2018中考考点专题训练考点7:二次根式

合集下载

2018中考数学专题复习:第四讲二次根式 (共44张PPT)

2018中考数学专题复习:第四讲二次根式 (共44张PPT)

3.(2017·山西中考)计算: 4 189 2 =________.
【解析】4 1 8 9 2 1 2 2 9 2 1 2 9 2 3 2 .
答案:3 2
4.(2017·南京中考)计算 12 8 6的结果是 ________. 【解析】 1 2 8 6 2 3 4 3 6 3 . 答案: 6 3
B.| 12|3
2
2
D.(1)1 2 2
【解析】选D. 8 2 22 2 2,A错误;
| 1 2| 3 ,B错误; 3 8 =2,C错误; ( 1 ) 1 2 ,D正确.
2
2
2
2.(2017·滨州中考)下列计算:(1)( 2 )2=2.
(2) 2 2 =2.(3)(-2 3 )2=12.
a
(
a

0
)
.
?
a2=
2
a.
【变式训练】
1.(2017·南京中考)计算: 3 2 =________. 【解析】根据二次根式的性质,得 3 2 =3.
答案:3
2.(2017·鄂州中考)若 y=x-1 1-x-6,则
22
xy=________.
【解析】由二次根式有意义的条件得 代入 y=x-1 1-x-6得y=-6,
D.b
(2)(2017·东营中考)若|x2-4x+4|与 2xy3 互为相 反数,则x+y的值为 ( )
A.3
B.4
C.6
D.9
【思路点拨】(1)直接利用数轴上a,b的位置,得出 a<0,b>0,进而得出a-b<0,再利用绝对值和二次根式 的性质进行化简得答案. (2)先根据互为相反数的定义列出式子,再根据两个非 负数的和等于0,每一个非负数都等于0,求解.

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

2018中考数学试题分类汇编考点:二次根式含解析

2018中考数学试题分类汇编考点:二次根式含解析

考点 7 二次根式一.选择题(共15 小题)1.( 2018? 怀化)使存心义的x 的取值范围是()A. x≤ 3 B. x< 3 C.x≥ 3 D . x> 3【剖析】先依据二次根式存心义的条件列出对于x 的不等式,求出x 的取值范围即可.【解答】解:∵式子存心义,∴x﹣3≥ 0,解得 x≥ 3.应选: C.2.( 2018? 扬州)使存心义的x 的取值范围是()A. x> 3 B. x< 3 C.x≥ 3 D . x≠ 3【剖析】依据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣ 3≥ 0,解得 x≥ 3,应选: C.3.( 2018? A. x<﹣ 2达州)二次根式B. x≤﹣ 2中的C.x>﹣ 2x 的取值范围是(D . x≥﹣ 2)【剖析】依据被开方数是非负数,可得答案.【解答】解:由题意,得2x+4 ≥ 0,解得 x≥﹣ 2,应选: D .4.( 2018?苏州)若在实数范围内存心义,则x 的取值范围在数轴上表示正确的选项是()A.B.C. D .【剖析】依据二次根式存心义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2 ≥ 0,解得 x≥﹣ 2.应选: D .5.( 2018? 临安区)化简的结果是()A.﹣ 2 B.± 2C.2 D . 4【剖析】此题可先将根号内的数化简,再开根号,依据开方的结果为正数可得出答案.【解答】解:==2 .应选: C.6.(2018?无锡)以下等式正确的选项)是(A.() 2=3B.= ﹣ 3C.=3 D .(﹣)2=﹣3【剖析】依据二次根式的性质把各个二次根式化简,判断即可.【解答】解:()2=3,A正确;=3 , B 错误;==3,C错误;(﹣)2 =3 , D 错误;应选: A.7.(2018?张家界)以下运算正确的选项是)(A. a2+a=2a3B.=a C.( a+1)2=a 2+1 D .( a3)2 =a6【剖析】依据归并同类项的法例:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a ( a≥ 0);完整平方公式:(a± b)2=a 2± 2ab+b2;幂的乘方法例:底数不变,指数相乘进行计算即可.【解答】解: A 、a2和 a 不是同类项,不可以归并,故原题计算错误;B、=|a| ,故原题计算错误;C、( a+1)2 =a2+2a+1 ,故原题计算错误;D、( a3)2 =a6,故原题计算正确;应选: D .8.( 2018? 临安区)以下各式计算正确的选项是()A. a12÷ a6=a 2 B.( x+y )2=x 2+y 2C.D.【剖析】此类题目难度不大,可用验算法解答.【解答】解: A 、a12÷ a6是同底数幂的除法,指数相减而不是相除,因此a12÷ a6=a6,错误;B、( x+y )2为完整平方公式,应当等于x2 +y 2+2xy ,错误;C、=== ﹣,错误;D、正确.应选:D .9.( 2018? 绵阳)等式=建立的x的取值范围在数轴上可表示为()A.B.C. D .【剖析】依据二次根式存心义的条件即可求出x 的范围.【解答】解:由题意可知:解得: x≥ 3应选: B.10.( 2018? 曲靖)以下二次根式中能与 2 归并的是()A.B.C. D .【剖析】先化简选项中各二次根式,而后找出被开方数为 3 的二次根式即可.【解答】解: A 、,不可以与2归并,错误;B、能与 2归并,正确;C、不可以与2 归并,错误;D 、不可以与 2归并,错误;应选: B.11.( 2018? 孝感)以下计算正确的选项是()A. a﹣2÷ a5 =B.( a+b )2=a2+b 2C. 2+=2 D .( a3)2=a5【剖析】直接利用完整平方公式以及二次根式加减运算法例和幂的乘方运算法例分别计算得出答案.【解答】解: A 、a﹣2÷ a5=,正确;B、( a+b )2=a2+2ab+b 2,故此选项错误;C、2+,没法计算,故此选项错误;D、( a3)2 =a6,故此选项错误;应选: A.12.(2018?郴州)以下运算正确的选项)是(A. a3?a2=a6B. a﹣2= ﹣C. 3﹣ 2= D .( a+2 )( a﹣ 2)=a 2+4【剖析】直接利用同底数幂的乘除运算法例以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.【解答】解: A 、a3?a2=a5,故此选项错误;B、 a﹣2 =,故此选项错误;C、3﹣2=,故此选项正确;D 、( a+2 )( a﹣ 2)=a2﹣ 4,故此选项错误.应选: C.13.(2018?长沙)以下计算正确的选项)是(A. a2+a3=a5B. 3C.( x2)3 =x 5D. m5÷ m3=m 2【剖析】直接利用归并同类项法例以及幂的乘方运算法例、同底数幂的乘除运算法例分别计算得出答案.【解答】解: A 、a2+a 3,没法计算,故此选项错误;B、 3﹣2=,故此选项错误;C、( x2)3=x 6,故此选项错误;D、m5÷ m3=m 2,正确.应选: D .14.( 2018? 泰州)以下运算正确的选项是()A.+=B.=2C.? = D .÷=2【剖析】利用二次根式的加减法对 A 进行判断;依据二次根式的性质对 B 进行判断;依据二次根式的乘法法例对 C 进行判断;依据二次根式的除法法例对 D 进行判断.【解答】解: A 、与不可以归并,因此A 选项错误;B、原式 =3,因此B选项错误;C、原式 ==,因此C选项错误;D 、原式 ==2 ,因此 D 选项正确.应选: D .15.( 2018? 聊城)以下计算正确的选项是()A. 3﹣ 2 =B.?(÷)=C.(﹣)÷=2 D .﹣ 3=【剖析】依据二次根式的加减乘除运算法例逐个计算可得.【解答】解: A 、 3与﹣ 2不是同类二次根式,不可以归并,此选项错误;B、?(÷) =?==,此选项正确;C、(﹣)÷= ( 5 ﹣)÷=5 ﹣,此选项错误;D 、﹣3=﹣ 2= ﹣,此选项错误;应选: B.二.填空题(共10 小题)16.( 2018? 泸州)若二次根式在实数范围内存心义,则x 的取值范围是x≥ 1.【剖析】先依据二次根式存心义的条件列出对于x 的不等式,求出x 的取值范围即可.【解答】解:∵式子在实数范围内存心义,∴x﹣1≥ 0,解得 x≥ 1.故答案为: x≥1.17.( 2018? 广州)如图,数轴上点 A 表示的数为a,化简: a+= 2.【剖析】直接利用二次根式的性质以及联合数轴得出 a 的取值范围从而化简即可.【解答】解:由数轴可得:0< a< 2,则a+=a+=a+ ( 2﹣ a)=2 .故答案为: 2.18.( 2018? 郴州)计算:= 3 .【剖析】原式利用平方根的定义化简即可获得结果.【解答】解:原式 =3 .故答案为: 319.( 2018? 烟台)与最简二次根式5是同类二次根式,则a= 2.【剖析】先将化成最简二次根式,而后依据同类二次根式获得被开方数同样可得出对于a的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3 ,解得: a=2 .故答案为 2.20.( 2018? 滨州)察看以下各式:=1+,=1+,=1+,⋯⋯利用你所的律,算+++ ⋯ +,其果9.【剖析】直接依据已知数据化律而将原式形求出答案.【解答】解:由意可得:+++⋯ +=1++1++1++ ⋯ +1+=9+ ( 1+++ ⋯ +)=9+=9.故答案: 9.21.( 2018? 哈)算610的果是4.【剖析】第一化,而后再归并同二次根式即可.【解答】解:原式 =610×=62=4,故答案: 4 .22.( 2018? 武)算的果是【剖析】依据二次根式的运算法即可求出答案.【解答】解:原式 =+=故答案:23.( 2018? 天津)算(+)()的果等于3.【剖析】利用平方差公式算即可.【解答】解:(+)()= ()2()2=6 ﹣3=3 ,故答案为: 3.24.(2018?枣庄)我国南宋有名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即假如一个三角形的三边长分别为a,b, c,则该三角形的面积为S=.现已知△ ABC的三边长分别为1,2,,则△ ABC 的面积为1.【剖析】依据题目中的面积公式能够求得△ABC 的三边长分别为1,2,的面积,从而可以解答此题.【解答】解:∵ S=,∴△ ABC 的三边长分别为1, 2,,则△ ABC 的面积为:S==1 ,故答案为: 1.25.( 2018? 天门)计算:+|﹣2|﹣()﹣1=0.【剖析】依据二次根式的除法法例、绝对值的化简、负整数指数幂的运算法例计算即可.【解答】解:原式 =+2 ﹣﹣2=0故答案为: 0.三.解答题(共 1 小题)26.( 2018? 陕西)计算:(﹣)×(﹣) +|0﹣ 1|+ ( 5﹣ 2π)【剖析】先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,而后合并即可.【解答】解:原式 =+ ﹣ 1+1=3+﹣1+1=4.。

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。

二次根式a 的实质是一个非负数a 的算术平方根。

注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。

当b 为带分数时,要把b 改写成假分数。

538是二次根式,不能写成2532。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。

如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

二次根式的知识点、典型例题、练习

二次根式的知识点、典型例题、练习

第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。

当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。

a (a≥0)是一个非负数。

题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。

典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。

4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。

8、已知()222x x -=-,则x 的取值范围是 。

9、使等式()()1111x x x x +-=-+成立的条件是 。

10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。

中考数学专题《二次根式》复习试卷含答案解析

中考数学专题《二次根式》复习试卷含答案解析

2018年中考数学专题复习卷: 二次根式一、选择题1.下列计算正确的是()A. B. C. D.2.下列四个数中,是负数的是( )A. B. C. D.3.函数y= 中自变量x的取值范围是()A. x≥-1且x≠1B. x≥-1C. x≠1D. -1≤x<14.下列各式化简后的结果为3 的是()A. B. C. D.5.下列计算正确的是()A. a5+a2=a7B. × =C. 2-2=-4D. x2·x3=x66.计算|2﹣|+|4﹣|的值是()A. ﹣2B. 2C. 2 ﹣6D. 6﹣27.计算之值为何()A. 5B. 33C. 3D. 98.下列运算正确的是()A. B. C. D.9.已知,则代数式的值是()A. 0B.C.D.10.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A. 3个B. 4个C. 5个D. 6个11.化简为()A. 5﹣4B. 4 ﹣lC. 2D. 112.下列计算:①;②;③;④.其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题13.函数y=的自变量x的取值范围是________.14.计算:=________.15.计算:________。

16.当x=2时,二次根式的值为________.17.计算的结果是________.18.计算(+1)2016(﹣1)2017=________.19.已知实数a在数轴上的位置如图所示,化简的结果是________.20.若实数a、b满足|a+2|+ =0,则=________.21.计算:=________.22.观察下列等式:第1个等式:a1= = ﹣1,第2个等式:a2= = ﹣,第3个等式:a3= =2﹣,第4个等式:a4= = ﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=________;(2)a1+a2+a3+…+a n=________.三、解答题23.24.计算:()﹣1﹣6cos30°﹣()0+ .25.在平面直角坐标系中,点P(- ,-1)到原点的距离是多少?26.若b为实数,化简|2b-1|- 。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习(超详细)

二次根式知识点梳理及经典练习知识点1:二次根式的概念1.二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.题型一:二次根式的判定【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). [练一练]:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、)0(≥a a2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______题型二:二次根式有意义【例2】若式子13x -有意义,则x 的取值范围是 .[练一练]:1、使代数式43--x x 有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x -+-有意义的x 的取值范围是3、如果代数式mn m 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限题型三:二次根式定义的运用[练一练]:A.-1 B.1 C.2 D.3题型四:二次根式的整数部分与小数知识点2:二次根式的性质常用到.注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.题型一:二次根式的双重非负性【例4】若()2240a c -+-=,则=+-c b a .[练一练]:1、若0)1(32=++-n m ,则m n +的值为 。

2、已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ) A .3 B .– 3 C .1 D .– 13、已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为______.4、若1a b -+互为相反数,则()2005_____________a b -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点7 二次根式一.选择题(共15小题)
1.(2018•怀化)使有意义的x的取值范围是()
A.x≤3 B.x<3 C.x≥3 D.x>3
【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【解答】解:∵式子有意义,
∴x﹣3≥0,
解得x≥3.
故选:C.
2.(2018•扬州)使有意义的x的取值范围是()
A.x>3 B.x<3 C.x≥3 D.x≠3
【分析】根据被开方数是非负数,可得答案.
【解答】解:由题意,得
x﹣3≥0,
解得x≥3,
故选:C.
3.(2018•达州)二次根式中的x的取值范围是()
A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2
【分析】根据被开方数是非负数,可得答案.
【解答】解:由题意,得
2x+4≥0,
解得x≥﹣2,
故选:D.
4.(2018•苏州)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()
A.B.C.D.
【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.
【解答】解:由题意得x+2≥0,
解得x≥﹣2.
故选:D.
5.(2018•临安区)化简的结果是()
A.﹣2 B.±2 C.2 D.4
【分析】本题可先将根号内的数化简,再开根号,根据开方的结果为正数可得出答案.
【解答】解:==2.
故选:C.
6.(2018•无锡)下列等式正确的是()
A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3
【分析】根据二次根式的性质把各个二次根式化简,判断即可.
【解答】解:()2=3,A正确;
=3,B错误;
==3,C错误;
(﹣)2=3,D错误;
故选:A.
7.(2018•张家界)下列运算正确的是()
A.a2+a=2a3B.=a C.(a+1)2=a2+1 D.(a3)2=a6
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.
【解答】解:A、a2和a不是同类项,不能合并,故原题计算错误;
B、=|a|,故原题计算错误;
C、(a+1)2=a2+2a+1,故原题计算错误;
D、(a3)2=a6,故原题计算正确;
故选:D.
8.(2018•临安区)下列各式计算正确的是()
A.a12÷a6=a2B.(x+y)2=x2+y2
C.D.
【分析】此类题目难度不大,可用验算法解答.
【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;
B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;
C、===﹣,错误;
D、正确.
故选:D.
9.(2018•绵阳)等式=成立的x的取值范围在数轴上可表示为()
A.B.C.D.
【分析】根据二次根式有意义的条件即可求出x的范围.
【解答】解:由题意可知:
解得:x≥3
故选:B.
10.(2018•曲靖)下列二次根式中能与2合并的是()
A.B.C. D.
【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.
【解答】解:A、,不能与2合并,错误;
B、能与2合并,正确;
C、不能与2合并,错误;
D、不能与2合并,错误;
故选:B.
11.(2018•孝感)下列计算正确的是()
A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5
【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.
【解答】解:A、a﹣2÷a5=,正确;
B、(a+b)2=a2+2ab+b2,故此选项错误;
C、2+,无法计算,故此选项错误;
D、(a3)2=a6,故此选项错误;
故选:A.
12.(2018•郴州)下列运算正确的是()
A.a3•a2=a6 B.a﹣2=﹣C.3﹣2=D.(a+2)(a﹣2)=a2+4
【分析】直接利用同底数幂的乘除运算法则以及负指数幂的性质以及二次根式的加减运算法则、平方差公式分别计算得出答案.
【解答】解:A、a3•a2=a5,故此选项错误;
B、a﹣2=,故此选项错误;
C、3﹣2=,故此选项正确;
D、(a+2)(a﹣2)=a2﹣4,故此选项错误.
故选:C.
13.(2018•长沙)下列计算正确的是()
A.a2+a3=a5 B.3 C.(x2)3=x5D.m5÷m3=m2
【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【解答】解:A、a2+a3,无法计算,故此选项错误;
B、3﹣2=,故此选项错误;
C、(x2)3=x6,故此选项错误;
D、m5÷m3=m2,正确.
故选:D.
14.(2018•泰州)下列运算正确的是()
A. += B.=2C.•= D.÷=2
【分析】利用二次根式的加减法对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D 进行判断.
【解答】解:A、与不能合并,所以A选项错误;
B、原式=3,所以B选项错误;
C、原式==,所以C选项错误;
D、原式==2,所以D选项正确.
故选:D.
15.(2018•聊城)下列计算正确的是()
A.3﹣2=B.•(÷)=
C.(﹣)÷=2D.﹣3=
【分析】根据二次根式的加减乘除运算法则逐一计算可得.
【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;
B、•(÷)=•==,此选项正确;
C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;
D、﹣3=﹣2=﹣,此选项错误;
故选:B.
二.填空题(共10小题)
16.(2018•泸州)若二次根式在实数范围内有意义,则x的取值范围是x ≥1.
【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【解答】解:∵式子在实数范围内有意义,
∴x﹣1≥0,
解得x≥1.
故答案为:x≥1.
17.(2018•广州)如图,数轴上点A表示的数为a,化简:a+=2.
【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【解答】解:由数轴可得:
0<a<2,
则a+
=a+
=a+(2﹣a)
=2.
故答案为:2.
18.(2018•郴州)计算:=3.
【分析】原式利用平方根的定义化简即可得到结果.
【解答】解:原式=3.
故答案为:3
19.(2018•烟台)与最简二次根式5是同类二次根式,则a=2.
【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.
【解答】解:∵与最简二次根式是同类二次根式,且,
∴a+1=3,解得:a=2.
故答案为2.
20.(2018•滨州)观察下列各式:
=1+,
=1+,
=1+,
……
请利用你所发现的规律,
计算+++…+,其结果为9.
【分析】直接根据已知数据变化规律进而将原式变形求出答案.
【解答】解:由题意可得:
+++…+
=1++1++1++ (1)
=9+(1﹣+﹣+﹣+…+﹣)
=9+
=9.
故答案为:9.
21.(2018•哈尔滨)计算6﹣10的结果是4.
【分析】首先化简,然后再合并同类二次根式即可.
【解答】解:原式=6﹣10×=6﹣2=4,
故答案为:4.
22.(2018•武汉)计算的结果是
【分析】根据二次根式的运算法则即可求出答案.
【解答】解:原式=+﹣=
故答案为:
23.(2018•天津)计算(+)(﹣)的结果等于3.
【分析】利用平方差公式计算即可.
【解答】解:(+)(﹣)
=()2﹣()2
=6﹣3
=3,
故答案为:3.
24.(2018•枣庄)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别
为a,b,c,则该三角形的面积为S=.现已知△ABC
的三边长分别为1,2,,则△ABC的面积为1.
【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.
【解答】解:∵S=,
∴△ABC的三边长分别为1,2,,则△ABC的面积为:
S==1,
故答案为:1.
25.(2018•天门)计算: +|﹣2|﹣()﹣1=0.
【分析】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.
【解答】解:原式=+2﹣﹣2
=0
故答案为:0.
三.解答题(共1小题)
26.(2018•陕西)计算:(﹣)×(﹣)+|﹣1|+(5﹣2π)0
【分析】先进行二次根式的乘法运算,再利用绝对值的意义和零指数幂的意义计算,然后合并即可.
【解答】解:原式=+﹣1+1
=3+﹣1+1
=4.。

相关文档
最新文档