高中物理动量守恒定律练习题及答案及解析
人教版高中物理选择性必修第一册第一章动量守恒定律1-3动量守恒定律练习含答案

第一章动量守恒定律3 动量守恒定律基础过关练题组一动量守恒的判断1.(经典题)(2024江苏无锡期中联考)如图所示,A、B两物体的质量比m A∶m B=4∶3,它们原来静止在足够长的平板车C上,A、B间有一根被压缩了的弹簧,地面光滑。
当弹簧被突然释放后,A、B组成的系统动量守恒。
则有()A.A、B与C间的动摩擦因数相等B.A、B与C间的动摩擦因数是否相等不确定C.最终稳定时小车向右运动D.A、B、C组成的系统动量守恒2.(2024江苏苏州期中)如图所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统动量守恒C.小球向左摆到最高点时,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或都为零)3.(2024山东济南普高联考)如图所示,A、B两木块紧靠在一起且静止于光滑水平面上,一颗子弹C以一定的速度v0向右从A的左端射入,穿过木块A后进入木块B,最后从B的右端射出,在此过程中,下列叙述正确的是()A.当子弹C在木块A中运动时,A、C组成的系统动量守恒B.当子弹C在木块B中运动时,B、C组成的系统动量守恒C.当子弹C在木块A中运动时,A、B、C组成的系统动量不守恒D.当子弹C在木块B中运动时,A、B、C组成的系统动量不守恒4.(2024广东深圳期中)建筑工地上常用打桩机把桩打入地下。
电动机先把重锤吊起一定的高度,然后由静止释放,重锤打在桩上,接着随桩一起向下运动直到停止。
不计空气阻力,则下列说法中正确的是()A.重锤与桩的撞击过程中,重锤和桩组成的系统机械能守恒B.重锤随桩一起向下运动过程中,重锤和桩组成的系统机械能守恒C.整个运动过程中,重锤和桩组成的系统动量守恒D.整个运动过程中,重锤所受合外力冲量为零题组二两物体组成的系统动量守恒5.(2024河北邢台四校联考)如图所示,现有一个质量为m的小孩站在一辆质量为km的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v0匀速运动,突然小孩相对地面以速度1110v0向前跳离滑板车,滑板车速度大小变为原来的110,但方向不变,则k为()A.15B.16C.19D.1116.(2024浙江温州期中)如图所示,光滑的水平面上有大小相同、质量不等的小球A、B,小球A以速度v0向右运动时与静止的小球B发生碰撞,碰后A球速度反向,大小为v04,B球的速率为v02,A、B两球的质量之比为()A.3∶8B.8∶3C.2∶5D.5∶27.(教材习题改编)甲、乙两人静止在水平冰面上,突然两人掌心相碰互推对方,互推过程中两人相互作用力远大于冰面对人的摩擦力,若两人与冰面间的动摩擦因数相等,则以下正确的是() A.若m甲>m乙,则在互推的过程中,甲对乙的冲量大于乙对甲的冲量B.无论甲、乙质量关系如何,在互推过程中,甲、乙两人动量变化量大小相等C.若m甲>m乙,则分开瞬间甲的速率比乙的大D.若m甲>m乙,则分开后乙先停下来8.(多选题)如图所示,在水平面上有一质量为M的长木板,其右端固定有一立柱。
高中物理动量定理题20套(带答案)含解析

【答案】(1)
(2)
(3)增大 S 可以通过减小 q、
U 或增大 m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】
试题分析:(1)根据动能定理有
解得:
(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv
解得:
(3)设单位时间内通过栅电极 A 的氙离子数为 n,在时间 t 内,离子推进器发射出的氙离 子个数为 N nt ,设氙离子受到的平均力为 F ,对时间 t 内的射出的氙离子运用动量定 理, Ft Nmv ntmv , F = nmv 根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小 F= F = nmv 电场对氙离子做功的功率 P= nqU
﹣μ(m0+m)gt=(m0+m)(v2﹣v1) 解得:物块相对于木板滑行的时间
t v2 v1 1s g
3.甲图是我国自主研制的 200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞 行试验验证,有望在 2015 年全面应用于我国航天器.离子电推进系统的核心部件为离子推 进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃 料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙 原子 P 喷注入腔室 C 后,被电子枪 G 射出的电子碰撞而电离,成为带正电的氙离子.氙离 子从腔室 C 中飘移过栅电极 A 的速度大小可忽略不计,在栅电极 A、B 之间的电场中加 速,并从栅电极 B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极 A、B 之间的电压为 U,氙离子的质量为 m、电荷量为 q.
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
5.如图甲所示,足够长光滑金属导轨 MN、PQ 处在同一斜面内,斜面与水平面间的夹角 θ=30°,两导轨间距 d=0.2 m,导轨的 N、Q 之间连接一阻值 R=0.9 Ω 的定值电阻。金属杆 ab 的电阻 r=0.1 Ω,质量 m=20 g,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上 的匀强磁场中,匀强磁场的磁感应强度 B=0.5 T。现用沿斜面平行于金属导轨的力 F 拉着金 属杆 ab 向上运动过程中,通过 R 的电流 i 随时间 t 变化的关系图像如图乙所示。不计其它 电阻,重力加速度 g 取 10 m/s2。
选修1高中物理动量守恒定律试题(含答案)

选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律选择题1.质量为m、半径为R的小球,放在半径为3R、质量为3m的大空心球内,大球开始静止在光滑水平面上。
当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是()A.2RB.125RC.4RD.34R2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
小球在运动过程中除重力和弹力外,另受阻力f(包含摩擦阻力),阻力f大小与速率成正比即f kv=。
则小球在斜面上运动总时间t为()A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L,宽轨间距为2L。
轨道处于竖直向下的磁感应强度为B的匀强磁场中,质量分别为m、2m的金属棒a、b垂直于导轨静止放置,其电阻分别为R、2R,现给a棒一向右的初速度v0,经t时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b棒一直在宽轨上运动。
下列说法正确的是()A.a棒开始运动时的加速度大小为223B L vRmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 4.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 5.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m6.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mED.在A离开竖直墙后,弹簧的弹性势能最大值为37.3个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m1:m2:m3为()A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:18.如图所示,足够长的光滑水平面上有一质量为2kg的木板B,质量为1kg的木块C叠放在B的右端点,B、C均处于静止状态且B、C之间的动摩擦因数为μ = 0.1。
人教版高中物理选修一第一章《动量守恒定律》测试(有答案解析)

一、选择题1.(0分)[ID :127073]一水龙头的出水口竖直向下,横截面积为S ,且离地面高度为h 。
水从出水口均匀流出时的速度大小为v 0,在水落到水平地面后,在竖直方向的速度变为零,并沿水平方向朝四周均匀散开。
已知水的密度为ρ,重力加速度大小为g 。
水和地面的冲击时间很短,重力影响可忽略。
不计空气阻力和水的粘滞阻力。
则( )A .单位时间内流出水的质量为2S gh ρB .单位时间内流出水的质量为202S v gh ρ+C .地面受到水的冲击力大小为02Sv gh ρD .地面受到水的冲击力大小为2002Sv v gh ρ+2.(0分)[ID :127072]如图所示,质量相等的A 、B 两个球,原来在光滑水平面上沿同一直线相向做匀速直线运动,A 球的速度是6 m/s ,B 球的速度是-2 m/s ,A 、B 两球发生对心碰撞。
对于该碰撞之后的A 、B 两球的速度可能值,某实验小组的同学们做了很多种猜测,下面的猜测结果一定无法实现的是( )A .v A ′=-2 m/s ,vB ′=6 m/sB .v A ′=2 m/s ,v B ′=2 m/sC .v A ′=1 m/s ,v B ′=3 m/sD .v A ′=-3 m/s ,v B ′=7 m/s 3.(0分)[ID :127069]人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A .减小地面对人的冲量B .减小人的动量的变化C .增加地面对人的冲击时间D .增大人对地面的压强 4.(0分)[ID :127066]在冰壶比赛中,球员手持毛刷擦刷冰面,可以改变冰壶滑行时受到的阻力。
如图a 所示,蓝壶静止在圆形区域内,运动员用等质量的红壶撞击蓝壶,两壶发生正碰。
若碰撞前、后两壶的v —t 图象如图b 所示。
关于冰壶的运动,下列说法正确的是( )A .碰撞后过程中,蓝壶受到的阻力比红壶的大B .碰撞后,蓝壶的运动的时间为6sC .碰撞后两壶相距的最远距离为1.1mD .两壶碰撞是弹性碰撞5.(0分)[ID :127059]如图所示,小球A 质量为2m ,小球B 质量为m ,小球B 置于光滑水平面上,小球A 从高为h 处由静止摆下到达最低点恰好与相撞,并粘合在一起继续摆动,若不计空气阻力,它们能上升的最大高度是( )A .hB .49hC .14hD .18h 6.(0分)[ID :127058]动量相等的甲、乙两车刹车后分别沿两水平路面滑行。
高中物理动量守恒定律题20套(带答案)

1 2
2mv02
1 (m 2
2m
m)v22
u(2mg)2(L
x)
解得 x v02 L 32g
对 P1、P2、P 系统从 P1、P2 碰撞结束到弹簧压缩量最大,用能量守恒定律
1 2
2mv12
1 2
2mv02
1 2
(m
2m
m)v22
u(2mg)(L
x)
Ep
最大弹性势能 EP
mv
2 0
解得:vn=
=
m/s(其中 n=1、2、3、…、44)
【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式 关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。 【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必 备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相 关数学知识辅助分析、求解。
6.如图的水平轨道中,AC 段的中点 B 的正上方有一探测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作,已知 P1、P2 的质量都为 m=1 kg,P 与 AC 间的 动摩擦因数为 μ=0.1,AB 段长 L=4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的 碰撞为弹性碰撞。
(1)求 A 滑过 Q 点时的速度大小 v 和受到的弹力大小 F; (2)若碰后 AB 最终停止在第 k 个粗糙段上,求 k 的数值; (3)求碰后 AB 滑至第 n 个(n<k)光滑段上的速度 vn 与 n 的关系式.
高中物理动量守恒定律题20套(带答案)含解析

高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动3.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。
已知物块a 、b 与木板间的摩擦因数分别为a 、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。
下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落 C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落5.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J6.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。
高中物理动量守恒定律专项训练100(附答案)

高中物理动量守恒定律专项训练100(附答案)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0s in30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx == C 点相对于O 点的高度: h=2x 0sin30°+R+Rcos30°=(43)+x 0…⑤ 物块从O 到C 的过程中机械能守恒,得:12mv o 2=mgh+12mv c 2…⑥ 联立④⑤⑥得:0(53)o v gx +=…⑦ 设A 与B 碰撞后共同的速度为v B ,碰撞前A 的速度为v A ,滑块从P 到B 的过程中机械能守恒,得:12mv 2+mg (3x 0sin30°)=12mv A 2…⑧ A 与B 碰撞的过程中动量守恒.得:mv A =2mv B …⑨ A 与B 碰撞结束后从B 到O 的过程中机械能守恒,得:12•2mv B 2+E P =12•2mv o 2+2mg•x 0sin30°…⑩ 由于A 与B 不粘连,到达O 点时,滑块B 开始受到弹簧的拉力,A 与B 分离. 联立⑦⑧⑨⑩解得:033v gx =考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A 、B 到达P 点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律练习题及答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)4282t s += 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+-解得:3/v s =物块从C 抛出后,在竖直方向的分速度为:3sin 53/y v v s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:25t s =3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2m∆ 的压缩气体,每级总质量均为2M,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。
喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。
【答案】116.54m【解析】对模型甲: ()00M m v mv =-∆-∆甲21085=200.5629v h m m g =≈甲甲对模型乙第一级喷气: 10022m mM v v ∆∆⎛⎫=-- ⎪⎝⎭乙 解得: 130m v s=乙2s 末: ‘11=10m v v gt s-=乙乙22111'=402v v h m g-=乙乙乙对模型乙第一级喷气:‘120=)2222M M m m v v v ∆∆--乙乙( 解得: 2670=9mv s 乙 22222445=277.10281v h m m g =≈乙乙可得: 129440+=116.5481h h h h m m ∆=-≈乙乙甲。
4.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答5.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数 ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.6.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒7.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.8.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.9.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线、同一方向运动,速度分别为2v 0、v 0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)【答案】04v 【解析】 【分析】在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题. 【详解】设抛出货物的速度为v ,以向右为正方向,由动量守恒定律得:乙船与货物:12mv 0=11mv 1-mv ,甲船与货物:10m×2v 0-mv=11mv 2,两船不相撞的条件是:v 2≤v 1,解得:v≥4v 0,则最小速度为4v 0. 【点睛】本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.10.在日常生活中,我们经常看到物体与物体间发生反复的多次碰撞.如图所示,一块表面水平的木板静止放在光滑的水平地面上,它的右端与墙之间的距离L =0.08 m .现有一小物块以初速度v 0=2 m/s 从左端滑上木板,已知木板和小物块的质量均为1 kg ,小物块与木板之间的动摩擦因数μ=0.1,木板足够长使得在以后的运动过程中小物块始终不与墙接触,木板与墙碰后木板以原速率反弹,碰撞时间极短可忽略,取重力加速度g =10 m/s 2.求:(1)木板第一次与墙碰撞时的速度大小;(2)从小物块滑上木板到二者达到共同速度时,木板与墙碰撞的总次数和所用的总时间; (3)小物块和木板达到共同速度时,木板右端与墙之间的距离. 【答案】(1)0.4 s 0.4 m/s (2)1.8 s. (3)0.06 m 【解析】试题分析:(1)物块滑上木板后,在摩擦力作用下,木板从静止开始做匀加速运动,设木板加速度为a ,经历时间T 后与墙第一次碰撞,碰撞时的速度为1v则mg ma μ=,解得21/a g m s μ==①212L at =②,1v at =③ 联立①②③解得0.4t s =,10.4/v m s =④(2)在物块与木板两者达到共同速度前,在每两次碰撞之间,木板受到物块对它的摩擦力作用而做加速度恒定的匀减速直线运动,因而木板与墙相碰后将返回至初态,所用时间也为T .设在物块与木板两者达到共同速度v 前木板共经历n 次碰撞,则有:()02v v nT t a a t =-+∆=∆⑤式中△t 是碰撞n 次后木板从起始位置至达到共同速度时所需要的时间.由于最终两个物体一起以相同的速度匀速前进,故⑤式可改写为022v v nTa =-⑥ 由于木板的速率只能处于0到1v 之间,故有()01022v nTa v ≤-≤⑦ 求解上式得1.5 2.5n ≤≤ 由于n 是整数,故有n=2⑧由①⑤⑧得:0.2t s ∆=⑨;0.2/v m s =⑩从开始到物块与木板两者达到共同速度所用的时间为:4 1.8t T t s =+∆=(11) 即从物块滑上木板到两者达到共同速度时,木板与墙共发生三次碰撞,所用的时间为1.8s .(3)物块与木板达到共同速度时,木板与墙之间的距离为212s L a t =-∆(12) 联立①与(12)式,并代入数据得0.06s m = 即达到共同速度时木板右端与墙之间的距离为0.06m . 考点:考查了牛顿第二定律,运动学公式【名师点睛】本题中开始小木块受到向后的摩擦力,做匀减速运动,长木板受到向前的摩擦力做匀加速运动;当长木板反弹后,小木块继续匀减速前进,长木板匀减速向左运动,一直回到原来位置才静止;之后长木板再次向右加速运动,小木块还是匀减速运动;长木板运动具有重复性,由于木板长度可保证物块在运动过程中不与墙接触,故直到两者速度相同,一起与墙壁碰撞后反弹;之后长木板向左减速,小木块向右减速,两者速度一起减为零.11.光滑水平面上放着一质量为M 的槽,槽与水平面相切且光滑,如图所示,一质量为m 的小球以v 0向槽运动.(1)若槽固定不动,求小球上升的高度(槽足够高).(2)若槽不固定,则小球上升多高?【答案】(1)202v g (2)202()Mv M m g+ 【解析】(1)槽固定时,设球上升的高度为h 1,由机械能守恒得:21012mgh mv =解得:2012v h g =; (2)槽不固定时,设球上升的最大高度为2h ,此时两者速度为v ,由动量守恒定律得:()0mv m M v =+再由机械能守恒定律得:()22021122mv m M v mgh =++ 联立解得,上球上升的高度:()2022Mv h m M g=+12.如图所示,A 为有光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量140kg m =的小车B 静止于轨道右侧,其上表面与轨道底端在同一水平面上,一个质量220kg m =的物体C 以2.0/m s 的初速度从轨道顶端滑下,冲上小车B 后经过一段时间与小车相对静止并一起运动。