算法合集之《浅谈图论模型的建立与应用》共28页PPT资料

合集下载

数学建模-图论模型及算法

数学建模-图论模型及算法
问题一:如何在组数一定(3组)的情况下,使走遍乡村的总路线最短 且三组的路程尽可能均衡。
问题二:若巡视人员要在乡停留T=2小时,村停留t=1小时,汽车时 速V=35公里/小时,那么至少分几组能在24小时内走完?并找出最佳巡 视路线。
乡镇、村的公路网示意图
问题分析
根据53组数据我们得到它的邻接矩阵,利用Kruskal算法用Matlab编 程处理后得到加权网络图的最小生成树。
例1 最短路问题(SPP-shortest path problem)
一名货车司机奉命在最短的时间内将一车货物从甲地运 往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车 路线,这名司机应选择哪条线路呢?假设货车的运行速度是 恒定的,那么这一问题相当于需要找到一条从甲地到乙地的 最短路。
例2 公路连接问题
最小生成树的Kruskal算法: function [T c]=krusf(d,flag) if nargin==1
n=size(d,2); m=sum(sum(d~=0))/2; b=zeros(3,m); k=1; for i=1:n
for j=(i+1):n if d(i,j)~=0 b(1,k)=i;b(2,k)=j; b(3,k)=d(i,j); k=k+1; end
求最小生成树问题有很广泛的实际应用. 例如, 把n个乡镇 用高压电缆连接起来建立一个电网, 使所用的电缆长度之和最 短, 即费用最小, 就是一个求最小生成树问题.
最小生成树算法—Kruskal算法
• 思想:将图中所有边按权值从大到小排列,依次选所剩最 小的边加入边集T,只要不和前面加入的边构成回路,直到 T中有n-1条边,则T是最小生成树。
A
0 1 1
0 0 0

5、图论模型的建立

5、图论模型的建立
图论建模
信息学竞赛解题的一个重要步骤是数学建模, 如几何模型、代数模型、运筹学模型等。图论模型 的构造(图论建模)也是数学建模的一个分支。 在建立一个问题的模型之前,首先要对研究对 象进行全面的调查,将原型理想化、简单化(对于 竞赛而言,这一步大部分已经由命题者完成);然 后对原型进行初步的分析,分清其中的各个要素及 求解目标,理出它们之间的联系;然后用恰当的模 型来描述这些要素及联系。
图论建模
[问题分析] 1、问题的数据规模只有200,所以很容易想到用搜索, 由于要输出最优解(要求的是最快的次数),所以是宽搜。 2、对于A楼而言,实际上对它最多只能做2个操作, 上到A+X层或下到A-X层,当然前提是存在A+X或A-X层。显 然,如果把每一层楼看做一个顶点,如果A楼可以到B楼, 则从顶点A引一条到顶点B的边。对于样例,如下图:
下面,我们把每个si抽象成一个点,则根据上述两个不等式可以建立一个 有 向 图, 图中 共 有n+1个顶 点 ,分 别为 s0 ,s1 ,……,sn 。若 si>sj(0≤i, j≤n),则从si往sj引出一条有向边。例如对于n=6,p=5,q=3的情况,我们可 以建立下图。
常州市第一中学 林厚从
图论建模
图论模型和其它模型在研究方法上有着很大的 不同,例如可以运用典型的图论算法来对图论模型 进行求解,或是根据图论的基本理论来分析图论模 型的性质,这些特殊的算法和理论都是其它模型所 不具备的,而且在其它模型中,能用类似于图这种 直观的结构来描述的也很少。
常州市第一中学 林厚从
是指对一些客观事物进行抽象、化简, 并利用图来描述事物特征及其内在联系的过程。建 立图论模型的目的和建立其它数学模型一样,都是 为了简化问题,突出要点,以便更深入地研究问题 的本质;它的求解目标可以是最优化问题,也可以 是存在性或构造性问题;并且和几何模型、运筹学 模型一样,在建立图论模型的过程中,也需要用到 集合、映射、函数等基本的数学概念和工具。

图论算法与模型67页PPT

图论算法与模型67页PPT
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
60、人民的幸福是至高无个的法。— —西塞 罗
பைடு நூலகம்
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
图论算法与模型
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克

数学建模图论讲

数学建模图论讲
如果任两顶点间最多有一条边,且每条边的两个端点皆 不重合的图,则称为简单图。
第2页1 /共86页
2024年8月3日
数学建模-图论
一、图的基本概念
如果图的二顶点间有边相连,则称此顶点相邻,每一对顶点
都相邻的图称为完全图,否则称为非完全图,完全图记为 K V 。
若V (G) X Y, X Y , X Y 0 ,且 X 中 无相邻的顶点对,Y 中亦然,则称图 G 为二分图.
第1行 1 A1i 第i行 1
11,A1i 2
2 2
22,A1i3
4 4
4 4
其中i=2,3,4,5,显然y1=1+(4+4+4+4-1) 4=61. 同理,计算y2时应考虑槽高只有2,21,23,24,25,
26时的情形,类似计算可得 y2=1+(4+4+4+4-1)×5=76.
于是,s=61×2+76×4=426,x=6306426=5880.
计算y1可分别考虑槽高只有1,12,13,14,15的 情形.若只有1,这样的锁具效只有1个, 若只有1和i(i=2,3,4,5),这样的锁具数=G中以1和i为 顶点,长度为3的道路数,此数可通过A的子矩阵A1i计 算得到.
第18页/共86页
数学建模-图论
二、图的矩阵表示(应用实例解法分析)
事实上,因为
间最短的路线。定义T*T=(t(2)ij),
3
4
t(2)ij=min{min1<=k<=5{tik+tkj},tij}, t(2)ij表示 从站点i到站点j的至多换乘一次的最短时间。
5
第22页/共86页
数学建模-图论
二、图的矩阵表示(应用实例及解法分析)

图论模型专题PPT共71页

图论模型专题PPT共71页
图论模型专题
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,亭亭月将圆。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!

图论及其应用ppt课件

图论及其应用ppt课件

可编辑课件
28
名人名言
智者,善假于物也 学贵有恒,人贵有志 贵我、通今:横尽虚空,山河大地无一
可恃,可恃惟我;数尽来劫,前后左右 无一可据,可据惟今! 生当作人杰,死亦为鬼雄!
可编辑课件
29
一副对联、一句勉励
上联: 做人做事做第一 下联: 创新创业创世界 横批: 众志成城 千里之行,始于足下, 兴趣是最好的老
A Friendly Introduction to Graph Theory, Fred Buckley,Marty Lewinter.
可编辑课件
21
学习方法
目的明确 态度端正 理论和实践相结合 充分利用资源 逐步实现从知识到能力到素质的深化和
升华
可编辑课件
22
课程考核
平时成绩 (10%) 图论应用的小论文 (60%) 开卷考试 (30%)
图论及其应用 Graph Theory and Its Applications
可编辑课件
1
主要内容
图论前言 数学预备知识
可编辑课件
2
前言
课程目标 学时和学分 教学大纲 教材和主要参考资料 课程考核
可编辑课件
3
图论学科简介 (1)
哥尼斯堡七桥问题 欧拉(1707~1782):根据几何位置的解
满足
x, y,zS
a) 自反性 (x,x)R b) 对称性 c) 传递性 ((x ,y ) R ) ((y ,x ) R )
(x ,y ) R 且 (y ,z ) R (x ,z ) R
可编辑课件
41
等价关系与同余 (2)
xymodn
对于“模n同余”是等价关系,其等 价类成为模n的余数类或者同余类, 所有的同余类构成的集合

第六章 平面图3 图论及其应用课件(共30张PPT)


H G
称 H 是G容许(róngxǔ)的。 例2 在G中,我们(wǒ men)取红色边导出的子图为HH, 并H取
G
G
容易知道: H 是G容许的。
6
第六页,共30页。
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
例3 在G中,我们(wǒ men)取红色边导出的子图为HH,并H取
B3 G[v4v5] F (B 3,H 4)f1,f5
B4 G[v5v8] F(B4,H 4)f1
B5 G[v6v8] F(B5,H4)f1
v5 v6 f3 v7
v8
第十八页,共30页。
f5
18
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
v8 v7
v3 v4
v6
v5 图G
v1
v2 f2 f1
v3 v4
H1
v5 v6 f3
v7 v8
15
第十五页,共30页。
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
B1 G[v1v4] F (B 1,H 2)f1,f3
B2 Gì)知H 道: 不 是G容许的。
定义4 设B是G中子(zhōngzǐ)图H的任意一座桥,假设B对H的所有
附着顶点都位于 H 的某个面f的边界上,那么称B在面 f 内可画入,
否那么,称B在面 f 内不可画入。
7
第七页,共30页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档