需要⼀个的⽹格,也就是说,尺⼨⼩于两个⽹格的涡就不能被解析出来,只能套⽤模型来表⽰它,这个模型也就叫做亚格⼦模型,这部分的内容之后再说。
image所以现在我们知道,⽹格的尺⼨确定了能够解析的最⼩的涡的⼤⼩,那么如何确定⼀个合理的⽹格尺⼨来保证流场的准确性呢?在算⼀个LES算例之前我们要怎么确定LES的⽹格尺⼨?波数k波数(k)是涡(Eddy)的空间频率image根据定义我们知道,越⼩的涡波数越⼤。
这时候我们就需要知道⼀个东西,叫做湍流能谱。
它的实验测量结果如下:image这张图说明,随着涡的波数的增⼤(/尺⼨的减⼩),其湍动能密度逐渐减⼩。
对这张图沿着曲线积分,最后可以得到湍流动能。
在LES的⽹格设置中,并不需要解析所有的涡,因为涡越⼩,需要的⽹格越⼩,⽹格量就会越多,最后导致计算开销过⼤。
怎么选择⼀个合适的⽹格尺⼨,在保证我们认为的精度⾜够的条件下,还能尽量的减少⽹格量。
⼀般认为⼀个好的LES算例,其⽹格的尺⼨⾄少要⼩到能够解析80%的湍动能,⽽剩下部分的湍动能则是通过亚格⼦模型给出。
image但是怎么选择尺⼨来使得达到这个80%湍动能解析的条件呢?为了解释这个事,⾸先要了解⼀下积分长度尺⼨(Integral Length Scale)。
积分长度尺度对于⼀个计算域⽽⾔,涡的尺度和能量在整个计算域内都有所不同:image⽐如对于上⾯这⼀个后台阶流动来说,⼊⼝处的流动较为均匀,其湍动能低,⽽台阶后的回流严重,具有⽐较⾼的湍动能。
这时候我们需要⽤积分长度尺度来代表⼀个位置的所有涡,因为看⼀个值总⽐看每个位置的湍流能谱要简单:image积分长度尺度的定义就是在所有涡的平均湍动能⽤⼀个涡的长度来表⽰,即:image根据定义,湍动能⼤的地⽅⼤,湍动能⼩的地⽅⼩。
大涡模拟的FLUENT算例2D

大涡模拟的FLUENT算例2DTutorial:Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)IntroductionThe purpose of this tutorial is to provide guidelines and recommendations for the basic setup and solution procedure for a typical aeroacoustic application using computational aeroacoustic(CAA)method.In this tutorial you will learn how to:Model a Helmholtz resonator.Use the transient k-epsilon model and the large eddy simulation(LES)model foraeroacoustic application.Set up,run,and perform postprocessing in FLUENT.PrerequisitesThis tutorial assumes that you are familiar with the user interface,basic setup and solution procedures in FLUENT.This tutorial does not cover mechanics of using acoustics model,but focuses on setting up the problem for Helmholtz-Resonator and solving it.It also assumes that you have basic understanding of aeroacoustic physics.If you have not used FLUENT before,it would be helpful to?rst review FLUENT6.3User’s Guide and FLUENT6.3Tutorial Guide.Problem DescriptionA Helmholtz resonator consists of a cavity in a rigid structure that communicates through anarrow neck or slit to the outside air.The frequency of resonance is determined by the mass of air in the neck resonating in conjunction with the compliance of the air in the cavity.The physics behind the Helmholtz resonator is similar to wind noise applications like sun roof bu?eting.We assume that out of the two cavities that are present,smaller one is the resonator.The motion of the?uid takes place because of the inlet velocity of27.78m/s(100km/h).The ?ow separates into a highly unsteady motion from the opening to the small cavity.This unsteady motion leads to a pressure?uctuations.Two monitor points(Point-1and Point-2) act as microphone points to record the generated sound.The acoustic signal is calculated within FLUENT.The?ow exits the domain through the pressure outlet.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Preparation1.Copy the?les steady.cas.gz,steady.dat.gz,execute-by-name.scm,stptmstp4.scm,ti-to-scm-jos.scm and stptmstp.txt into your working directory.2.Start the2D double precision(2ddp)version of FLUENT.Setup and SolutionStep1:Grid1.Read the initial case and data?les for steady-state(steady.cas.gz and steady.dat.gz).File?→Read?→Case&Data...Ignore the warning that is displayed in the FLUENT console while reading these?les.2.Keep default scale for the grid.Grid?→Scale...3.Display the grid and observe the locations of the two monitor points,Point-1andPoint-2(Figure1).Figure1:Graphics Display of the Grid4.Display and observe the contours of static pressure(Figure2)and velocity magnitude(Figure3)for the initial steady-state solution.Display?→Contours..Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure2:Contours of Static Pressure(Steady State)Figure3:Contours of Velocity Magnitude(Steady State)Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Step2:Models1.Select unsteady solver.De?ne?→Models?→Solver...(a)Select Unsteady in the Time list.(b)Select2nd-order-implicit in the Unsteady formulation list.(c)Retain the default settings for other parameters.(d)Click OK to close the Solver panel.2.De?ne the viscous model.De?ne?→Models?→Viscous...(a)Select Non-Equilibrium Wall Functions in the Near-Wall Treatment list.(b)Retain the default settigns for other parameters.(c)Click OK to close the Viscous Model panel.Near-Wall Treatment predicts good separation and re-attachment points.Step3:MaterialsDe?ne?→Materials...1.Select ideal-gas from the Density drop-down list.2.Retain the default values for other parameters.3.Click Change/Create and close the Materials panel.Ideal gas law is good in predicting the small changes in the pressure.Step4:Solution1.Monitor the static pressure on point-1and point-2.Solve?→Monitors?→Surface...(a)Enter2for the Surface Monitors.(b)Enable Plot and Print options for monitor-1and monitor-2.(c)Select Time Step from the When list.(d)Click De?ne...for monitor-1to open De?ne Surface Monitor panel.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)i.Select Vertex Average from the Report Type drop-down list.ii.Select Flow Time from the X Axis drop-down list.iii.Enter1for Plot Window.iv.Select point-1from the Surfaces selection list.(e)Similarly,specify the surface monitor parameters for point-2.2.Start the calculations using the following settings.Solve?→Iterate...(a)Enter3e-04s for Time Step Size.The expected time step size for this problem is of the size of about1/10th of thetime period.The time period depends on the frequency(f)which is calculatedusing the following equation:f=c2πSV[L+π2.D h2]where,c=Speed of soundS=Area of the ori?ce of the resonatorV=Volume of the resonatorL=Length of the connection between the resonator and the free?ow areaD h=Hydraulic diameter of the ori?ceFor this geometry,the estimated frequency is about120Hz.(b)Enter250for the Number of Time Steps.(c)Enter50for Max Iterations per Time Step.(d)Click Apply.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)(e)Read the scheme?le(stptmstp4.scm).File?→Read?→Sc heme...This?le activates a alternative convergence criteria.For acoustic simulationswith CAA it is obligatory that the pressure is completely converged at the recieverposition.FLUENT compares the monitor quantities within the last n-de?ned it-erations to judge if the deviation is smaller than a y-de?ned deviation.(f)Specify the number of previous iterations from which monitor values of eachquantity used are saved and compared to the current(latest)value(include theparanthesis):(set!stptmstp-n5)(g)Specify the relative(the smaller of two values in any comparison)di?erenceby which any of the older monitor values(for a selected monitor qauntity)maydi?er from the newest value:(set!stptmstp-maxrelchng1.e-02)(h)De?ne the execute commands.Solve?→Execut e Commandsi.Enter(stptmstp-resetvalues)for the?rst command and selectTime Stepfrom the drop-down list.ii.Enter(stptmstp-chckcnvrg"/report/surface-integrals vertex-avg point-1 ()pressure")and select Iteration from the drop-down list.iii.Click OK.(i)Click Iterate to start the calculations.The iterations will take a long time to complete.You can skip this simulation af-ter few time steps and read the?les(transient.cas.gz and transient.dat.gz)provided with this tutorial.These?les contain the data for the?ow time of0.22seconds.As seen in Figures4and5,no pressure?uctuations are present at thisstage.The oscillations of the static pressure at both monitor points has reacheda constant value.The RANS-simulation is a good starting point for Large Eddy Simulation.Ifyou choose to use the steady solution as initial condition for LES,use the TUIcommand/solve/initialize/init-instantaneous-vel provides to get a more realisticinstantaneous velocity?eld.The usage of LES for acoustic simulations is obliga-tory.The next two pictures compare the static pressure obtained with RANS andLarge Eddy Simulation for a complete simulation until0.525seconds.Obviously,the k-epsilon model underpredicts the strong pressure oscillation after reachinga dynamically steady state(>0.3s)due to its dissipative character.Under-predicted pressure oscillations lead to underpredicted sound pressure level whichmeans the acoustic noise is more gentle.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure4:Convergence History of Static Pressure on Point-1(Transient)Figure5:Convergence History of Static Pressure on Point-2(Transient)Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Step5:Enable Large Eddy Simulation1.Enter the following TUI command in the FLUENT console:(rpsetvar’les-2d?#t)2.Enable large eddy simulation e?ects.The k-epsilon model cannot resolve very small pressure?uctuations for aeroacousticdue to its dissipative e Large Eddy Simulation to overcome this problem.De?ne?→Models?→Viscous...(a)Enable Large Eddy Simulation(LES)in the Model list.(b)Enable WALE in the Subgrid-Scale Model list.(c)Click OK to close the Viscous Model panel.An Information panel will appear,warning about bounded central-deferencing be-ing default for momentum with LES/DES.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)(d)Click OK to close the Information panel.3.Retain default discretization schemes and under-relaxation factors.Solve?→Controls?→Solution...4.Enable writing of two surface monitors and specify?lenames as monitor-les-1.out andmonitor-les-2.out for monitor plots of point-1and point-2respectively.Solve?→Monitors?→Surface...To account for stochastic components of the?ow,FLUENT provides two algorithms.These algorithms model the?uctuating velocity at velocity inlets.With the spec-tral synthesizer the?uctuating velocity components are computed by synthesizing adivergence-free velocity-vector?eld from the summation of Fourier harmonics.5.Enable the spectral synthesizer.De?ne?→Boundary Conditions...(a)Select inlet in the Zone list and click Set....i.Select Spectral Synthesizer from the Fluctuating VelocityAlgorithm drop-downlist.ii.Retain the default values for other parameters.iii.Click OK to close the Velocity Inlet panel.(b)Close the Boundary Conditions panel.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Typically it takes a long time to get a dynamically steady state.Additionally,thesimulated(and recorded for FFT)?ow time depends on the minimum frequency in thefollowing relationship:flowtime=10minimumfrequency(1)The standard transient scheme(iterative time advancement)requires a considerable amount of computaional e?ort due to a large number of outer iterations performed for each time-step.To accelerate the simulation,the NITA(non-iterative time advance-ment)scheme is an alternative.6.Set the solver parameters.De?ne?→Models?→Solver...(a)Enable Non-Iterative Time Advancement in the Transient Controls list.(b)Click OK to close the Solver panel.7.Set the solution parameters.Solve?→Controls?→Solution...(a)Select Fractional Step from the Pressure-Velocity Coupling drop-down list.(b)Click OK to close the Solution Controls panel.8.Disable both the execute commands.Solve?→Execute Commands...9.Continue the simulation with the same time step size for1500time steps to get adynamically steady solution.10.Write the case and data?les(unsteady-?nal.cas.gz and unsteady-?nal.dat.gz).File?→Write?→Case&Data...Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure6:Convergence History of Static Pressure on Point-1(Transient)Figure7:Convergence History of Static Pressure on Point-2(Transient)Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Step6:Postprocessing1.Display the contours of static pressure to visualize the eddies near the ori?ce.2.Enable the acoustics model.De?ne?→Models?→Acoustics...(a)Enable Ffowcs-Williams&Hawkings from the Model selection list.(b)Retain the default value of2e-05Pa for Reference Acoustic Pressure.To specify a value for the acoustic reference pressure,it is necessary to activatethe acoustic model before starting postprocessing.(c)Retain default settings for other parameters.(d)Click OK to accept the settings.A Warning dialog box appears.This is an informative panel and will not a?ectthe postprocessing results.(e)Click OK to acknowledge the information and close the Warning panel.3.Plot the sound pressure level(SPL).Plot?→FFT...Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)(a)Click Load Input File...button.(b)Select monitor plot?le for Point-1(monitor-les-1.out).(c)Click Plot/Modify Input Signal....i.Select Clip to Range,in the Options list.ii.Enter0.3for Min and0.5for Max in the X Axis Range group box.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)iii.Select Hanning in the Window drop-down list.Hanning shows good performance in frequency resolution.It cuts the timerecord more smoothly,eliminating discontinuities that occur when data iscut o?.iv.Click Apply/Plot and close the Plot/Modify Input Signal panel.(d)Select Sound Pressure Level(dB)from the Y Axis Function drop-down list.(e)Select Frequency(Hz)in the X Axis Function drop-down list.(f)Click Plot FFT to visualize the frequency distribution at Point-1.(g)Select Write FFT to File in the Options list.Note:Plot FFT button will change to Write FFT.(h)Click Write FFT and specify the name of the FFT?le in the resulting Select Filepanel.(i)Similarly write the FFT?le for monitor plot for point-2(Figure9).Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure8:Spectral Analysis of Convergence History of Static Pressure on Point-1Figure9:Spectral Analysis of Convergence History of Static Pressure on Point-2Modeling Aeroacoustics for a Helmholtz Resonator Using theDirect Method(CAA) In Figures8and9,the sound pressure level(SPL)peak occurs at125Hz which isclose to the analytical estimation.Considering that this tutorial uses a slightly largetime step and a2D geometry,the result is?ne.pare the frequency spectra at point-1and point-2.Plot?→File...(a)Click Add...and select two FFT?les(point-1-fft.xy and point-2-fft.xy)that you have saved in the previous step.(b)Click Plot to visualize both spectra in the same window(Figure10).Note that the peak for Point-1is a little higher than for Point-2.This is due to the dissipative behaviour of the sound in the domain.The bigger the distance between the reciever point and the noise source,the bigger is the dissipation of sound.This is the reason,why we use CAA method only for near?eld calculations.Figure10:Comparison of Frequency Spectra at Point-1and Point-2A second issue is the dissipation of sound due to the in?uence of the grid size.This appliesespecially for which the wave lengths are very short.Thus,a too coarse mesh is not capable of resolving high frequencies correctly.In the present example,the mesh is rather coarse in the far-?eld.Thus,the discrepancy between both spectra is more evident in the high frequency range.This behaviour can be seen in Figure11.For high frequencies,the monitor for Point-1generates much fewer noise than monitor for Point-2due to coarse grid resolution.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure11:Spectral Analysis of Convergence history of Static Pressure The deviation of sound pressure level between the?rst two maximum peaks(50Hz and132 Hz)is quite small.Thepostprocessing function magnitude in fourier transform panel is similar to the root mean square value(RMS)of the static pressure at these frequencies.We can use the RMS value to derive the amplitude of the pressure?uctuation which is responsible for the SPL-peak.The resolution of frequency spectra is limited by the temporal discretization.With the temporal discretization,the maximum frequency isf max=12 t(2)This frequency is de?ned as Nyquist frequency.It is the maximum educible frequency.T o resolve up to f max the maximum allowable time step size isf max=12×f max(3)Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure12:Spectral Analysis of Convergence History of Static Pressure on Point-1An instability of the?uid motion coupled with an acoustic resonance of the cavity(helmholtz resonator)produces large pressure?uctuations(at132Hz).Compared to this dominanthelmholtz resonance the pressure?uctuation at50Hz is quite small.Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA)Figure13:Spectral Analysis of Convergence History of Static Pressure on Point-2SummaryAeroacoustic simulation of Helmholtz resonator has been performed using k-epsilon model and Large Eddy Simulation model.The advantage of using LES model has been demon-strated.You also learned how the sound dissipation occurs in the domain by monitoring sound pressure level at two di?erent points in the domain.The importance of using CAA method has also been explained.。
fluent算例

引言FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。
它提供了完全的网格灵活性,你可以使用非结构网格,例如二维三角形或四边形网格、三维四面体/六面体/金字塔形网格来解决具有复杂外形的流动。
甚至可以用混合型非结构网格。
它允许你根据解的具体情况对网格进行修改(细化/粗化)。
对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。
与结构网格和块结构网格相比,这一特点很明显地减少了产生“好”网格所需要的时间。
对于给定精度,解适应细化方法使网格细化方法变得很简单,并且减少了计算量。
其原因在于:网格细化仅限于那些需要更多网格的解域。
FLUENT是用C语言写的,因此具有很大的灵活性与能力。
因此,动态内存分配,高效数据结构,灵活的解控制都是可能的。
除此之外,为了高效的执行,交互的控制,以及灵活的适应各种机器与操作系统,FLUENT使用client/server结构,因此它允许同时在用户桌面工作站和强有力的服务器上分离地运行程序。
在FLUENT中,解的计算与显示可以通过交互界面,菜单界面来完成。
用户界面是通过Scheme语言及LISP dialect写就的。
高级用户可以通过写菜单宏及菜单函数自定义及优化界面。
程序结构该FLUENT光盘包括:FLUENT解算器;prePDF,模拟PDF燃烧的程序;GAMBIT, 几何图形模拟以及网格生成的预处理程序;TGrid, 可以从已有边界网格中生成体网格的附加前处理程序;filters (translators)从CAD/CAE软件如:ANSYS,I-DEAS,NASTRAN,PATRAN 等的文件中输入面网格或者体网格。
图一所示为以上各部分的组织结构。
注意:在Fluent 使用手册中"grid" 和"mesh"是具有相同所指的两个单词.geometry几何.properties道具图一:基本程序结构我们可以用GAMBIT产生所需的几何结构以及网格(如想了解得更多可以参考GAMBIT的帮助文件,具体的帮助文件在本光盘中有,也可以在互联网上找到),也可以在已知边界网格(由GAMBIT或者第三方CAD/CAE软件产生的)中用Tgrid产生三角网格,四面体网格或者混合网格,详情请见Tgrid用户手册。
基于fluent的阻力计算(流体力学公式大全)

基于fluent的兴波阻力计算本文主要研究内容本文的工作主要涉及小型航行器在近水面航行时的绕流场及兴波模拟和阻力的数值模拟两个方面。
在阅读大量文献资料的基础上,通过分析、比较上述领域所采用的理论和方法,针对目前需要解决的问题,选择合理的方法加以有机地综合运用。
具体工作体现在以下几个方面:1.本人利用FLUENT软件的前处理软件GAMBIT自主建立简单回转体潜器模型,利用FLUENT求解器进行计算,得出在不同潜深下潜器直线航行的绕流场、自由面形状及阻力系数的变化情况。
2.通过对比潜器在不同潜深情况下的阻力系数,论证了增加近水面小型航行器的深度可以有效降低阻力。
通过对模型型线的改动,为近水面小型航行器的型线设计提供了一定的参考。
通过改变附体形状和位置计算了附体对阻力的影响程度,为附体的优化设计提供了一定的依据。
计算模型航行器粘性流场的数值计算理论水动力计算数学模型的建立根据流体运动时所遵循的物理定律,基于合理假设(连续介质假设)用定量的数学关系式表达其运动规律,这些表达式成为流体运动的数学模型,它们是对流体运动的一种定量模型化,称为流体运动控制方程组。
根据控制方程组,结合预先给定的初始条件和边界条件,就可以求解反映流体运动的变量值,从而实现对流体运动的数值模拟预报,形成分析报告。
基于连续介质假设的流体力学中流体运动必须满足要遵循的物理定律:1) 质量守恒定律2)动量守恒定律3)能量守恒定律4)组分质量守恒方程针对具体研究的问题,有选择的满足上述四个定律。
船体的粘性不可压缩绕流运动,如果不考虑水温对水物理性质的影响,水的密度和分子粘性系数都是常数,同时没有能量的转换,就仅仅需要满足质量守恒定律、动量守恒定律。
在满足这些定律下所建立的数学模型称为Navier-Stokes方程。
另外,自由液面的存在也需要建立合适的数学模型。
本文是利用FLUENT 进行数值模拟,而软件里面关于自由液面模拟是用界面追踪方法的一种-流体体积法(VOF),基于该方法所建立的数学模型称为流体体积分数方程。
FLUENT算例 (3)三维圆管紊流流动状况的数值模拟分析

三维圆管紊流流动状况的数值模拟分析在工程和生活中,圆管内的流动是最常见也是最简单的一种流动,圆管流动有层流和紊流两种流动状况。
层流,即液体质点作有序的线状运动,彼此互不混掺的流动;紊流,即液体质点流动的轨迹极为紊乱,质点相互掺混、碰撞的流动。
雷诺数是判别流体流动状态的准则数。
本研究用CFD 软件来模拟研究三维圆管的紊流流动状况,主要对流速分布和压强分布作出分析。
1 物理模型三维圆管长2000mm l =,直径100mm d =。
流体介质:水,其运动粘度系数62110m /s ν-=⨯。
Inlet :流速入口,10.005m /s υ=,20.1m /s υ= Outlet :压强出口Wall :光滑壁面,无滑移2 在ICEM CFD 中建立模型2.1 首先建立三维圆管的几何模型Geometry2.2 做Blocking因为截面为圆形,故需做“O ”型网格。
2.3 划分网格mesh注意检查网格质量。
在未加密的情况下,网格质量不是很好,如下图因管流存在边界层,故需对边界进行加密,网格质量有所提升,如下图2.4 生成非结构化网格,输出fluent.msh等相关文件3 数值模拟原理紊流流动当以水流以流速20.1m /s υ=,从Inlet 方向流入圆管,可计算出雷诺数10000υdRe ν==,故圆管内流动为紊流。
假设水的粘性为常数(运动粘度系数62110m /s ν-=⨯)、不可压流体,圆管光滑,则流动的控制方程如下:①质量守恒方程:()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ (0-1)②动量守恒方程:2()()()()()()()()()()[]u uu uv uw u u ut x y z x x y y z z u u v u w p x y z xρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-2)2()()()()()()()()()()[]v vu vv vw v v v t x y z x x y y z z u v v v w px y z yρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-3)2()()()()()()()()()()[]w wu wv ww w w w t x y z x x y y z z u w v w w px y z zρρρρμμμρρρ∂∂∂∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂∂∂∂'''''∂∂∂∂+----∂∂∂∂ (0-4)③湍动能方程:()()()()[())][())][())]t t k k t k k k ku kv kw k k t x y z x x y yk G z zμμρρρρμμσσμμρεσ∂∂∂∂∂∂∂∂+++=+++∂∂∂∂∂∂∂∂∂∂+++-∂∂ (0-5)④湍能耗散率方程:212()()()()[())][())][())]t t k k t k k u v w t x y z x x y y C G C z z k kεεμμρερερερεεεμμσσμεεεμρσ∂∂∂∂∂∂∂∂+++=+++∂∂∂∂∂∂∂∂∂∂+++-∂∂ (0-6)式中,ρ为密度,u 、ν、w 是流速矢量在x 、y 和z 方向的分量,p 为流体微元体上的压强。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Introduction:This tutorial demonstrates how to model the2D turbu-lentflow across a circular cylinder using LES(Large Eddy Simula-tion),and computeflow-induced noise(aero-noise)using FLUENT’s acoustics model.In this tutorial you will learn how to:•Perform2D Large Eddy Simulation(LES)•Set parameters for an aero-noise calculation•Save surface pressure data for an aero-noise calculation•Calculate aero-noise quantities•Postprocess an aero-noise solutionPrerequisites:This tutorial assumes that you are familiar with the menu structure in FLUENT,and that you have solved or read Tu-torial1.Some steps in the setup and solution procedure will not be shown explicitly.Problem Description:The problem considers turbulent airflow over a2D circular cylinder at a free stream velocity U of69.19m/s.The cylinder diameter D is1.9cm.The Reynolds number based on theflow parameters is about90000.The computational do-main(Figure3.0.1)extends5D upstream and20D downstream of the cylinder,and5D on both sides of it.If the computational domain is not taken wide enough on the downstream side,so that no reversedflow occurs,the accuracy of the aero-noise prediction may be affected.The rule of thumb is to take at least20D on the downstream side of the obstacle.c Fluent Inc.June20,20023-1Aero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylindernoise.msh.File−→Read−→Case...As FLUENT reads the gridfile,it will report its progress in the console window.2.Check the grid.Grid−→CheckFLUENT will perform various checks on the mesh and will report the progress in the console window.Pay particular attention to the reported minimum volume.Make sure this is a positive number.3.Scale the grid.Grid−→Scale...(a)Under Units Conversion,select cm in the Grid Was Created indrop-down list.(b)Click on Scale.4.Display the grid.Display−→Grid...(a)Display the grid with the default settings(Figure3.0.2).(b)Use the middle mouse button to zoom in on the image so youcan see the mesh near the cylinder(Figure3.0.3).Quadrilateral cells are used for this LES simulation becausethey generate less numerical diffusion than triangular cells.Cell size should also be small enough to make numerical dif-fusion much smaller than subgrid scale turbulence viscosity.Extra:You can use the right mouse button to check which zone number corresponds to each boundary.If you clickthe right mouse button on one of the boundaries in thegraphics window,its zone number,name,and type will beprinted in the FLUENT console window.This feature is c Fluent Inc.June20,20023-3Aero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylindernoise1.cas/dat).File−→Write−→Case&data...You can skip items9-12to avoid the time-consuming calculationsnecessary to get the“dynamically steady state”flowfield.Instead,you can read the corresponding case and datafiles(cylnoise1.cas/dat).See Chapter28of the User’s Guide for more information on using3-14c Fluent Inc.June20,2002Aero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylindernoise2.cas/dat).File−→Write−→Case&Data...Step7:Aero-Noise Calculation1.Save surface pressure variation data.(a)Set up the schemefile and user-defined functions(UDFs)foraero-noise calculation.i.Read the schemefile,normally located in the lib directory,to create the Acoustic-Parameters panel.File−→Read−→Scheme...ii.Select acousticAero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylindernoisenoise noisenoisenoise whole for the File Name to Read Surface Pressure.FLUENT’s aero-noise calculation module operates on asinglefile of surface pressure data at a time.If the surfacepressure data is saved in separatefiles,you may want toconcatenate them into one singlefile.3-18c Fluent Inc.June20,2002Aero-Noise Prediction of Flow Across a Circular Cylinderacousticpowerpower db.xy for the File Name to Power Spectrum in dB Unit.(c)Changefile name for the surface monitor.Solve−→Monitor−→Surface...i.Click on Define next to monitor-1ii.In the Define Surface Monitor panel,change the name of the monitor from monitor-point-behind-pres1-1.outto monitor-point-behind-pres4-1.out.(d)Save case and datafiles(cylnoise4.cas/dat).File−→Write−→Case&Data...(g)Exit FLUENTFile−→ExitIt is necessary to exit parallel FLUENT because the followingaero-noise calculation is performed with an Execute On De-mand UDF,which can only be used in the serial version ofthe solver.2.Calculate aero-noise(a)Start the serial version of FLUENT.c Fluent Inc.June20,20023-19Aero-Noise Prediction of Flow Across a Circular Cylinderpar.scm).File−→Read−→Scheme...(c)Read case and datafiles(cylnoise noise noise noise noise noisenoise whole.If you did not perform the calculation to write thefiles thatwill be used in this step,you can continue by using the corre-spondingfiles provided in the documentation CD.(e)Use the Execute On Demand UDF to perform the aero-noisecalculation.Define−→User-Defined−→Execute On Demand...(f)Select the cal-sound UDF and click Execute.Note:There is a limit to the minimum number of time steps ac-cording to the sound calculation scheme.The minimum num-ber of time steps needs to be larger than n=T/dt,where Tis the propagation time through a distance L,roughly equalto the length scale of the sound generating wall,and dt is thetime step size applied in the unsteady calculation.If the givennumber of time steps for cal-sound is smaller than the requiredminimum number,a warning will be printed on FLUENT’sconsole window,along with the indication of the minimumnumber<n>of time steps requiredWarning:Number of Time Steps of The Input Surface Data Must be Larger Than:<n>.3-20c Fluent Inc.June20,2002Aero-Noise Prediction of Flow Across a Circular Cylinder1.69e+021.52e+021.35e+021.19e+021.02e+028.49e+016.80e+015.12e+013.43e+011.75e+016.49e-01Figure3.0.7:Velocity Vectors2.Display contours of static pressure at the current time step(Fig-ure3.0.8).Display−→Contours...3.Inspect the Sound Pressure Level(SPL)value.The the value ofsound intensity in units of W/m2and its alternative expression in dB are printed in the FLUENT console window after the execution of the cal-sound UDF,and areIntensity=4.060634e+00(W/m2)SPL=1.261719e+02(dB)c Fluent Inc.June20,20023-21Aero-Noise Prediction of Flow Across a Circular Cylinder3.91e+031.78e+03-3.56e+02-2.49e+03-4.62e+03-6.75e+03-8.89e+03-1.10e+04-1.32e+04-1.53e+04-1.74e+04Figure3.0.8:Static Pressure Contours4.Plot Acoustic Pressure variation(Figure3.0.9).Plot−→File...(a)Click on Add.(b)Select thefile cyl pres.xy and click OK.Remember to delete thefiles you do not want to display from theFiles list.5.Plot Power Spectrum of sound pressure(Figure3.0.10).(a)Power Spectrum in units of P a2.Plot−→File...i.Click on Add.ii.Select thefile cyl spectrum.xy and click OK.Figure3.0.10shows a frequency range of0−2000Hz,withmajor and minor rules turned on.From thisfigure it can be 3-22c Fluent Inc.June20,2002Aero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylinderpower db.xy and click OK .Frequency (Hz)5.00e+016.00e+017.00e+018.00e+019.00e+011.00e+021.10e+021.20e+0201e+032e+033e+034e+035e+036e+037e+038e+039e+031e+04Power Spectrum (dB)Figure 3.0.11:Plot of Power Spectrum of Sound Pressure.Figure 3.0.11shows a frequency range of 0−10kHz .6.Inspect Surface Dipole Strength.(a)Display contours of Surface Dipole Strength on surface cylin-der (Figure 3.0.12).Display −→Contours...i.In the Contours Of drop-down lists,select User-DefinedMemory and udm-0.ii.Turn offNode Values .3-24cFluent Inc.June 20,2002Aero-Noise Prediction of Flow Across a Circular Cylinder4.13e+053.72e+053.31e+052.89e+052.48e+052.07e+051.65e+051.24e+058.25e+044.12e+04-1.94e+02Figure3.0.12:Contour of Surface Dipole Strengthiii.Click on Display.The value of Surface Dipole Strength for each cell face is storedfor the center of the face on the cylinder wall.Surface DipoleStrength is the distribution of unit area contribution on thesound generating surface to the intensity of sound measuredat the observer’s location.(b)Plot Surface Dipole Strength(udm-0)on surface cylinder(Fig-ure3.0.13).Plot−→XY Plot...Figure3.0.13shows Surface Dipole Strength distribution onboth the upper and lower half cylinder faces.Extra:Once theflow simulation reaches a“dynamically steady state”, the accuracy for predicting Sound Pressure Level(SPL)and Power Spectrum is usually dependent on the number of time steps used.LES requires a mesh size as small as the length scale of eddies in the inertial sub-range.The corresponding time step size is calcu-c Fluent Inc.June20,20023-25Aero-Noise Prediction of Flow Across a Circular CylindercylinderFigure3.0.13:Plot of Surface Dipole Strengthlated by dt=Cdx/U,where C is the Courant number,and thus isvery small compared with the period T of the dominating acousticwave component(i.e.that corresponding to the frequency of thehighest peak in the power spectrum).For an accurate aero-noiseprediction,at least10periods of the dominating wave componentare required for sampling.The number of time steps for this re-quirement can be roughly estimated for theflow over the cylinder.In a certain Reynolds number range(roughly Re<50000),theStrouhal number(St=fD/U)for the dominating frequency f isabout0.2.Therefore,the period is T=D/0.2/U.From the aboveequations,the number of time steps for each period can be calcu-lated as N=T/dt=5/CD/dx.In LES,the ratio between thedomain scale D and the typical cell size dx can easily be50-100.As an example,if C is taken as order of1,N can be as high as250-500for each period.For40periods,10000-20000time stepsmay be required.Summary:This tutorial demonstrated how to set up and calculate an aero-noise problem for theflow around a cylinder,using the2D LES 3-26c Fluent Inc.June20,2002Aero-Noise Prediction of Flow Across a Circular CylinderAero-Noise Prediction of Flow Across a Circular Cylinder。