应用Excel进行时间序列分析
如何利用Excel进行时间序列分析

如何利用Excel进行时间序列分析时间序列分析是一种用来研究时间序列数据的统计方法,它可以帮助我们了解数据的趋势、周期性以及其他相关性。
Excel作为一个功能强大的电子表格软件,提供了许多工具和函数来执行时间序列分析。
本文将介绍如何利用Excel进行时间序列分析的基本步骤和常用方法。
一、数据准备在进行时间序列分析之前,首先需要准备好时间序列数据。
这些数据可以是按时间顺序排列的,例如每日、每月或每年的销售额、股票价格等。
打开Excel,并将时间序列数据输入到一个工作表中的某一列。
二、绘制时间序列图时间序列图是时间序列分析的基础,它可以帮助我们观察数据的趋势和周期性。
在Excel中,可以通过以下步骤绘制时间序列图:1. 选择时间序列数据所在的列。
2. 在Excel的菜单栏中选择“插入”,然后选择“散点图”。
3. 从弹出的图表类型中选择“散点图”或“折线图”。
4. 点击“确定”即可生成时间序列图。
三、计算移动平均值移动平均值是一种常用的时间序列分析方法,它可以平滑数据并显示长期趋势。
在Excel中,可以使用“平滑函数”来计算移动平均值。
以下是具体步骤:1. 在一个空白列中,输入移动平均的期数,例如3或5。
2. 在相邻的单元格中使用“平滑函数”来计算移动平均值,例如“=AVERAGE(A2:A4)”或“=AVERAGE(A2:A6)”。
3. 拖动填充手柄或复制公式将移动平均值应用到整个时间序列数据中。
四、计算趋势线趋势线可以帮助我们预测未来的趋势和趋势变化。
在Excel中,可以通过以下步骤计算趋势线:1. 选择时间序列数据所在的列以及对应的移动平均值列。
2. 在Excel的菜单栏中选择“插入”,然后选择“散点图”。
3. 从弹出的图表类型中选择“散点图”或“折线图”。
4. 点击图表上的任意数据点,然后右键选择“添加趋势线”。
5. 在弹出的趋势线选项中,选择适当的类型(线性、多项式等)并勾选“显示方程式”和“显示R²值”。
利用Excel进行时间序列分析和

利用Excel进行时间序列分析和预测利用Excel进行时间序列分析和预测时间序列分析是一种广泛应用于经济、金融、市场研究等领域的数据分析方法。
借助Excel的强大功能,我们可以方便地进行时间序列数据的处理、分析和预测。
本文将介绍如何利用Excel进行时间序列分析和预测的基本步骤及相关技巧。
一、数据准备和导入首先,我们需要准备数据并导入Excel中。
假设我们已经收集了一段时间内的销售数据,包括日期和销售量。
将数据按日期顺序排列好,并分别在A列和B列中输入日期和销售量数据。
二、绘制时间序列图在进行时间序列分析之前,我们首先要对数据进行可视化,以便更好地理解数据的特征和规律。
在Excel中,可以通过绘制时间序列图来实现。
1. 选中日期和销售量的数据区域;2. 点击“插入”选项卡上的“折线图”按钮,在弹出的图表类型中选择“折线图”;3. 根据需要调整图表的标题、坐标轴标签等属性,使其更加清晰易读。
三、时间序列分析时间序列分析的目的是研究时间序列数据中的随时间变化的特征和规律,以便更好地理解和预测未来的趋势。
1. 确定数据的稳定性稳定性是进行时间序列分析的前提条件。
我们可以通过观察时间序列图、计算平均值和方差等方法来判断数据的稳定性。
如果时间序列图趋势明显、波动较大,可能需要进行平稳化处理。
2. 计算自相关系数自相关系数是时间序列数据中各个观测值之间的相互关系度量。
在Excel中,可以利用CORREL函数来计算自相关系数。
通过计算自相关系数,可以初步了解数据之间的依赖关系及其强度。
3. 拟合趋势模型时间序列数据通常会存在某种趋势,例如线性趋势、指数趋势等。
我们可以利用Excel的趋势线工具来拟合趋势模型,以便更好地理解和预测数据的发展趋势。
4. 分解季节性和周期性许多时间序列数据中还存在季节性和周期性成分。
在Excel中,可以利用傅里叶分析工具来分解季节性和周期性成分,进一步分析数据的特征和规律。
四、时间序列预测时间序列预测是根据过去的数据来预测未来的趋势和规律。
实验五用excel进行时间序列分析

实验五用EXCEL进行时间序列分析一、测定增长量和平均增长量例5-1:下图为我国2000-2011年各年就业人数数据,计算逐期增长量和累计增长量。
计算逐期增长量:在C3中输入公式:=B3-B2,并用鼠标拖曳将公式复制到C3:C13区域。
计算累计增长量:在D3中输入公式:=B3-$B$2,并用鼠标拖曳公式复制到D3:D13区域。
计算平均增长量(水平法):在C10中输入公式:=(B13-B2)/11,(n-1=11)按回车键,即可得到平均增长量。
由以上分析可知,除2001年比2000年就业人口数有大幅增长外,此后近十年间,就业人口数目保持稳定增长,且2000-2011年平均增长量为万人。
二、测定发展速度和平均发展速度仍以我国2000-2011年各年就业人数数据为例,计算定基发展速度、环比发展速度和平均发展速度。
数据录入如下:计算定基发展速度:在C3中输入公式:=B3/$B$2,并用鼠标拖曳将公式复制到C3:C13区域。
计算环比发展速度:在D3中输入公式:=B3/B2,并用鼠标拖曳将公式复制到D3:D13区域。
计算平均发展速度(水平法):选中C10单元格,单击插入菜单,选择函数选项,出现插入函数对话框后,选择GEOMEAN(返回几何平均值)函数,在数值区域中输入D3:D13。
从这十二年我国就业人口总数的数据来看,呈现逐年稳步缓慢上涨趋势。
三、计算长期趋势沿用我国2000-2011年各年就业人数数据,用移动平均法计算长期趋势。
A、计算四项移动平均:在C4中输入“=SUM(B2:B5)/4”,并用鼠标拖曳将公式复制到C4:C13区域。
B、计算二项移正平均数:在D4中输入“=(C4+C5)/2”,并用公式拖曳将公式复制到D4:D13区域。
采用移动序时平均形成的平均序列进行研究目的在于消除或削弱原序列中各指标值在短期内因偶然因素的影响所引起的波动,从而呈现出在较长时间的基本发展趋势。
因此,由上述分析可知,我国从2000年到2010年,就业人口数保持稳定增长,但2011年就业人口增长数明显下降。
应用Ecel进行时间序列分析

应用Ecel进行时间序列分析应用Excel进行时间序列分析时间序列分析是一种针对时间序列数据进行预测、建模和分析的统计方法。
它在许多领域得到了广泛应用,如经济学、金融学、天气预测等。
Excel是一个功能强大的电子表格软件,也可以用于进行时间序列分析。
首先,我们需要准备时间序列数据。
这些数据可以是任何以时间间隔为单位的数据,如每月销售额、每日股价或每小时天气数据等。
在Excel中,我们可以使用一列表示时间,另一列表示相关的数据。
然后,我们可以使用Excel的各种函数和工具进行时间序列分析。
Excel提供了许多内置的函数和工具,用于对时间序列数据进行分析和预测。
以下是一些常用的函数和工具:1. 移动平均:移动平均是一种平滑时间序列数据的方法。
Excel中的移动平均函数为"AVERAGE"。
我们可以使用这个函数计算一段时间内的平均值,并将其用于预测未来的值。
2. 趋势函数:Excel中的趋势函数可以拟合时间序列数据的趋势线。
它通过拟合数据点之间的连续直线来预测未来的趋势。
Excel提供了几个不同的趋势函数,如"LINEST"和"TREND"。
我们可以使用这些函数来计算趋势线的斜率和截距,并将其用于预测未来的值。
3. 季节性分解:季节性分解是一种将时间序列数据分解为长期趋势、季节变化和随机波动的方法。
Excel中的"Analysis ToolPak"提供了季节性分解工具。
我们可以使用这个工具将时间序列数据分解为这些组成部分,并对每个组成部分进行分析。
4. 自相关和偏相关:自相关和偏相关是一种检验时间序列数据是否存在相关性的方法。
Excel中的"Data Analysis"工具提供了自相关和偏相关的功能。
我们可以使用这个工具计算时间序列数据的自相关和偏相关系数,并用于建立时间序列模型。
5. 预测:Excel中的"FORECAST"函数可以用于预测未来的值。
Excel高级数据分析使用傅里叶分析和时间序列分析

Excel高级数据分析使用傅里叶分析和时间序列分析高级数据分析是Excel中强大的功能之一,通过使用傅里叶分析和时间序列分析,可以更好地理解和分析数据。
本文将介绍Excel中如何使用这两种方法进行高级数据分析。
一、傅里叶分析傅里叶分析是一种将任意信号分解为一组单一频率信号的方法。
在Excel中,可以使用傅里叶分析工具进行频率分析,并从中获取有关信号频率、幅度和相位的信息。
首先,在Excel中打开要进行傅里叶分析的数据。
假设我们有一列时间序列数据,我们想要了解其频率成分。
选择需要进行分析的数据范围,并点击“数据”选项卡中的“数据分析”按钮。
在弹出的对话框中,选择“傅里叶分析”并点击“确定”。
接下来,选择输入范围和输出范围。
输入范围是我们选择的数据范围,输出范围是要将分析结果输出到的位置。
完成上述设置后,点击“确定”,Excel将计算出频率分析的结果,并将其显示在选定的输出范围内。
这些结果包括频率、限制频率、幅度和相位等信息。
通过分析傅里叶分析的结果,我们可以了解数据中的主要频率成分,进而对数据进行更深入的研究和解释。
二、时间序列分析时间序列分析用于对具有时间顺序的数据进行建模和预测。
Excel 提供了多种时间序列分析工具,如趋势分析、移动平均线和指数平滑等。
在Excel中进行时间序列分析的第一步是将时间序列数据输入到工作表中。
假设我们有一列按时间排序的销售数据。
要使用时间序列分析工具,首先选择数据范围,然后点击“数据”选项卡中的“数据分析”按钮。
在弹出的对话框中,选择“指数平滑”或“移动平均线”等时间序列分析工具,并点击“确定”。
接下来,根据工具的要求,选择输入范围、输出范围和其他参数,并点击“确定”。
完成上述设置后,Excel将计算出时间序列分析的结果,并将其显示在选定的输出范围内。
这些结果包括预测值、误差、置信区间等信息,有助于我们进行销售趋势分析和销售预测。
通过时间序列分析,我们可以发现数据中的趋势和季节性变化,从而更好地了解数据的规律性和周期性。
Excel的数据表与的时间序列分析与趋势

Excel的数据表与的时间序列分析与趋势Excel的数据表与时间序列分析与趋势在如今数字化时代,数据分析和趋势分析变得愈发重要。
无论是在商业决策、市场预测还是运营管理方面,时间序列分析和趋势分析都能提供有价值的洞察力。
而Excel作为一款广泛使用的电子表格工具,提供了丰富的功能和工具来进行数据分析和趋势分析。
本文将探讨如何利用Excel中的数据表进行时间序列分析和趋势分析。
一、时间序列分析时间序列分析是对一系列连续观测数据进行统计分析的方法。
它可以帮助我们发现变量随时间的变化规律,从而做出合理的预测和决策。
在Excel中,可以通过创建数据表来进行时间序列分析。
首先,我们需要将时间作为一列数据输入到Excel中。
可以使用日期格式来表示时间,确保数据的连续性和准确性。
然后,将其他感兴趣的变量作为不同列的数据输入。
接下来,我们可以使用Excel的内置函数来进行时间序列分析。
例如,可以使用“AVERAGE”函数计算某一时间段内数据的平均值,或者使用“SUM”函数计算某一时间段内数据的总和。
通过这些函数的组合使用,我们可以得到更加详细和全面的时间序列分析结果。
除了基本的统计函数,Excel还提供了强大的图表工具,用于可视化时间序列数据。
通过绘制折线图、散点图等图表,我们可以直观地观察和分析数据的变化趋势。
同时,可以添加趋势线和误差线来进一步分析数据的波动和趋势。
二、趋势分析趋势分析是对变量发展趋势进行预测和评估的方法。
通过分析数据的趋势,我们可以了解其发展方向和潜在规律,从而做出相应的调整和决策。
在Excel中,可以利用数据表来进行趋势分析。
首先,我们需要将时间作为一列数据输入到Excel中,与其他感兴趣的变量形成表格。
然后,利用Excel的数据分析工具进行趋势分析。
Excel提供了多种趋势分析方法,包括线性趋势、指数趋势、移动平均趋势等。
可以通过选择相应的趋势分析工具,输入数据范围和输出位置,即可得到趋势分析的结果。
如何利用Excel进行时间序列数据的分析与预测

如何利用Excel进行时间序列数据的分析与预测时间序列数据分析与预测在许多领域中都具有重要的应用价值,如经济学、金融学、市场营销等。
Excel作为一款常用的办公软件,提供了丰富的函数和工具,可以帮助我们进行时间序列数据的分析与预测。
本文将介绍一些常用的Excel函数和方法,帮助读者更好地利用Excel进行时间序列数据的分析与预测。
首先,我们需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列数据点,通常包括趋势、季节性和周期性等成分。
在进行时间序列数据的分析与预测时,我们可以采用以下几个步骤:1. 数据准备与导入:首先,我们需要将时间序列数据导入Excel中。
可以使用Excel的数据导入功能,将数据从外部文件或数据库中导入到Excel中,或者直接手动输入数据。
确保数据按照时间顺序排列,每个时间点对应一个数据值。
2. 数据可视化:在进行时间序列数据的分析与预测之前,我们可以先对数据进行可视化,以便更好地了解数据的特点和趋势。
Excel提供了丰富的图表功能,如折线图、柱状图、散点图等,可以直观地展示数据的变化趋势和周期性。
3. 趋势分析:趋势是时间序列数据中长期变化的总体方向。
在Excel中,我们可以使用趋势函数进行趋势分析。
常用的趋势函数有线性趋势函数(LINEST)、指数趋势函数(GROWTH)和多项式趋势函数(TREND)。
通过拟合趋势函数,我们可以得到趋势的方程式和相关系数,从而判断趋势的强度和方向。
4. 季节性分析:季节性是时间序列数据中周期性变化的一种形式。
在Excel中,我们可以使用季节性分解函数进行季节性分析。
常用的季节性分解函数有移动平均法(Moving Average)和指数平滑法(Exponential Smoothing)。
通过季节性分解,我们可以得到趋势、季节性和随机成分的值,从而更好地理解数据的周期性变化。
5. 预测模型建立:在进行时间序列数据的预测时,我们可以建立预测模型。
如何利用Excel进行数据的时间序列分析

如何利用Excel进行数据的时间序列分析数据分析在当今社会中扮演着至关重要的角色,其中时间序列分析是一种常用的数据分析方法。
Excel作为一款功能强大且广泛使用的电子表格软件,具备处理和分析时间序列数据的能力。
本文将介绍如何利用Excel进行数据的时间序列分析,以帮助读者更好地应用Excel进行数据分析。
一、时间序列分析简介时间序列分析是指对一系列按时间顺序排列的数据进行统计方法的分析。
时间序列分析的目的是通过对历史数据的分析,揭示数据内在的规律性和趋势,从而预测未来的发展趋势。
时间序列分析的应用广泛,包括经济预测、市场调研、环境监测等领域。
二、Excel中的时间序列分析工具Excel提供了多种功能和工具,可以帮助我们进行时间序列分析。
下面我们将介绍其中一些常用的工具。
1. 数据准备在进行时间序列分析之前,首先需要准备好要分析的数据。
在Excel中,我们可以将时间序列数据按照日期顺序排列在一个列中,并在旁边的列中记录相应的数值。
确保数据的连续性和准确性是进行时间序列分析的基础。
2. 移动平均图移动平均图是一种常见的时间序列分析方法,用于显示数据的趋势变化。
在Excel中,我们可以使用“数据分析工具包”中的“移动平均”功能绘制移动平均图。
将要分析的数据选中,点击菜单栏的“数据”选项,选择“数据分析”,在弹出的对话框中选择“移动平均”,填写相应参数后,Excel会自动绘制移动平均图。
3. 分解趋势分解趋势是指将时间序列数据分解为趋势、季节性和残差三个部分,以便更好地理解数据的规律性。
在Excel中,我们可以使用“数据分析工具包”中的“指数平滑法”进行趋势分析。
选择要分析的数据,点击菜单栏的“数据”选项,选择“数据分析”,在弹出的对话框中选择“指数平滑法”,填写相应参数后,Excel会自动生成趋势分析结果。
4. 预测模型预测模型是根据历史数据的规律性,对未来的趋势进行预测和估计。
在Excel中,我们可以使用“数据分析工具包”中的“趋势拟合”功能进行预测模型的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
§3. Excel进行趋势外推预测法的操作步骤
统计资料表明,大量社会经济现象的发展主要是渐进 因此,预测对象依时间变化呈现某种上升或下降的趋势,并且 无明显的季节波动,又能找到一条合适的函数曲线反映这种 变化趋势时,就可以用时间t为自变量,时序数值y为因变量,建 立回归趋势模型,当有理由相信这种趋势能够延伸到未来时, 赋予变量t所需要的值,可以得到相应时刻的时间序列未来值, 即趋势外推预测法 适用于有长期趋势的时间序列。 选择工具菜单中的数据分析命令,弹出数据分析对话框。 在分析工具列表框中,选回归工具。 这时,将弹出回归对话框,如图所示。
2
3
4
5.475 5.738 5.975 6.188 6.325 6.400 6.538 6.675 6.763 6.838 6.938 7.075
1.096 1.133 0.971 0.840 1.075 1.156 0.918 0.839 1.109 1.141 0.908 0.834
25
0.971 0.918 0.908 第一季度季节指数 0.93 3 0.840 0.839 0.834 第二季度季节指数 0.84 3 1.096 1.075 1.109 第三季度季节指数 1.09 3 1.133 1.156 1.141 第四季度季节指数 1.14 3
7
8
9
从图可以看出,该商场的年销售额具有明显的线性
增长趋势。因此要进行预测,还必须先作二次移动 平均,再建立直线趋势的预测模型。而利用Excel 2000提供的移动平均工具只能作一次移动平均,所 以在一次移动平均的基础上再进行移动平均即可。 二次移动平均的方法同上,求出的二次移动平均 值及实际值与二次移动平均值的拟合曲线,如下图 所示。 再利用前面所讲的截距 和斜率 计算公式可得:
Ft 1 St
即以第t周期的一次移动平均数作为第t+1周期的预测值。
4
趋势移动平均法(线性二次移动平均法)
当时间序列没有明显的趋势变动时,使用一次移动
平均就能够准确地反映实际情况,直接用第t周期的 一次移动平均数就可预测第t+1周期之值。但当时间 序列出现线性变动趋势时,用一次移动平均数来预 测就会出现滞后偏差。因此,需要进行修正,修正 的方法是在一次移动平均的基础上再做二次移动平 均,利用移动平均滞后偏差的规律找出曲线的发展 方向和发展趋势,然后才建立直线趋势的预测模型。 故称为趋势移动平均法。
即以第t周期的一次指数平滑值作为第t+1期的预测值。
13
二次指数平滑法
当时间序列没有明显的趋势变动时,使用 第t周期一次指数平滑就能直接预测第t+1期之 值。但当时间序列的变动出现直线趋势时, 用一次指数平滑法来预测仍存在着明显的滞 后偏差。因此,也需要进行修正。修正的方 法也是在一次指数平滑的基础上再作二次指 数平滑,利用滞后偏差的规律找出曲线的发 展方向和发展趋势,然后建立直线趋势预测 模型。故称为二次指数平滑法。
1983
1984 1985 1986
1159
1384 1524 1668
1994
1995 1996 1997
3093
3277 3514 3770
1987
1988
1688
1958
1998
4107
15
下面利用指数平滑工具进行预测,具体步骤
如下: 选择工具菜单中的数据分析命令,此时弹 出数据分析对话框。 在分析工具列表框中,选择指数平滑工具。 这时将出现指数平滑对话框,如图所示。
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
6
下面使用移动平均工具进行预测,具体操作步骤如
下: 1.选择工具菜单中的数据分析命令,此时弹出数据 分析对话框。 在分析工具列表框中,选择移动平均工具。
下面使用移动平均工具进行预测,具体操作步骤如 下: 选择工具菜单中的数据分析命令,此时弹出数据 分析对话框。 在分析工具列表框中,选择移动平均工具。
应用Excel进行时间序列分析
1
重点
1、Excel进行移动平均分析的操作步骤 2、Excel进行指数平滑分析的操作步骤 3、Excel进行趋势外推预测法的操作步骤
4、Excel进行时间序列分解法的操作步骤
zf
zf
移动平均法是一种简单平滑预测技术,它的
基本思想是:根据时间序列资料、逐项推移, 依次计算包含一定项数的序时平均值,以反 映长期趋势的方法。因此,当时间序列的数 值由于受周期变动和随机波动的影响,起伏 较大,不易显示出事件的发展趋势时,使用 移动平均法可以消除这些因素的影响,显示 出事件的发展方向与趋势(即趋势线),然 后依趋势线分析预测序列的长期趋势。
22
利用趋势和季节成分进行预测
yt = Tt St It
非季节化处理
步骤:计算季节指数、进行非季节化处理、
明确存在趋势、分析。
23
(1)移动平均,平滑掉时间序列的随机因素.
(2)原始数据与平滑后的数据相除得季节性指
数. (3)消除季节性因素的影响. (4)构造长期趋势模型. (5)进行预测
20
21
指定输入参数。在输入Y区域(原始的时间序列数 据y)、输入X区域(y对应的时间t)指定相应数据所在 的单元格区域. 并选定标志复选框,在置信水平框内键入95%。对 于一些特殊的回归模型,可以根据需要指定常数为 0(即 )。 指定输出选项。这里选择输出到新工作表组,并 指定工作表名称为“回归模型”,选定残差(即随 机误差项)和正态分布中的所有输出选项,以观察 相应的结果。 单击确定按钮。 最后得到回归分析的计算结果。
12
一次指数平滑法 设时间序列为 , 则一次指数平滑公式为:
式中 为第 t周期的一次指数平滑值; 为加权系数,0< <1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 因为加权系数符合指数规律,且又具有平滑数据的功能,所 以称为指数平滑。
用上述平滑值进行预测,就是一次指数平滑法。其预测模型 为:
17
从图可以看出,钢产量具有明显的线性增长趋势。 因此需使用二次指数平滑法,即在一次指数平滑的基础 上再进行指数平滑。所得结果如下图所示。
18
设原始序列为x1 , x2 ,..., xn , 平滑指数为 1 0.3 0.7 s21 3665.47 s21 3336.01 a 21 2 st st 2 *3665.47 3336.01 3994.9 趋势值 0.7 b21 (3665.47 3336.01) 2.33*329.37 767.432 1 0.7 F21+1 a 21 b21 *1 3994.9 767.432 4762.33
27
消除季节影响后的销量 8 7 6 5 4 3 2 1 0 0 5 10 15 20
28
趋势线 8 7 6 5 4 3 2 1 0 0 5 10
y = 0.1471x + 5.0996 R 2 = 0.9208
15
20
Tt 5.100 0.147t
29
T17 5.101 0.14817 7.617 T18 7.765 T19 7.913 T20 8.016 F17 T17 S17 7.617 0.93 7.084 F18 T18 S18 7.765 0.84 6.523 F19 7.9131.09 8.625 F20 8.0611.14 9.190
26
消除季节影响后的数据
Yt / St
消除季节影响后的销量 t 5.149106997 4.894007704 5.487727035 5.685271375 6.221837621 6.207034162 6.219423973 6.472462796 6.436383746 6.684498328 6.859658794 6.82232565 6.758202933 7.042596453 7.31696938 7.34711993 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5
应用举例
年份 销售额 32 41 48 53 51 58 57 64 69 67 69 年份 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 销售额 76 73 79 84 86 87 92 95 101 107
已知某商场 1978~ 1998年的 年销售额 如下表所 示,试预 测1999年 该商场的 年销售额。
14
应用举例
已知某厂
年份 1978 钢产量 676 年份 1989 钢产量 2031
1978~ 1998年的 钢产量如 下表所示, 试预测 1999年该 厂的钢产 量。
1979
1980 1981 1982
825
774 716 940
1990
1991 1992 1993
2234
2566 2820 3006
3
§1 Excel进行移动平均分析的操作步骤
简单移动平均法 公式表明当t向前移动一个时期,就增加一个新近数据,去掉一个远期数据, 得到一个新的平均数。由于它不断地“吐故纳新”,逐期向前移动,所以称 为移动平均法。
由于移动平均可以平滑数据,消除周期变动和不规则变动的影响, 使得长期趋势显示出来,因而可以用于预测。其预测公式为:
16
在输入框中指定输入参数。在输入区域指定数据所
在的单元格区域B1:B22;因指定的输入区域包含标 志行,所以选中标志复选框;在阻尼系数指定加权 系数0.3。
注:阻尼系数不是平滑常数 (阻尼系数=1-平滑常数 )