3-2+动量守恒定律

合集下载

04 3-1 质点和质点系的动量定理

04 3-1  质点和质点系的动量定理

t2
F1+F2 dt (m1v1 m2v2 ) (m1v10 m2v20 )
t1
作用在两质点组成的系统的合外力的冲量等于系统内两质 点动量之和的增量,即系统动量的增量。
2、多个质点的情况
t2 t2 n n n Fi外 dt+ Fi内 dt m i v i m i v i 0 i 1 i 1 t1 i 1 t1 i 1 n
3-4 动能定理
一、功与功率
1、功
•恒力的功 力对质点所作的功等于该力在位移 方向上的分量与位移大小的乘积
F m
F

S
m
说明 •功是标量,没有方向,只有大小,但有正负 p/2,功W为正值,力对物体作正功; p /2,功W=0, 力对物体不作功; p /2,功W为负值,力对物体作负功,或 物体克服该力作功。 •单位:焦耳(J) 1J=1N· m
i i i
ex ex 若质点系所受的合外力为零 F Fi 0
则系统的总动量守恒,即
讨论
ex dp ex i F , F 0, P C dt
p pi
保持不变 .
i
1)系统的动量守恒是指系统的总动量不变,系 统内任一物体的动量是可变的, 各物体的动量必相 对于同一惯性参考系 .
W=F S dW=F dS
•变力的功 分成许多微小的位移元,在每一个 位移元内,力所作的功为
Z
dr
b
F
dW F dr F cos dr
总功
a O
Y
W
•合力的功
B
A
B X F dr F cosdr

大学物理之3-2动量守恒定律

大学物理之3-2动量守恒定律

实验器材与步骤
• 实验器材:滑块、气垫导轨、挡光板、光电门、天平、砝 码、小车等。
实验器材与步骤
实验步骤 1. 将滑块放置在气垫导轨上,调整挡光板的位置,使滑块能够顺利通过光电门。
2. 使用天平测量滑块和小车的质量,并记录下来。
实验器材与步骤
01
3. 将小车从静止状态释放,使其与滑块发生碰撞。
04 动量守恒定律的推导与证 明
推导过程
01
牛顿第二定律:物体受到的合外 力等于其质量与加速度的乘积。
02
定义动量为物体的质量与速度的 乘积,即$p=mv$。
根据牛顿第二定律,物体受到的 合外力等于其动量的变化率,即 $frac{dp}{dt}=ma$。
03
当合外力为零时,动量守恒,即 $frac{dp}{dt}=0$。
02
4. 使用光电门测量小车和滑块碰撞前后的速度,并记录下来。
5. 根据测量数据计算系统在碰撞前后的动量变化,验证动量守
03
恒定律。
实验结果与结论
实验结果
通过测量和计算,发现系统在碰撞前后的动量变化符合动量守恒定律。
实验结论
实验验证了动量守恒定律的正确性,加深了对动量守恒定律的理解。同时,实验过程中需要注意控制 实验条件,保证测量数据的准确性和可靠性。
能量守恒定律
在某些条件下,动量守恒定律和能量守恒定律可以 结合起来使用,如碰撞过程中动能和动量的关系。
角动量守恒定律
当系统受到的力矩为零时,系统的角动量保 持不变,与动量守恒定律一起描述了机械运 动的守恒规律。
在现代物理学中的应用
01
基本粒子
在研究基本粒子的相互作用和演 化过程中,动量守恒定律是重要 的理论基础。

3-2质心运动定理、角动量守恒

3-2质心运动定理、角动量守恒

L
O

rA r

A α m

v
证明: 不受外力,质点将做 匀速直线运动。 m在某一时刻经过A点时, 其对固定点O的角动量为
L rA mv rAmvsin r m v
固定点O到轨迹直线的垂直距离只有一 个值,所以角动量的大小恒定。 而角动量的方向恒垂直于固定点O和运动 轨迹所决定的平面。 所以m对任意固定点的角动量矢量保持不变。
力矩的大小:
力矩的方向: 角动量定理:
M r F rF sin
也由右螺旋法则确定。
dL M dt
质点所受的合外力矩等于它的角动量对时间的 变化率。 M 注意:定理中的力矩和角 动量是对惯性系中地同一 固定点而言的。
o

r
F
r
α

m
§3.7 角动量守恒定律
给上式两边同时乘以系统质量m
rC
mi ri
i
则:
mvc mi vi p
dvc dp p mvc 两边求导得: m mac dt dt dp F m a c dt
——质心运动定理
i
不管物体的质量如何分布,也不管外力作用在 物体的什么位置上,质心的运动就象是物体的质量 全部都集中于此,而且所有外力也都集中于此的一 个质点的运动一样。 实际上在质心位置处可能既无质量,又未受力。
i 1
m
' rC
0
两边求导:
'0 mv i i
N i 1
z
z'
x'
o
rC
' ri

第三章-动量守恒定律

第三章-动量守恒定律


cos d
R

2、求半径为 R 、顶角为 2 的均匀扇形薄板的质
心?
习题3-8
3、求质量均匀分布的半球体的质心?
解:

建立坐标系
计算 C z
dz z
由对称性可知,质心在 z 轴上 根据质心定义式 zC
设球体的体密度为
zdm dm
dm ( R 2 z 2 )dz

v10 v1 v2 v20 v10 v20 v2 v1
碰前相互接近的速度 = 碰后相互离开的速度
m1 m2 时 v1 v20 , v2 v10 m1 m2 2m1 v v , v v10 v20 0 时 1 10 2 m1 m2 m1 m2
根据质点动量定理:
t I Fdt p p0 mv mv0 0 mv0
根据平均冲力定义: F I mv0 t t m(v0 ) mv0 F t t
根据质点动能定理: mgh 1 mv 2 0
F
h
mg
m 2 gh F 3.1105 N t
2
v0 2 gh
方向向上
§ 3-2 质点系动量定理和质心运动定理
一、质点系动量定理
1、两个质点构成的质点系

研究对象 受力分析 内力:
F2
f12
2
f 21
F1
1
外力:

运动特点
t0 :
t:
分别对 应用质点动量定理
i
动量守恒定律
当外力矢量和为零时,质点系的总动量保持不变。
说明
分量守恒

动量守恒定律

动量守恒定律

定义:动量守恒定 律是物理学中的基 本定律之一,它描 述了系统中物体动 量的变化与作用力 的关系。
适用范围:适用于 宏观和微观领域, 包括经典力学、相 对论和量子力学等 领域。
地位:是物理学中 的基石之一,对于 理解物质运动规律 和解决实际问题具 有重要意义。
作用:在科学研究 、工程技术和日常 生活中有着广泛的 应用,如航天器发 射、碰撞、爆炸等 领域。
物理科学研究: 推动物理学理论 的发展与完善
05
动量守恒定律的局限性和未来发展方向
动量守恒定律的局限性
适用范围有限:只适用于封闭系统,且不受外力作用 忽略微观粒子间的相互作用:无法考虑微观粒子间的相互作用对动 量的影响 忽略量子效应:无法解释微观粒子的量子效应对动量的影响
无法解释宇宙膨胀现象:无法解释宇宙大尺度上的动量守恒问题
动量守恒定律的数学表达式
p=mv m1v1+m2v2=m1v3+m2v4 Δp1=-Δp2 Δp=0
动量守恒定律的适用范围
宏观低速:适用于宏观低速的物体运动,不适用于微观高速的物体运动。 孤立系统:适用于孤立系统,即系统不受外界作用力或外界作用力可忽略不计的情况。 不考虑相对论效应:在经典力学中,动量守恒定律适用于不考虑相对论效应的情况。 弹性碰撞:适用于弹性碰撞,即碰撞过程中能量损失很小的情况。
火箭升空
碰撞问题
定义:两个或 多个物体在空 间中相互碰撞, 动量守恒定律
的应用。
实例:汽车碰 撞、子弹射击 目标、行星碰
撞等。
计算方法:利 用动量守恒定 律计算碰撞前 后的速度和能
量。
结论:动量守 恒定律在碰撞 问题中具有广 泛的应用,可 以帮助我们理 解物体的运动 规律和预测物 体的运动行为。

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案

大学物理第三章-动量守恒定律和能量守恒定律-习题及答案
两个质点的情况设系统内有两个质点1和2质量分别为m和m作用在质点上的外力分别为12f和f而两质点之间的相互作用力为f1212和f根据动量定理在ttt时间内2121两质点的动量的增量分别为t2??????ffdtmv?mv?11211110t1t2??????ffdtmv?mv?22122220t1把上面两式相加得t2t2????????ffdtffdt?12?1221t1t1????mv?mv?mv?mv1122110220??考虑牛顿第三定律f12?f21t2??得??????ffdtmv?mv?mv?mv?121122110220t1即
F外 dt=dP
力的效果 关系 适用对象 适用范围 解题分析
*动量定理与牛顿定律的关系 牛顿定律 动量定理 力的瞬时效果 力对时间的积累效果 牛顿定律是动量定理的 动量定理是牛顿定律的 微分形式 积分形式 质点 质点、质点系 惯性系 惯性系 必须研究质点在每时刻 只需研究质点(系)始末 的运动情况 两状态的变化 0
因而
Fx 2mv cos / t
Fy 0
代入数据,得
Fx 2 0.2 6 cos 60 0 / 0.03 40 N
根据牛顿第三定律,球对墙壁的作用力为 40N,方向向左。 二、质点系的动量定理 1.两个质点的情况 设系统内有两个质点 1 和 2,质量分别 为 m1 和 m2,作用在质点上的外力分别为 F1 和 F2, 而两质点之间的相互作用力为 F12 和 F21,根据动量定理,在Δt=t2-t1 时间内, 两质点的动量的增量分别为
dv 1) F m dt dv 2) F m dt
F ma Fdt mdv dmv ——动量定理 dv dv dr 1 m mv mdr mv dv d mv 2 动能定理 dr dt dr 2

第三章 动量守恒定律与能量守恒定律

第三章 动量守恒定律与能量守恒定律

第三章 动量守恒定律和能量守恒定律3-1 一架以12ms 100.3-⨯的速率水平飞行的飞机,与一只身长为0.20m 、质量为0.50kg 的飞鸟相碰。

设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率很小,可以忽略不计。

估计飞鸟对飞机的冲击力,根据本题的计算结果,你对高速运动的物体与通常情况下不足以引起危害的物体相碰后产生后果的问题有什么体会?解:以飞鸟为研究对象,其初速为0,末速为飞机的速度,由动量定理。

vlt mv t =∆-=∆ ,0F 联立两式可得: N lmv F 521025.2⨯==飞鸟的平均冲力N F F 51025.2'⨯-=-=式中的负号表示飞机受到的冲击力与飞机的运动速度方向相反。

从计算结果可知N F F 51025.2'⨯-=-=大于鸟所受重力的4.5万倍。

可见,冲击力是相当大的。

因此告诉运动的物体与通常情况下不足以引起危险的物体相碰,可能造成严重的后果。

3-2 质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。

若不计空气阻力。

求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。

解:(1)在垂直方向上,物体m 到达最高点时的动量的变化量是:αsin 01mv P -=∆而重力的冲击力等于物体在垂直方向的动量变化量:ααsin sin 0011mv mv P I -=-=∆=(2)同理,物体从发射点到落回至同一水平面的过程中,重力的冲力等于物体竖直方向上的动量变化量αααsin 2sin sin 1222mv mv mv mv mv P I -=--=-=∆=负号表示冲量的方向向下。

3-3 高空作业时系安全带是非常必要的。

假如一质量为51.0kg 的人,在操作时不慎从高空跌落下来,由于安全带保护,最终使他悬挂起来。

已知此时人离原处的距离为 2.0m ,安全带弹性缓冲作用时间为0.50s 。

大学物理-第三章三大守恒定律

大学物理-第三章三大守恒定律

i
i
1 若质点系动量守恒,则动量在三个坐标轴上的分量都守恒。
2、在系统内质点间的碰撞,打击,爆炸过程中,内力很大,可 忽略重力、摩擦力等外力,可近似认为动量守恒。
上一页 下一页
3、虽然有时系统总动量不守恒,但只要系统在某个方向受 的合外力为0,则系统在该方向动量守恒。
即 F x 当 F ix 0 时 p x , m iv ix 常量
mv1
得 F (0 .3 )22 0 32 0 2 2 0 3c0o 3 s()0 14 (N )51
0 .01
根据正弦定理
sm i 2 nvsiF n t() 18 ,即力的 v 夹 方 角 1向 6 。 为 2
上一页 下一页
例2-6质量为m=30kg的铁锤(彩电)从1m高处由静止下落,碰撞
Ixt1 t2F xd tpx2px1mx2 vmx1v Iyt1 t2F yd tpy2py1my2v my1v Izt1 t2F zd tpz2pz1mz2 vmz1v
4 . 对于碰撞、打等 击过 、程 爆, 炸物体互 之作 间用 的
称为冲力, 值其 大特 , 点 变 t短是 化 ,峰 大 在, 某

b v2


d v
d(m v )
d p
t 2
Fm am
Fdtdp
dt dt
微分形式
dt
a

v1
I 定义 :t1 t动2F 量 d ptp p 1 m 2d vp p 2 t 1 p 1 P 2m mv( 2v I2 t1t2v F1 d)t
( M d)v M (d v ) d( v M d v u ) Mv
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内任一物体的动量是可变的, 各物体的动量必相对于同
一惯性参考系 .
第三章 动量守恒定律和能量守恒定律
3 – 2 动量守恒定律
物理学教程
(第三版)
2)守恒条件
合外力为零
F ex
i Fiex 0
当 F ex F in 时,可略去外力的作用, 近似地
认为系统动量守恒 . 例如在碰撞, 打击, 爆炸等问题中.
性系 S 沿 Ox 轴正向飞行. 设空气阻力不计. 现由控制系
统使火箭分离为两部分, 前方部分是质量为 100kg 的仪
器舱, 后方部分是质量为 200kg 的火箭容器. 若仪器舱相
对火箭容器的水平速率为 1.0 103 m·s-1 . 求仪器舱和火
箭容器相对惯性系的速度 .
y s v y' s' v'

p N
又因为
pe pν
pN ( pe2 pν2 )1 2
代入数据计算得 pN 1.36 10 22 kg m s1
arctan pe 61.9

第三章 动量守恒定律和能量守恒定律
3 – 2 动量守恒定律
物理学教程 (第三版)
例 2 一枚返回式火箭以 2.5 103 m·s-1 的速率相对惯
解:
v1
Fixevx2
v'
0

v2
v
m1 m1 m2
v'
v2 2.17 103 m s1
(m1 m2 )v m1v1 m2v2 v1 3.17 103 m s1
第三章 动量守恒定律和能量守恒定律
3 – 2 动量守恒定律
物理学教程 (第三版)
我国长征系列火箭升空
第三章 动量守恒定律和能量守恒定律
o z
o' z'
第三章 动量守恒定律和能量守恒定律
x x'
3 – 2 动量守恒定律
物理学教程 (第三版)
已知:
v 2.5103 ms1 v' 1.0103 ms1
ys
v
y' s'
v'
m2 m1
m1 100 kg
o
o'
x x'
m2 200 kg
z
z'
设: 仪器舱和火箭容器分离后的速度分别为 v1,v2 .
3 – 2 动量守恒定律
物理学教程 (第三版)
例 1 如图所示,设有一静止的原子核, 衰变辐
射出一个电子和一个中微子后成为一个新的原子核.
已知电子和中微子的运动方向互相垂直, 电子动量为
1.210-22 kg·m·s-1,中微子的动量为 6.410-23 kg·m·s-1 .
问新的原子核的动量的值和方向如何?
3)若某一方向合外力为零, 则此方向动量守恒 .
Fxex 0 , px mi vix Cx Fyex 0 , py miviy Cy Fzex 0 , pz miviz Cz
4) 动量守恒定律只在惯性参考系中成立, 是自然 界最普遍,最基本的定律之一 .
第三章 动量守恒定律和能量守恒定律
3 – 2 动量守恒定律
物理学教程 (第三版)
➢ 质点系动量定理 I
t
t0
➢ 动量守恒定律
i
Fiexdt
i
pi
i
pi0
若质点系所受的合外力为零 F ex Fiex 0
则系统的总动量守恒,即 p pi Nhomakorabeai
保持不变 .
力的瞬时作用规律
F
ex
dp
,
i
F
ex
0,
PC
dt
1)系统的动量守恒是指系统的总动量不变,系统
解 Fiex Fiin
pe
p n mi vi 恒矢量
即 pie1 pν pN 0

p N
第三章 动量守恒定律和能量守恒定律
3 – 2 动量守恒定律
物理学教程 (第三版)
pe 1.2 1022 kg m s1
pe
p 6.4 1023 kg m s1
系统动p量e 守恒pν, 即pN 0
相关文档
最新文档