利用Excel进行时间序列的谱分析
统计学中基于Excel的时间序列指标分析方法

办公自动化杂志0概述所谓时间序列(Time Series)是指把反映某一现象的同一指标在不同时间上的取值按照时间的先后顺序排列,以此形成的一个动态数列。
时间序列分析也是一种应用非常广泛的数量分析方法,对数据进行时间序列分析是为了发现随时间变化的数据中具有的某种规律性,并能使用此规律性规则来预测未来可能发生的情况,也就是对处于不断发展变化的社会经济现象从动态的角度进行分析。
Excel 作为一个入门级的工具,同时又足以满足统计学教学的需要,对于还未接触过数据分析软件的学生来说是非常理想的工具。
本文将以我国2010年至2019年的国内生产总值的数据作为分析数据。
通过查询国家统计局官网所公布的次级资料,得到我国2010年至2019年的国内生产总值的数据,分别为:412119.3亿元、487940.2亿元、538580.0亿元、592963.2亿元、643563.1亿元、688858.2亿元、746395.1亿元、832035.9亿元、919281.1亿元,在进行分析之前先把数据输入Excel 工作表A1:B11单元格中。
1时间序列指标分析指标分析法是指通过计算一系列的时间序列分析指标,再进行对比分析,以此来描述现象的发展变化状况和发展变化程度的一种适用于时间序列分析的方法,其中根据反映现象的是绝对水平还是相对水平可以再分为水平分析指标和速度分析指标,这两种方法各有不同的特点和作用,各揭示不同的经济问题和状况,可根据研究目的分别采用或综合运用。
以下将利用我国2010年至2019年国内生产总值数据,采用指标分析法计算分析我国2010年至2019年国内生产总值的发展变化状况和程度。
1.1水平分析指标发展水平是指时间数列中各具体数值,一般用表示。
2010年至2019年的发展水平可直接得出,即是这十年的国内生产总值。
平均发展水平是不同时间上发展水平的平均数,平均发展水平指标可以消除不同时间上数量的差异,说明现象在一段时期的一般水平。
如何利用Excel进行时间序列分析

如何利用Excel进行时间序列分析时间序列分析是一种用来研究时间序列数据的统计方法,它可以帮助我们了解数据的趋势、周期性以及其他相关性。
Excel作为一个功能强大的电子表格软件,提供了许多工具和函数来执行时间序列分析。
本文将介绍如何利用Excel进行时间序列分析的基本步骤和常用方法。
一、数据准备在进行时间序列分析之前,首先需要准备好时间序列数据。
这些数据可以是按时间顺序排列的,例如每日、每月或每年的销售额、股票价格等。
打开Excel,并将时间序列数据输入到一个工作表中的某一列。
二、绘制时间序列图时间序列图是时间序列分析的基础,它可以帮助我们观察数据的趋势和周期性。
在Excel中,可以通过以下步骤绘制时间序列图:1. 选择时间序列数据所在的列。
2. 在Excel的菜单栏中选择“插入”,然后选择“散点图”。
3. 从弹出的图表类型中选择“散点图”或“折线图”。
4. 点击“确定”即可生成时间序列图。
三、计算移动平均值移动平均值是一种常用的时间序列分析方法,它可以平滑数据并显示长期趋势。
在Excel中,可以使用“平滑函数”来计算移动平均值。
以下是具体步骤:1. 在一个空白列中,输入移动平均的期数,例如3或5。
2. 在相邻的单元格中使用“平滑函数”来计算移动平均值,例如“=AVERAGE(A2:A4)”或“=AVERAGE(A2:A6)”。
3. 拖动填充手柄或复制公式将移动平均值应用到整个时间序列数据中。
四、计算趋势线趋势线可以帮助我们预测未来的趋势和趋势变化。
在Excel中,可以通过以下步骤计算趋势线:1. 选择时间序列数据所在的列以及对应的移动平均值列。
2. 在Excel的菜单栏中选择“插入”,然后选择“散点图”。
3. 从弹出的图表类型中选择“散点图”或“折线图”。
4. 点击图表上的任意数据点,然后右键选择“添加趋势线”。
5. 在弹出的趋势线选项中,选择适当的类型(线性、多项式等)并勾选“显示方程式”和“显示R²值”。
利用Excel进行时间序列分析和

利用Excel进行时间序列分析和预测利用Excel进行时间序列分析和预测时间序列分析是一种广泛应用于经济、金融、市场研究等领域的数据分析方法。
借助Excel的强大功能,我们可以方便地进行时间序列数据的处理、分析和预测。
本文将介绍如何利用Excel进行时间序列分析和预测的基本步骤及相关技巧。
一、数据准备和导入首先,我们需要准备数据并导入Excel中。
假设我们已经收集了一段时间内的销售数据,包括日期和销售量。
将数据按日期顺序排列好,并分别在A列和B列中输入日期和销售量数据。
二、绘制时间序列图在进行时间序列分析之前,我们首先要对数据进行可视化,以便更好地理解数据的特征和规律。
在Excel中,可以通过绘制时间序列图来实现。
1. 选中日期和销售量的数据区域;2. 点击“插入”选项卡上的“折线图”按钮,在弹出的图表类型中选择“折线图”;3. 根据需要调整图表的标题、坐标轴标签等属性,使其更加清晰易读。
三、时间序列分析时间序列分析的目的是研究时间序列数据中的随时间变化的特征和规律,以便更好地理解和预测未来的趋势。
1. 确定数据的稳定性稳定性是进行时间序列分析的前提条件。
我们可以通过观察时间序列图、计算平均值和方差等方法来判断数据的稳定性。
如果时间序列图趋势明显、波动较大,可能需要进行平稳化处理。
2. 计算自相关系数自相关系数是时间序列数据中各个观测值之间的相互关系度量。
在Excel中,可以利用CORREL函数来计算自相关系数。
通过计算自相关系数,可以初步了解数据之间的依赖关系及其强度。
3. 拟合趋势模型时间序列数据通常会存在某种趋势,例如线性趋势、指数趋势等。
我们可以利用Excel的趋势线工具来拟合趋势模型,以便更好地理解和预测数据的发展趋势。
4. 分解季节性和周期性许多时间序列数据中还存在季节性和周期性成分。
在Excel中,可以利用傅里叶分析工具来分解季节性和周期性成分,进一步分析数据的特征和规律。
四、时间序列预测时间序列预测是根据过去的数据来预测未来的趋势和规律。
实验五用excel进行时间序列分析

实验五用EXCEL进行时间序列分析一、测定增长量和平均增长量例5-1:下图为我国2000-2011年各年就业人数数据,计算逐期增长量和累计增长量。
计算逐期增长量:在C3中输入公式:=B3-B2,并用鼠标拖曳将公式复制到C3:C13区域。
计算累计增长量:在D3中输入公式:=B3-$B$2,并用鼠标拖曳公式复制到D3:D13区域。
计算平均增长量(水平法):在C10中输入公式:=(B13-B2)/11,(n-1=11)按回车键,即可得到平均增长量。
由以上分析可知,除2001年比2000年就业人口数有大幅增长外,此后近十年间,就业人口数目保持稳定增长,且2000-2011年平均增长量为万人。
二、测定发展速度和平均发展速度仍以我国2000-2011年各年就业人数数据为例,计算定基发展速度、环比发展速度和平均发展速度。
数据录入如下:计算定基发展速度:在C3中输入公式:=B3/$B$2,并用鼠标拖曳将公式复制到C3:C13区域。
计算环比发展速度:在D3中输入公式:=B3/B2,并用鼠标拖曳将公式复制到D3:D13区域。
计算平均发展速度(水平法):选中C10单元格,单击插入菜单,选择函数选项,出现插入函数对话框后,选择GEOMEAN(返回几何平均值)函数,在数值区域中输入D3:D13。
从这十二年我国就业人口总数的数据来看,呈现逐年稳步缓慢上涨趋势。
三、计算长期趋势沿用我国2000-2011年各年就业人数数据,用移动平均法计算长期趋势。
A、计算四项移动平均:在C4中输入“=SUM(B2:B5)/4”,并用鼠标拖曳将公式复制到C4:C13区域。
B、计算二项移正平均数:在D4中输入“=(C4+C5)/2”,并用公式拖曳将公式复制到D4:D13区域。
采用移动序时平均形成的平均序列进行研究目的在于消除或削弱原序列中各指标值在短期内因偶然因素的影响所引起的波动,从而呈现出在较长时间的基本发展趋势。
因此,由上述分析可知,我国从2000年到2010年,就业人口数保持稳定增长,但2011年就业人口增长数明显下降。
应用Ecel进行时间序列分析

应用Ecel进行时间序列分析应用Excel进行时间序列分析时间序列分析是一种针对时间序列数据进行预测、建模和分析的统计方法。
它在许多领域得到了广泛应用,如经济学、金融学、天气预测等。
Excel是一个功能强大的电子表格软件,也可以用于进行时间序列分析。
首先,我们需要准备时间序列数据。
这些数据可以是任何以时间间隔为单位的数据,如每月销售额、每日股价或每小时天气数据等。
在Excel中,我们可以使用一列表示时间,另一列表示相关的数据。
然后,我们可以使用Excel的各种函数和工具进行时间序列分析。
Excel提供了许多内置的函数和工具,用于对时间序列数据进行分析和预测。
以下是一些常用的函数和工具:1. 移动平均:移动平均是一种平滑时间序列数据的方法。
Excel中的移动平均函数为"AVERAGE"。
我们可以使用这个函数计算一段时间内的平均值,并将其用于预测未来的值。
2. 趋势函数:Excel中的趋势函数可以拟合时间序列数据的趋势线。
它通过拟合数据点之间的连续直线来预测未来的趋势。
Excel提供了几个不同的趋势函数,如"LINEST"和"TREND"。
我们可以使用这些函数来计算趋势线的斜率和截距,并将其用于预测未来的值。
3. 季节性分解:季节性分解是一种将时间序列数据分解为长期趋势、季节变化和随机波动的方法。
Excel中的"Analysis ToolPak"提供了季节性分解工具。
我们可以使用这个工具将时间序列数据分解为这些组成部分,并对每个组成部分进行分析。
4. 自相关和偏相关:自相关和偏相关是一种检验时间序列数据是否存在相关性的方法。
Excel中的"Data Analysis"工具提供了自相关和偏相关的功能。
我们可以使用这个工具计算时间序列数据的自相关和偏相关系数,并用于建立时间序列模型。
5. 预测:Excel中的"FORECAST"函数可以用于预测未来的值。
Excel高级数据分析使用傅里叶分析和时间序列分析

Excel高级数据分析使用傅里叶分析和时间序列分析高级数据分析是Excel中强大的功能之一,通过使用傅里叶分析和时间序列分析,可以更好地理解和分析数据。
本文将介绍Excel中如何使用这两种方法进行高级数据分析。
一、傅里叶分析傅里叶分析是一种将任意信号分解为一组单一频率信号的方法。
在Excel中,可以使用傅里叶分析工具进行频率分析,并从中获取有关信号频率、幅度和相位的信息。
首先,在Excel中打开要进行傅里叶分析的数据。
假设我们有一列时间序列数据,我们想要了解其频率成分。
选择需要进行分析的数据范围,并点击“数据”选项卡中的“数据分析”按钮。
在弹出的对话框中,选择“傅里叶分析”并点击“确定”。
接下来,选择输入范围和输出范围。
输入范围是我们选择的数据范围,输出范围是要将分析结果输出到的位置。
完成上述设置后,点击“确定”,Excel将计算出频率分析的结果,并将其显示在选定的输出范围内。
这些结果包括频率、限制频率、幅度和相位等信息。
通过分析傅里叶分析的结果,我们可以了解数据中的主要频率成分,进而对数据进行更深入的研究和解释。
二、时间序列分析时间序列分析用于对具有时间顺序的数据进行建模和预测。
Excel 提供了多种时间序列分析工具,如趋势分析、移动平均线和指数平滑等。
在Excel中进行时间序列分析的第一步是将时间序列数据输入到工作表中。
假设我们有一列按时间排序的销售数据。
要使用时间序列分析工具,首先选择数据范围,然后点击“数据”选项卡中的“数据分析”按钮。
在弹出的对话框中,选择“指数平滑”或“移动平均线”等时间序列分析工具,并点击“确定”。
接下来,根据工具的要求,选择输入范围、输出范围和其他参数,并点击“确定”。
完成上述设置后,Excel将计算出时间序列分析的结果,并将其显示在选定的输出范围内。
这些结果包括预测值、误差、置信区间等信息,有助于我们进行销售趋势分析和销售预测。
通过时间序列分析,我们可以发现数据中的趋势和季节性变化,从而更好地了解数据的规律性和周期性。
应用Excel进行时间序列分析

一次指数平滑法
设时间序列为 , 则一次指数平滑公式为:
式中 为第 t周期的一次指数平滑值; 为加权系数,0< <1。 为了弄清指数平滑的实质,将上述公式依次展开,可得: 因为加权系数符合指数规律,且又具有平滑数据的功能,所 以称为指数平滑。 用上述平滑值进行预测,就是一次指数平滑法。其预测模型 为:
适用于有长期趋势的时间序列。 选择工具菜单中的数据分析命令,弹出数据分析对话框。
在分析工具列表框中,选回归工具。 这时,将弹出回归对话框,如图所示。
19
20
指定输入参数。在输入Y区域(原始的时间序列数 据y)、输入X区域(y对应的时间t)指定相应数据所在 的单元格区域.
并选定标志复选框,在置信水平框内键入95%。对 于一些特殊的回归模型,可以根据需要指定常数为 0(即 )。 指定输出选项。这里选择输出到新工作表组,并 指定工作表名称为“回归模型”,选定残差(即随 机误差项)和正态分布中的所有输出选项,以观察 相应的结果。 单击确定按钮。 最后得到回归分析的计算结果。
因此,预测对象依时间变化呈现某种上升或下降的趋势,并且 无明显的季节波动,又能找到一条合适的函数曲线反映这种 变化趋势时,就可以用时间t为自变量,时序数值y为因变量,建 立回归趋势模型,当有理由相信这种趋势能够延伸到未来时, 赋予变量t所需要的值,可以得到相应时刻的时间序列未来值, 即趋势外推预测法
4.894007704
2
5.487727035
3
5.685271375
4
6.221837621
5
6.207034162
6
6.219423973
7
6.472462796
8
6.436383746
如何利用Excel进行时间序列数据的分析与预测

如何利用Excel进行时间序列数据的分析与预测时间序列数据分析与预测在许多领域中都具有重要的应用价值,如经济学、金融学、市场营销等。
Excel作为一款常用的办公软件,提供了丰富的函数和工具,可以帮助我们进行时间序列数据的分析与预测。
本文将介绍一些常用的Excel函数和方法,帮助读者更好地利用Excel进行时间序列数据的分析与预测。
首先,我们需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列数据点,通常包括趋势、季节性和周期性等成分。
在进行时间序列数据的分析与预测时,我们可以采用以下几个步骤:1. 数据准备与导入:首先,我们需要将时间序列数据导入Excel中。
可以使用Excel的数据导入功能,将数据从外部文件或数据库中导入到Excel中,或者直接手动输入数据。
确保数据按照时间顺序排列,每个时间点对应一个数据值。
2. 数据可视化:在进行时间序列数据的分析与预测之前,我们可以先对数据进行可视化,以便更好地了解数据的特点和趋势。
Excel提供了丰富的图表功能,如折线图、柱状图、散点图等,可以直观地展示数据的变化趋势和周期性。
3. 趋势分析:趋势是时间序列数据中长期变化的总体方向。
在Excel中,我们可以使用趋势函数进行趋势分析。
常用的趋势函数有线性趋势函数(LINEST)、指数趋势函数(GROWTH)和多项式趋势函数(TREND)。
通过拟合趋势函数,我们可以得到趋势的方程式和相关系数,从而判断趋势的强度和方向。
4. 季节性分析:季节性是时间序列数据中周期性变化的一种形式。
在Excel中,我们可以使用季节性分解函数进行季节性分析。
常用的季节性分解函数有移动平均法(Moving Average)和指数平滑法(Exponential Smoothing)。
通过季节性分解,我们可以得到趋势、季节性和随机成分的值,从而更好地理解数据的周期性变化。
5. 预测模型建立:在进行时间序列数据的预测时,我们可以建立预测模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用Excel 进行时间序列的谱分析(I )在频域分析中,功率谱是揭示时间序列周期特性的最为有力的工具之一。
下面列举几个例子,分别从不同的角度识别时间序列的周期。
1 时间序列的周期图【例1】某水文观测站测得一条河流从1979年6月到1980年5月共计12月份的断面平均流量。
试判断该河流的径流量变化是否具有周期性,周期长度大约为多少?分析:假定将时间序列x t 展开为Fourier 级数,则可表示为∑=++=ki t i i i i t t f b t f a x 1)2sin 2cos (εππ (1)式中f i 为频率,t 为时间序号,k 为周期分量的个数即主周期(基波)及其谐波的个数,εt 为标准误差(白噪声序列)。
当频率f i 给定时,式(1)可以视为多元线性回归模型,可以证明,待定系数a i 、b i 的最小二乘估计为∑∑====Nt i tiNt i ti tf xNb tf xN a112sin 2ˆ2cos 2ˆππ (2)这里N 为观测值的个数。
定义时间序列的周期图为)(2)(22i i i b a N f I +=,k i ,,2,1 = (3) 式中I (f i )为频率f i 处的强度。
以f i 为横轴,以I (f i )为纵轴,绘制时间序列的周期图,可以在最大值处找到时间序列的周期。
对于本例,N =12,t =1,2,…,N ,f i =i /N ,下面借助Excel ,利用上述公式,计算有关参数并分析时间序列的周期特性。
第一步,录入数据,并将数据标准化或中心化(图1)。
图1 录入的数据及其中心化结果中心化与标准化的区别在于,只需将原始数据减去均值,而不必再除以标准差。
不难想到,中心化的数据均值为0,但方差与原始数据相同(未必为1)。
第二步,计算三角函数值为了借助式(1)计算参数a i 、b i ,首先需要计算正弦值和余弦值。
取6,,2,1 =i ,则频率为12/6,,12/2,12/1/ ==N i f i (图1)。
将频率写在单元格C3-C14中(根据对称性,我们只用前6个),将中心化的数据转置粘贴于第一行的单元格D1-O1中,月份的序号写在单元格D2-O2中(与中心化数据对齐)。
图2 计算余弦值的表格在D2单元格中输入公式“=COS($B$1*$D$2*C3)”,回车得到0.866;按住单元格的右下角右拉至O3单元格,得到f =1/12=0.083,t =1,2,…,12时的全部余弦值。
在D2单元格中输入公式“=COS($B$1*$D$2*C4)”,回车得到0.5;按住单元格的右下角右拉至O4单元格,得到f =2/12=0.167,t =1,2,…,12时的全部余弦值。
依次类推,可以算出全部所要的余弦值(在D3-O8区域中)。
根据对称性,我们的计算到k =6为止(图2)。
注意,这里B1单元格是2π=6.28319(图中未能显示)。
在上面的计算中,只要将公式中的“COS ”换成“SIN ”,即可得到正弦值,不过为了计算过程清楚明白,最好在另外一个区域给出结算结果(在D17-O22区域中,参见图3)。
图3 计算正弦值的表格第三步,计算参数a i 、b i利用中心化的数据(仍然表作x t )计算参数a i 、b i 。
首先算出x t cos2πf i t 和x t sins2πf i t 。
在D9单元格中输入公式“=D1*D3”,回车得到18.309;按住单元格的右下角右拉至O9单元格,得到f =1/12=0.083,t =1,2,…,12时的全部x t cos2πf i t 值;加和得39.584,再除以6,即得a 1=6.597。
在D10单元格中输入公式“=D1*D4”,回车得到10.571;按住单元格的右下角右拉至O10单元格,得到f =2/12=0.083,t =1,2,…,12时的全部x t cos2πf i t 值;加和得-365.25,再除以6,得到a 2=-60.875。
其余依此类推。
将上面公式中的余弦值换成正弦值,即可得到b i 值(见下表)。
上面的计算过程相当于采用式(2)进行逐步计算。
第四步,计算频率强度利用式(3),非常容易算出I (f i )值。
例如914.174096)213.170597.6(*6)(2)(2221211=+=+=b a N f I 其余依此类推(见图4)。
图4 计算频率强度第五步,绘制时间序列周期图利用图4中的数据,不难画出周期图(图5)。
02000040000600008000010000012000014000016000018000020000000.10.20.30.40.50.6频率频率强度图5 某河流径流量的周期图(1979年6月-1980年5月)第六步,周期识别关键是寻找频率的极值点或突变点。
在本例中,没有极值点,但在f 1=1/12=0.0833处,频率强度突然增加(陡增),而此时T =1/f 1=12,故可判断时间序列可能存在一个12月的周期,即1年周期。
【例2】为了映证上述判断,我们借助同一条河流的连续两年的平均月径流量(1961年6月-1963年5月)。
原始数据见下图(图6)。
图6 原始数据及部分处理结果将原始数据回车时间序列变化图,可以初步估计具有12月变化周期,但不能肯定(图6)。
050100150200250300350051015202530时间(月份序号)月平均径流量图6 径流量的月变化图(1961年6月-1963年5月)按照例1给出的计算步骤,计算参数数a i 、b i ,进而计算频率强度(结果将图7)。
然后绘制时间序列的周期图(图8)。
注意这里,N =24,我们取k =12。
图7 参数和频率强度的计算结果从图8中可以看出,频率强度的最大值(极值点)对应于频率f 1=1/12=0.0833,故时间序列的周期判断为T =1/f 1=12。
这与用12月的数据进行估计的结果是一致的,但由于例2的时间序列比例1的时间序列长1倍,故判断结果更为可靠。
02000040000600008000010000012000014000000.10.20.30.40.50.6频率频率强度图8 某河流径流量的周期图(1961年6月-1963年5月)2 时间序列的频谱图【例3】首先考虑对例1的数据进行功率谱分析。
例1的时间序列较短,分析的效果不佳,但计算过程简短。
给出这个例子,主要是帮助大家理解Fourier 变换过程和方法。
为了进行Fourier 分析,需要对数据进行预处理。
第一,将数据中心化,即用原始数据减去其平均值。
中心化的数据均值为0,我们对中心化的数据进行变换,其周期更为明显。
第二,由于Fourier 分析通常采用所谓快速Fourier 变换(Fast Fourier Transformation ,FFT ),而FFT 要求数据必须为2n 个,这里n 为正整数(1,2,3,…),而我们的样本为N =12,它不是2的某个n次方。
因此,在中心化的数据后面加上4个0,这样新的样本数为N′=12+4=16=24个,这才符合FFT的需要(图9)。
下面,我们对延长后的中心化数据进行Fourier变换。
图9 数据的中心化与“延长”第一步,打开Foureir分析对话框沿着主菜单的“工具(Tools)”→“数据分析(Data Analysis)”路径打开数据分析选项框(图10),从中选择“傅立叶分析(Fourier Analysis)”。
图10 在数据分析选项框中选择Fourier分析第二步,定义变量和输出区域确定之后,弹出傅立叶分析对话框,根据数据在工作表中的分布情况进行如下设置:将光标置于“输入区域”对应的空白栏,然后用鼠标选中单元格C1-C17,这时空白栏中自动以绝对单元格的形式定义中心化数据的区域范围(即$C$1-$C$17)。
选中“标志位于第一行”。
选中输出区域,定义范围为D2-D17(图11)。
注意:如果输入区域的数据范围定义为C2-C17,则不要选中“标志位于第一行”,这与回归分析中的原始变量定义是一样的(图12)。
如果不定义输出区域范围,则变换结果将会自动给在新的工作表组上。
这一点也与回归分析一样。
图11 选中“标志位于第一行”与数据输入范围的定义图12 不选中“标志位于第一行”与数据输入范围的定义第三步,结果转换定义数据输入-输出区域完成之后,确定,立即得到Fourier变换的结果(图13)。
图13 傅立叶变换的结果变换的结果为一组复数,相当于将f (t )变成了F (ω),实际上是将x t 变成了X T (f )。
我们知道,有了f (t )的象函数F (ω)就可以计算能量谱密度函数S (ω),即有2)()()()(ωωωωF F F S == (4)相应地,有了X T (f )也就容易计算功率谱(密度)Tf X f P T 2)()(=(5)式中f 表示线频率,与角频率ω的转换关系是ω=2π/T ,这里T 为数据区间长度。
如果将X T (f )表作X T (f )=A +jB (这里A 为实部,B 为虚部),则有222))(()()()(i i i i i i i T i T i T B A jB A jB A f X f X f X +=-+== (6)因此这一步是要分离变换结果的实部与虚部。
逐个手动提取是非常麻烦而且容易出错的,可以利用Excel 有关复数计算的命令。
提取实部的Excel 命令是imreal 。
在H2单元格中输入命令“=IMREAL(D2)”(这里D2为变换结果的第一个复数所在的单元格),回车得到第一个复数的实部0;点中H2单元格的右下角,揿住鼠标左键下拉至H17,得到全部的实部数值。
提取虚部的命令是imaginary 。
在I2单元格中输入公式“=IMAGINARY(D2)”,回车得到第一个复数的虚部0;下拉至I17,得到全部的虚部数值。
根据式(5)、(6),功率谱密度的计算公式为TB A f P i i i 22)(+= (7)考虑到本例中T =N =16,在J2单元格中输入公式“=(H2^2+I2^2)/16”,回车得到第一个功率谱密度0;下拉至J17,得到全部谱密度数值(图14)。
基于FFT 的谱密度分布是对称的,可以看出,以J10所在的3105.28为对称点,上下的数值完全对称。
图14 功率谱密度的计算结果第四步,绘制频谱图线频率f i 可以表作N i T i f i //==,N i ,,2,1,0 =-1显然f 0=0/16=0,f 1=1/16=0.0625,f 2=2/16=0.125,…,f 15=15/16=0.9375。
在Excel 中,容易计算频率的数值。
将频率与功率谱对应起来(图15),就可以画出频谱图。