【精选】部编版六年级上册数学知识点汇总

合集下载

部编版六年级数学上册知识点

部编版六年级数学上册知识点

部编版六年级数学上册知识点第一单元分数乘法(一)分数乘法意义:1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2.一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1.分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2.整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

部编人教版六年级期末考试复习练习六年级上册数学期末专题复习(知识要点、易错易混题目、按类型整理)

部编人教版六年级期末考试复习练习六年级上册数学期末专题复习(知识要点、易错易混题目、按类型整理)

2、求一个数比另一个数多几分之几(或百分之几)公式:
多的数量÷单位“ 1” = 一个数比另一个数多几分之几(百分之几)
3、求一个数比另一个数少几分之几(或百分之几)公式:
少的数量÷单位“ 1” = 一个数比另一个数少几分之几(百分之几)
二、熟练掌握:百分数和分数、小数的互化,熟练背诵:
1 2 = 0.5 = 50%
1
(3)一条路长 400 米,已经修了 5 ,

1 400×5
1 ;400×( 1- 5 )
5
3
(4)光明小学计划植树 1200 棵,结果第一次植了 8 ,第二次植了 5 。
3 ① 1200× 5
53 ②1200×(8 - 5 )
53 ③1200×(8 + 5 -1 )
4、(
4
)是 40 的5 ;
40

,加工完这批零件需要
天。
1
36、一块长方形地的周长是 120 米,其中宽比长短 3 ,这块地的面积是(

平方米。
37、大圆的半径相当于小圆的直径,这两个圆的面积和是 100 平方厘米,大圆
的面积是(
)平方厘米。
38、A的 1 与 B的 1 相等( A 不等于 0),则 A∶B=(
)。
4
6
3
5
39、因为甲× 4 = 乙× 6 ,所以甲∶乙 =(
5
3
A、a 大 B 、b 大 C 、一样大 D 、无法确定
17、一台收割机 2 小时可收割 5 公顷的水稻。照这样计算, 7 小时能收割多少公
5
8
10
顷的水稻?
18、一只大熊猫满月时,比刚出生时的体重增加了 1105 克,满月时的体重大约是 刚出生时的 7.5 倍,这只大熊猫刚出生时的体重是多少克?

部编版数学六年级上册第3讲.复合图形

部编版数学六年级上册第3讲.复合图形
3.化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中, 其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而 达到化繁为简,化难为易的目的;
4.发挥特殊点 、线的作用 :在题设条件所给的图形中,对尚未直接显现 出来的各元素,通过添置适当辅助线,将那些特殊点、特殊线,特殊图形的 性质恰当揭示出来,并充分发挥这些特殊点 、线的作用,达到化难为易, 导出结论的目的;
A
F
O
B
D
E C
例题思路
模块一:图形分割 例 1.图形分割 例 2.辅助线技巧
模块二:模型抽离 例 3.等高模型 例 4.蝴蝶模型 例 5.相似模型 例 6.燕尾模型 例 7.一半模型
模块三:综合运用 例 8.图形割补与鸟头模型
例1
在下图的长方形 ABCD 中 AE EF FB DG GH HC ,阴影部分的面积占长方形 ABCD 面积的 几分之几?(学案对应:超常 1,带号 1)
第 11 级下 超常体系 教师版 9
A 2cm H
3cm 5cm2
P
D
A 2cm H 4cm
D
1cm
1cm
G 3cm
P
G
E
?
E
3cm
1cm
B
F 2cm C
B
F 2cm C
【分析】连结 EH, EF, FG,GH ,题目中的线段长度如右图所示.所求四边形的面积可以化为三角形 FGP 与 FCG 的 面 积 和 . 易 见 中 间 的 四 边 形 EFGH 是 平 行 四 边 形. 根 据 一 半 模 型,
∵在平行四边形
ABCD 中, S△ABE
1 AB 2
AB

部编版六年级上册数学全册知识点考点归纳

部编版六年级上册数学全册知识点考点归纳

部编版六年级上册数学全册知识点考点归

一、整数
- 正整数、负整数和零
- 整数的大小比较
- 整数的加法和减法运算
- 整数与自然数的关系
二、小数
- 小数的读法和写法
- 小数与分数的关系
- 小数的加法和减法运算
三、图形与几何
- 点、线、线段和射线的基本概念
- 角的基本概念
- 直线、曲线、折线和封闭曲线的区别
- 简单图形的认识和绘制:直线、折线、封闭曲线、矩形、正方形、三角形等
四、三角形
- 三角形的定义和性质
- 等边三角形、等腰三角形和普通三角形的区别
- 三角形的分类:锐角三角形、直角三角形和钝角三角形- 三角形的内角和等于多少
五、长度、面积和体积
- 长度的比较和单位的换算
- 长度的加法和减法运算
- 面积的认识和计算
- 体积的认识和计算
六、时间与空间
- 时、刻、秒的认识和运用
- 时间的计算:几点几分到几点几分的时间长度
- 方向与位置的概念
- 空间的认识和观察
七、数据和图表
- 数据的收集和整理
- 表格和图表的制作和分析
- 直方图和条形图的认识和绘制
八、应用题
- 实际问题的数学建模
- 运用所学知识解决实际问题
以上是部编版六年级上册数学全册的知识点和考点的归纳。

将这些知识点掌握并灵活运用,能够帮助学生更好地理解数学知识并解决实际问题。

请注意,以上总结的内容基于部编版六年级上册数学教材的内容,仅供参考。

具体教材知识点还请以教材为准。

【RJ】六年级上册数学:第三单元 分数除法知识总结(整理版)·人教部编版

【RJ】六年级上册数学:第三单元 分数除法知识总结(整理版)·人教部编版
①育才小学全校共有学生1500人,五年级人数占全校人数的 ,六年级人数占全校人数的 ,求五、六年级共有学生多少人?
②仓库里有若干吨化肥,第一天运出总数的 ,第二天运出总数的 ,还剩49吨,仓库里原有化肥多少吨?
(3)训练写等量关系式:
常用的等量关系的标志词有:“是、为、占、相当于、等于、得、比、共 ”
知识点二:分数连除应用题的解题方法
(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,都是未知的。
(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x,根据等量关系列方程解答。即x× × =已知量。②算术解法:用已知量连续除以它们所对应的单位“1”的几分之几。即已知量÷ ÷ =另一个单位“1”的量。
列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:方程解法:(1)找出单位“1”,设未知量为x;(2)找出题中的数量关系式;(3)列出方程。
算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式。即已知量÷已知量占单位“1”的几分之几=单位“1”的量。
练习:
1.填空
(1)根据 和分数除法意义可得: ( ), ( )。
(2)把 m长的绳子平均剪成4段,每段是 m的( )。
(3)打字员打一份文件,打了20分钟后还剩 ,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是 ,这个数是多少?
(2) 的 是多少?
3.看图列式计算。
(2)一个数除以分数
练习:1.画线段图表示下面各数量关系,并写出等量关系式。

【RJ】六年级上册数学:第三单元 分数除法第6课时 解决问题(3)·人教部编版

【RJ】六年级上册数学:第三单元 分数除法第6课时 解决问题(3)·人教部编版

课题解决问题(3)课型新授课设计说明1.抓住重点语句分析题意,厘清数量关系。

教学中,在学生读题的基础上,让学生抓住“下半场得分只有上半场的一半”这句话,通过小组讨论的方式,充分挖掘其中隐含的数学条件,从而厘清数量关系式,找到解题思路。

2.充分发挥学生的自主性,独立列式解答。

在学生厘清数量关系后,放手让学生根据数量关系列出关系式,根据关系式独立列出方程进行解答。

整个教学都是在师生合作、探索交流、自主思考的过程中完成的,真正体现了学生的自主性。

学习目标1.理解单位“1”中各个部分之间的倍数或分数关系,会用方程法解答此类问题,并能将这样的关系转化成各个部分与单位“1”之间的分数关系,即各个部分占单位“1”的几分之几。

2.通过独立探索、小组合作交流的方式,培养学生的自主学习能力和合作意识。

3.培养学生整理信息、分析问题、解决问题的能力,以及认真审题的良好习惯。

学习重点能够正确找出题中存在的等量关系,列方程解决问题。

学习难点能熟练地运用分数乘分数的简便方法进行计算。

学习准备教具准备:PPT课件课时安排1课时教学环节导案学案达标检测一、导入新课。

(7分钟)1.师生谈话。

师:同学们喜欢打篮球吗?你们知道一场篮球比赛一共多长时间吗?这些时间是怎样分配的呢?2.导入新课。

师:篮球比赛的分数中也蕴涵着数学问题,今天我们就来共同探讨解决。

1.交流对篮球的喜爱之情,汇报自己对比赛时间分配问题的认识。

2.学生明确学习内容。

1.列式计算。

(1)35的2/7是多少?答案:35×2/7=10(2)比35少2/7的数是多少?答案:35-35×2/7=35-10=25二、合作探究,学习新知。

(20分钟)1.课件出示例6。

师:请同学们认真读题,找出题中的已知条件和所求问题。

2.阅读与理解。

(1)根据“下半场得分只有上半场的一半”这句话,怎样表示两个半场得分的关系呢?(2)根据上半场与下半场的得分关系厘清题中的数量关系式。

人教部编版小学1到6年级数学重点知识点汇总

人教部编版小学1到6年级数学重点知识点汇总

人教部编版小学1到6年级数学重点知识点汇总一、数与代数1、自然数包括正整数和0,所以最小的自然数是0,没有最大的自然数。

2、计数单位是指:个、十、百、千、万、十万、百万、千万、亿……等等。

3、每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、能被2整除的数叫做偶数。

0也是偶数。

不能被2整除的数叫做奇数。

5、一个数,如果只有1和它本身两个约数,这样的数叫做质数,如2、3、5、7、11、13等等;一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、10都是合数。

6、最小的自然数是0,最小的质数是2,最小的合数是4。

公因数只有1的两个数叫做互质数。

7、为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。

改写后的数是原数的准确数。

如·1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。

8、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。

例如:1302490015省略亿后面的尾数是13 亿。

9、四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。

10、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

11、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

12、分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

乘积是1的两个数互为倒数。

1的倒数是1,0没有倒数。

13、比、比例、比例尺、百分数的后面不能带单位。

二、运算法则1、同级运算,从左往右。

(加和减是第一级运算,乘和除是第二级运算)2、两级运算,乘除优先,加减在后。

3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。

三、运算定律1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)5、乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c四、运算性质1、减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)2、除法的性质:从一个数里连续除去几个数,可以从这个数里除去所有除数的积,商不变,即a÷b÷c=a÷(b×c)3、被减数-减数=差,被除数÷除数=商。

部编版小学数学六年级上册40个重要知识点归纳

部编版小学数学六年级上册40个重要知识点归纳

1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少..4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/1。

9.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律..10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级数学上册知识点汇总第一单元分数乘法 (1)第二单元位置与方向 (3)第三单元分数除法 (3)第四单元比 (5)第五单元圆 (7)第六单元百分数 (9)第七单元统计 (13)补充一:图形计算公式 (13)补充二:其他应用题基本数量关系式 (13)第一单元分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(7)乘法应用题中,单位“1”是已知的。

(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。

(9)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

单位“1”×分率=比较量;比较量÷分率=单位“1”(10)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

(11)单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。

(12)分率与量要对应。

①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。

找到每一个分率的单位“1”。

(五)倒数1、倒数:乘积是1的两个数互为倒数。

2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。

3、0没有倒数,1的倒数是它本身。

4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

第二单元位置与方向一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第三单元分数除法(一)分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例如: 4152 表示:已知两个数的积是52 ,与其中一个因数41 ,求另一个因数是多少。

52÷4表示已知两个数的积是52 ,与其中一个因数4,求另一个因数是多少。

还表示把52平均分成4份,每份是多少。

(二)分数除法的计算:分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(三)比和比的应用:1.比的意义:两个数相除又叫做两个数的比。

比的后项不能为0。

2. 比值的意义:比的前项除以后项所得的商,叫做比值。

3.比值的表示方式:通常用分数、小数和整数表示。

4.比同除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商.5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

7. 化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。

例如:(1) 16﹕20=(16÷4)﹕(20÷4)=4﹕5(2)56 ﹕34 =( 56 ×12)﹕( 34×12)=10﹕9 (3)1.8﹕0.09 =(1.8×100)﹕(0.09×100)=180﹕9=20﹕18.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

9.按比例分配的解题方法:(1)先求出总的份数,再求出各部分数量占总数的几分之几。

(2)用总数乘各部分的分率求出各部分的数量。

10.分数除法中,被除数与商的大小关系:一个数(0除外)除以一个真分数,所得的商大于它本身。

一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

一个数(0除外)除以一个带分数,所得的商小于它本身。

(四)解分数应用题注意事项:1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。

数量关系:单位“1”×对应分率=对应数量;对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。

4.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。

5.“已知一个数的几分之几是多少,求这个数”的解题方法:(1)设单位“1”的量为x,列方程解答。

(2)对应数量÷对应分率=单位“1”的总数量。

6.工程问题:把工作总量看作单位“1”,工作效率 =1工作时间工作时间 = 1÷工作效率合作时间=工作总量÷工作效率之和第四单元比1、两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能为0。

例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) 2、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。

比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。

注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

5、比的基本性质(1)根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

(2)比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

根据比的基本性质,把比化成最简整数比。

(3)化简比:用求比值的方法。

注意:最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 3/2 = 3∶2 5 。

按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

第五单元圆1、圆心:圆中心一点叫做圆心。

用字母“O”来表示。

半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。

直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。

2、圆心确定圆的位置,半径确定圆的大小。

3、在同一个圆内,所有的半径都相等,所有的直径都相等。

在同一个圆内,有无数条半径,有无数条直径。

在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d4、圆的周长:围成圆的曲线的长度叫做圆的周长。

5、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

6、圆的周长公式:C=πd 或C=2πr7、圆的面积:圆所占平面的大小叫圆的面积。

8、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积= πr×r=πr²9、圆的面积公式:S=πr²或者S=π(d÷2)²或者S=π(C÷π÷2)²10、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

相关文档
最新文档