第二章学前儿童数学教育活动的设计与组织
幼儿数学教育活动设计与指导

第一节 幼儿感知集合的发展
三、幼儿感知集合的意义
1.感知集合是幼儿学会计数、理解数的实际 意义的必要条件
2.感知集合有助于幼儿理解类的概念,促进幼 儿发现事物的共同属性,抽象概括出数概念
3.感知集合有助于幼儿理解集合的包含关系,有 助于幼儿加深对数的组成和加减运算的理解
二、日常生活和活动区中数学教育活动的设计 与组织
1.日常生活中数学教育活动的设计与组织 2.活动区中数学教育活动的设计与组织
第三章 幼儿感知集合的发展与教育
第一节 幼儿感知集合的发展
一、集合基础知识 1.集合的概念 2.集合的表示法 3.集合间的关系与运算
第一节 幼儿感知集合的发展
二、幼儿感知集合的发展阶段
第三节 幼儿感知时间概念教育活动 参考案例
一、幼儿了解时间概念教育活动参考案例 二、幼儿增进时间概念教育活动参考案例 三、幼儿认识日历教育活动案例 四、幼儿认识时间教育活动参考案例
二、幼儿数学教学活动的设计 1.活动名称 2.活动目标 3.活动准备 4.活动过程 5.活动建议和活动延伸
第二节 日常生活和活动区中的 幼儿 数学教育活动
一、日常生活和活动区中数学教育活动的特点 1.日常生活中数学教育活动的特点 2.活动区中数学教育活动的特点
第二节 日常生活和活动区中的 幼儿 数学教育活动
3.节 幼儿空间方位概念的教育
一、幼儿空间方位的教育目标 1.小班教育目标 2.中班教育目标 3.大班教育目标
第二节 幼儿空间方位概念的教育
二、幼儿方位概念教育活动的指导要点 1.引导幼儿观察、让幼儿用描述的方法,说出自 己对物体方位的感知体验
学前儿童数学教育方案

学前儿童数学教育方案概述学前儿童数学教育是培养儿童基础数学能力和兴趣的重要环节。
本文将介绍一套系统的学前儿童数学教育方案,旨在帮助教师和家长有效地引导儿童学习数学,培养他们的数学思维和解决问题的能力。
教学目标1.培养学前儿童对数学的兴趣和好奇心。
2.帮助学前儿童建立数学基础概念。
3.发展学前儿童的数学思维和逻辑推理能力。
4.培养学前儿童解决实际问题的能力。
教学内容数的认知•学前儿童通过日常生活中的活动和游戏认识数的概念。
•引导学前儿童掌握1-10的数字和数量的对应关系。
•利用故事、歌曲等方式帮助学前儿童理解数的概念。
数学逻辑推理•培养学前儿童的逻辑思维能力,通过逻辑推理游戏和问题解决训练。
•引导学前儿童观察、分类、比较等思维能力的培养。
几何图形•教授学前儿童基本的几何图形,如圆、四边形、三角形等。
•帮助学前儿童理解几何图形的特征和性质。
计数与排序•帮助学前儿童掌握计数的方法和技巧,进行简单的计数练习。
•引导学前儿童进行排序活动,培养他们的逻辑性和分类能力。
教学方法游戏教学利用各种有趣的数学游戏,激发学前儿童的学习兴趣和动力。
实践操作通过实际操作,让学前儿童亲身体验数学,加深他们对数学的理解。
故事讲解通过生动有趣的故事,引导学前儿童接触数学知识,提高他们的学习效果。
家庭辅导家长在学前儿童数学教育中扮演着重要的角色。
他们可以通过以下方式辅导孩子: - 与孩子一起玩各种数学游戏。
- 鼓励孩子参与家务活动,让他们在实践中学习数学。
- 经常与孩子沟通,了解孩子在学校学习数学的情况。
结语学前儿童数学教育是一个系统性的过程,需要教师和家长的共同努力。
通过科学的教学方案和有效的教学方法,可以帮助学前儿童建立良好的数学基础,为以后的学习奠定坚实的基础。
希望本文提供的学前儿童数学教育方案能够对您有所帮助。
学前儿童数学教育的途径和方法

家庭生活中可用于学习的数学内容是很丰富的,例如扑克牌 这一材料,也许每个家庭都有,那么在家庭里如何利用扑 克牌对儿童实施数学教育呢?扑克牌作为一种传统的民间 娱乐游戏,它能流传至今,经久而不衰,自然有其自身的 价值和魅力。这其中除了其有简便、易学、有趣、便于随 身携带的优点外,还有利于锻炼思维、益于交往、丰富生 活。扑克牌作为一种随处可见,经济好玩的文娱用品,孩 子们对它已相当熟悉。如果家长及幼儿园教师能取其之长 ,并根据自身的需要,创造性的设计出新的游戏玩法,使 其成为孩子一日生活中的最佳游戏,让孩子的计算学习及 观察、思维、语言、交往能力的发展真正实现自主和无意 。有位家长写了一篇文章“ 小小扑克牌,学习好帮手”
放在网站上,有兴趣的同学可去网上搜一搜看一看读一读 。
• 此外,像日历、时钟、水电气三表等幼儿平时每天都能见到的材料,也能为 幼儿的数学学习带来方便。
• 日历——利用家中的台历、挂历等,让幼儿认识和了解日期、月份、年份、 阴历和阳历,有利于幼儿在小学数学学习中真正学好日历这部分内容。
• 时钟——给幼儿买个小闹钟(最好既有指针式的也有数字式的),其目的可 不只是叫他起床,充分利用这一工具,认识钟面上的时针、分针、秒针,观 察其走的快慢和规律,感知每天24小时时间的长短,养成其对时间长短的把 握,进而才能养成其做事争分夺秒的好习惯,也有利于幼儿在今后的小学数 学学习中学好“年、月、日、时、分、秒;钟面上的追及问题;探究时针分 针的重合点”等等问题。
活动准备:
自制不同形式的三种数字卡片1-9、黑板、粉笔、作业纸附纸1、2、3。 活动过程:
1.导入活动:凑10游戏 师:今天老师和大家一起来玩凑10游戏。小朋友们还记得怎么玩吗? 师:我手里拿的是数字几?(教师出示数字卡3)它和谁可以组成10? (请一名幼儿上来找出数字7) 师:现在请你拿出一个数字来提问小朋友(拿出数字2) 幼:2和几组成10? 老师再依次请幼儿出示数字卡6、5、1,幼儿一边做游戏,老师将结果展 示在黑板上,引出并巩固10的组成。
第二章 学前儿童数学教育的途径与方法

2.游戏活动中的数学教育渗透 ① 建构游戏中的数学教育渗透
建构游戏是让学前儿童运用建 构材料(如积木)搭建各种建筑物 或物体的活动。在游戏过程中,学 前儿童可以通过运用各种建构材料, 获得关于物体形状、大小、长短、 比例、多少、厚薄、对称、平衡, 以及上下、前后、左右等多种数学 经验。
右图为搭建车库的积木。
② 角色游戏中的数学教育渗透
角色游戏是学前儿童通过扮演角色,运用想象力创造性 地反映现实生活的活动。这种游戏通常有一定的主题(如 “娃娃家”、“商店”、“医院”等游戏),是学前儿童期 最典型、最有特色的一种游戏。在这种游戏中,学前儿童可 以自由地发挥想象力和创造力,从角色扮演中获得丰富的数 学经验。
第二节 学前儿童数学教育的方法
学前儿童数学教育的方法既包括学前儿童学的方法,又 包括教师教的方法。这些方法可以帮助学前儿童获得数学知 识、发展数学思维。下面将介绍学前儿童教学活动中常用的 方法。
一、操作法
1.操作法的概念 操作法是指学前儿童亲手操作数学材料,在与材料相互 作用的过程中探索和学习,进而获得数学经验、知识和技能 的方法。这种方法能使学前儿童获得有关某一数学概念的直 接经验,促进其智力和相应能力的发展,是学前儿童学习数 学的基本方法。
2.数学区角活动的价值 (1)有利于培养学前儿童学习数学的兴趣 (2)有利于充分发挥学前儿童的自主性和创造性 (3)有利于照顾学前儿童的个体差异 (4)能让学前儿童获得丰富的数学经验
二、渗透性的数学教育活动
渗透性数学教育活动是指除专门的数学教育活动以外, 渗透于学前儿童的日常生活、游戏、其他教育领域中的数学 教育活动。这种活动也是学前儿童数学教育的重要途径。
(一)数学集体教学活动
数学集体教学活动是指教师预设数学教育活动目标、 过程和方法,组织全体学前儿童参与,使他们获得一定数 学知识和多方面能力的数学活动。它是学前儿童教育的主 要途径。
第二章·学前儿童数学教育目标

5、量的比较及自然测量
(1)比较大小,长短,粗细,高矮,厚薄,宽窄, 轻重,容积等量的特征 (2)量的正,逆排序 (3)量的守恒 (4)量的相对性和传递性 (5)自然测量
6、空间与时间概念 (1)初步认识空间方位:上、下、前、后、左、右、里、 外、远、近等 (2)空间运动方向:向前,向后,向左,向右,向上, 向下等。 (3)区分早晨,晚上,白天,黑夜,昨夜,今天,明天, 星期,年月的名称及顺序。 (4)认识时钟(长针,短针及其功用,认识整点和半点)
说而闻名,著有《教育目标分类学》;
据此在学前儿童数学教育领域中 • 认知:学习一些粗浅的数学知识,积累生活经验 和发展儿童的思维能力。 • 情感与态度:培养儿童对数学活动的兴趣、良好 的参与活动的态度、习惯及健康的人格等等。 • 操作技能:正确操作和使用材料的能力及习惯。
• • • • • • •
• 儿童的认知发展经历从感知运动、前运算、具体运算到形式运算 四个主要阶段,不同阶段各有其认知发展方面的主要特点,所有儿 童的认知发展都是按照这样的发展顺序发展起来的。
• 这一理论对教学上的启示主要有二:一是儿童认知发展的阶段特 征制约教学,教学要适应儿童认知发展的阶段特征,在课程设置、 教学内容、方法等方面充分体现这些特点;二是教学要努力促进 儿童认知发展阶段的过渡,提高儿童认知发展的水平。
• 2、中班
• (1)认识10以内的数字,理解数字的含义,会用数字表示物体 的数量; • (2)学习10以内的基数:顺着数、倒着数、学习目测数群,学 习不受物体空间排列形式和物体大小等外部因素的干扰,正确 判断10以内的数量,感知和体验10以内自然数列中相邻两数的 等差关系。 • (3)学习10以内的序数; • (4)认识长方形、梯形、椭圆形;
第2单元 学前儿童数学教育活动的设计与组织

第二单元 学前儿童数学教育活动的设计与组织
一、学前儿童数学教学活动的设计 (一)正规数学教育活动的设计 (二)主题活动中数学教育活动的设计 (三) 日常生活和活动区域中的数学活动
二、幼儿数学教学活动的组织 (一)组织形式 (二)注意的问题
附录: 美国幼儿园的教室环境 案例评析
第二单元 学前儿童数学教育活动的设计与组织
学前儿童数学教育活动设计是指依据一定的数学教育目 标,选择恰当的教学内容和形式,对儿童施加教育影响 的方案。它是教师为促进儿童数概念发展而开展的一项 创造性工作,它是对教育活动目标、内容和步骤的预期 有目的、有计划地组织儿童参加数学学习的活动。教师 对儿童数学教育的目标、儿童学习数学的规律和特点、 师幼互动的方式等因素的分析与把握是决定教育活动设 计成功与否的关键因素。
பைடு நூலகம்二单元 学前儿童数学教育活动的设计与组织
1.正规数学教育活动设计的原则 2.正规数学教育活动设计的要素
第二单元 学前儿童数学教育活动的设计与组织
(1)发展性原则 教师在设计活动时应着眼于促进幼儿全面发展。一方面,教师应根据幼儿的发展水平和可接 受能力来考虑教育内容和要求;另一方面,教师在活动目标的设定、内容和材料的选择以及方 法与组织形式的运用等方面应以促进幼儿发展为准则。 (2)主体性原则 一方面,教师要让幼儿成为数学教育活动的主体,为幼儿创设丰富的环境,引导幼儿自主地 进行数学概念的建构;另一方面,教师应当适时、适地、适宜地发挥自己的主体性,在有效的 师幼互动中促进幼儿建构数学概念,推进他们的数学学习和数思维能力的发展。 (3)科学性原则 包括内容的科学性和方法的科学性。内容的科学性是指教师给出的概念或作出的归纳必须是 正确的、符合逻辑和客观实际的,否则会因忽视数学概念本身的精确性而误导幼儿。方法的科 学性是指教师必须根据内容和幼儿的年龄特点选择适当的教育方法,避免追求形式上的多样性。 (4)整合性原则 教师应将数学课程与幼儿的生活、经验相整合,将正式数学教育活动与非正式数学教育活动 相整合,将专门的数学教育途径与渗透性的数学教育途径相整合,实现优质有效的数学启蒙教 育。 (5)系统性原则 一方面,教师应遵循数学学科本身的逻辑系统性,在安排内容时体现循序渐进;另一方面, 教师应根据幼儿数概念发展的特点和规律,通过有层次的系列活动,让幼儿通过多种感官去感 知,逐渐获得抽象的数概念。
学前儿童数学教育

学前儿童数学教育《幼儿园教育指导纲要(试行)》中有关数学教育的表述:“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣”;“引导幼儿对周围环境的数、量、形、时间和空间等现象产生兴趣,建构初步的数概念,并学习用简单的数学方法解决生活和游戏中某些简单的问题”。
第一章学前儿童数学教育的基本理论第一节数学的起源和特点一、数学的起源(一)人类历史上数的起源从数学的起源来看,数学是对具体事物进行抽象的产物。
在人类的童年,对事物数量多少的比较仅限于直接的感知(数觉);数觉:在一个小的数的集合里,增加或减去一样东西的时候,尽管还未直接知道增减,但能辨认到其中有所变化。
我们把人类在数觉的基础上,靠知识、经验和技能而发展起来的对于数和数的变化的感知能力,称为“数感”。
一种比鸟类高强不了多少的原始的数觉,就是产生我们数概念的核心.(二)儿童个体数概念的发生1、对儿童个体来说,他们学习数学、掌握数学同样也是一个发明和创造的过程。
2、儿童对数的意义的理解也存在着从具体到抽象的发展过程。
二、数学知识的特点数学是研究现实世界的数量关系和空间形式的科学。
——恩格斯(一)抽象性(二)逻辑性(三)精确性(四)应用性第二节学前数学教育与儿童发展一、学前儿童数学的含义学前儿童所学习的、最初步的数学知识,包括最简单的数的知识,初步的时间、空间观念等,它强调的是学前儿童在操作活动中的数学体验。
即学前儿童所学的数学知识,大多是表面的、粗浅的知识。
二、学前儿童学习数学的意义(一)使学前儿童学会“数学地思维”,体验数学在生活中的应用。
(二)能训练学前儿童的抽象思维能力,促进其逻辑思维的发展(三)能促进学前儿童的情感和个性发展第三节学前儿童学习数学的特点一、学前儿童学习数学的心理准备(一)学前儿童逻辑观念的发展1.一一对应观念2.序列观念3.类包含观念(二)学前儿童思维的抽象性及其发展二、学前儿童学习数学的心理特点(一)学前儿童学习数学开始于动作幼儿表现出的这些外部动作,实际上是其协调事物之间关系的过程(二)学前儿童数学知识的内化要借助于表象的作用(三)学前儿童对数学知识的理解要建立在多样化的经验和体验基础上如果幼儿缺乏多样化的经验,他们对数学概念的理解就会出现问题(四)学前儿童抽象数学知识的获得需要符号和语言的关键作用(五)学前儿童数学知识的巩固有赖于练习和应用的活动是幼儿不断与环境相互作用、不断尝试新策略、练习和检验新获得的策略以及在应用中巩固新策略的过程第四节学前儿童数学教育的原则一、密切联系生活的原则现实生活是幼儿数学概念的源泉二、发展幼儿思维结构的原则“发展幼儿思维结构”的原则,是指数学教育不应只是着眼于具体的数学知识和技能的教学,而应指向幼儿的思维结构的发展。
单元2学前儿童数学教育的途径、方法及设计和指导

单元2 学前儿童数学教育的途径、方法及设计和指导思考练习1.数学教育的途径有哪两种?答:学前儿童数学教育的目标、任务,是在学前儿童亲身参与的数学实践活动中实现的。
学前儿童数学教育的目标、任务的实现,尤其要求教师善于灵活选择合适的数学实践活动途径,因为教师只有根据学前儿童年龄特点和数学教育内容选择适合的数学活动形式,才能真正促成学前儿童在活动中获得数学能力。
数学教育的途径有专门的数学教育活动和渗透的数学教育活动两种。
2.数学区域活动的价值是什么?答:数学区域活动的价值:有助于培养儿童对数学活动的兴趣;能使儿童获得丰富的数学经验;能充分发挥儿童的自主性和创造性;有利于照顾到儿童的个别差异。
3.学前儿童数学教育常用的方法有哪些?答:教育方法是在教育过程中师生为实现教育目标和教育任务所采取的行为方式的总和,既包括教的方法,又包括学的方法,二者密切联系。
教育方法是教育目标转化为儿童发展的媒介。
常用的方法有:操作法、游戏法、讨论法、比较法、演示和讲解法、寻找法。
4.什么是操作法?结合一个案例谈谈运用操作法的要求。
答:根据数学知识的抽象性和严密的逻辑性的特点,在教育中选择有效的教育方法才能收到良好的教学效果。
儿童对数学知识的认识和理解是不能从客体本身获得的,而是要从改变客体的动作中获得。
因此,为了让儿童获得有关数学概念的感性经验,在数学教学中必须强调让儿童亲手操作材料,在实际的操作中探索和学习,儿童只有在“做”的过程中,在与材料相互作用的过程中,才可能对某一数学概念属性或规律有所体验,才可能获得直接的经验,这种体验和经验是儿童建构初级数学概念所必需的。
因此,操作法是儿童学习数学的基本方法。
操作法是指儿童动手操作学具,在与材料的相互作用的过程中进行探索,获得数学经验、知识和技能的方法。
如儿童运用各种材料进行计数、进行几何形体的拼拆、组合等。
操作是儿童在头脑中建构初步数学概念的起步,是儿童获得抽象数学概念的必要之路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、原则
(一)发展性原则
1、教师的教学活动设计应适应学前儿童的能力发展水平和 接受能力,考虑学前儿童的原有基础。 “现有发展水平”、“最近发展区”
2、教师在活动目标的制定、内容和材料的选择和组织形式 的运用等方面都要以有利于学前儿童的发展为依据和准则, 以促进学前儿童发展为落脚点,牢牢把握“发展”
教师1:学习10以内数的倒数;发展学前儿童的思维能力。 教师2:学习10以内数的倒数,让学前儿童知道顺数时是 一增加,倒数时是一减少,体验自然数列的等差关系;发 展学前几童的逆向思维能力,引导学前儿童积极地参与评 议活动,鼓励他们大胆讲述自己的意见。 通过比较可知,第一种目标太空泛,在活动中教师不好把 握。而第二种活动目标就很明确具体,便于教师在实施过 程中操作。
二、原则
(四)渗透性原则
渗透性原则:是指在数学教育活动设计中将数学与儿童的生活、 与各种不同教育领域的内容,各种不同的学习形式与方式进行 有机融合,实现优质、有效的数学启蒙教育。
eg.幼儿在角色游戏中扮演售票员、商店经理、收银员时,可以 利用计数知识和测量知识;在美术建筑结构的游戏活动中需要 幼儿关于数量和空间概念的知识,以及几何形体和长度知识。
• ③具体运算阶段(6、7-11、12岁),儿童能进行逻辑运算,如 理解可逆性和数的守恒。
• ④形式运算阶段(11、12-14、15岁),儿童已经可以摆脱具体 的事物或内容来进行逻辑推理。
(二)关于学前儿童数概念的形成、发展研 究
1、数学始于对于物体的动作 2、学前儿童的数学能力依赖自身的逻辑概念 3、学前儿童的数学认知是自己主动建构的
二、原则
(五)系统性原则
系统性原则,是指在数学教育活动设计中应遵循数 学知识本身严密的系统性、逻辑性,体现内容的循 序渐进性和系列性。
Thank You!
第二节、学前儿童数学教育活动设计的基本要素分析
一、活动名称 是指数学活动的名称。为了引起学前儿童的 活动兴趣,活动名称应简单明了、生动形 象,如“给数字口袋送礼物”“送片片回家”; 也可以用数学术语确定活动名称,如“学习7 的加减”“认识圆形”等。
二、原则
(二)主体性原则
学前儿童数学教育活动中的主体性原则,是 指教师必须坚持遵循和体现以学前儿童为数学活动
的主体,无论是在活动内容的选择方面还是活动形 式的安排方面,都要注重激发学前儿童的能动性、 自主性、创造性。
二、原则
(三)科学性原则
科学性原则,是指数学教育活动设计的内容和所采用的方法必须是科 学的。
内容的科学性、是指教师给出的概念或做成的归纳必须是正确的、符 合逻辑的、符合客观实际的。如“球是圆的”就是不正确的。
方法的科学性,是指教师必须根据内容的难易程度和学前儿童的年龄 特点选择适当的教育方法,避免片面追求形式上的多样性。对于不同 性质的内容应分别选择不同的教育形式和方法。如,复习性质的知识 内容就比较适合采用操作法、归纳法、过论法、戏法等,而讲解演示 法显然就不够恰当。
二
二、学前儿童数学教育活动的设计
(二)主题活动中的数学教育活动设计 1、提炼主题活动涵盖的数学教育内容 2、关注学前儿童的个体差异,注重活动的过 程性价值 3、体现情境学习和问题解决
第三节 学前儿童数学教育活动的设计与组织
二
二、前儿童数学教育活动的设计
(三)活动区角中的数学教育活动设计 1、活动空间的设置和准备 2、活动区角数学活动材料的摆放和提供 3、活动区角数学活动的组织
1.儿童在数学方面的基础和发展水平
2.儿童在身体、认知、情感、个性、社会性等方面整体的 发展水平和特点
二、原则
案例比较——
数字宝宝3和4 vs
六节虫
数字宝宝3和4 活动过程:
1.复习1到10数字歌。
2.教师问小朋友家里有几口人,回答多集中在3和4,教师 在黑板的两端写下3和4,开始学习数字宝宝3和4。
3、活动日标表述的行为主体要一致 在学前儿童数学教学活动中,常见的目标 表述方式有两种:一是以教师为行为主体, 用教师所做的事来表述,如使用“引导学前 儿童…”“激发学前儿童……”“使学前儿 童…”等词语;二是以学前儿童为行为主体, 用学前儿童的行为变化来表述
注意:在同一活动目标的表述上主体应该是 一致的
(一)重视学前儿童数学学习中的操作和多 感官体验
(二)重视提供基于情境的数学学习和交流 (三)重视学前儿童对数学概念的自我建构
和社会建构 (四)重视学前儿童非正式数学能力的培养
第二节 基于不同理论下的学前儿童数学教育模式
一、蒙台梭利教学法 蒙台梭利(1870-1952)意大利幼儿教育家 (一)蒙台梭利数学教育的基本思想 1、有准备的环境 2、自发性的学习 3、“工作”的自然法则 4、吸收性的心智 5、发展的敏感期
第二节 基于不同理论下的学前儿童数学教育模式
(二)蒙台梭利数学教育的内容 1、数前教育内容
(二)蒙台梭利数学教育的内容
(二)蒙台梭利数学教育的内容
(二)蒙台梭利数学教育的内容
2、数学教育活动内容
(三)蒙台梭利数学教育方法 “三阶段”教学法 二、高宽课程模式---了解即可
(三)建构主义数学教育的基本观点 1、重视学前儿童在实物操作中的体验 2、注重概念的建构过程 3、强调学习过程中的理解与顿悟
三 凯米的数学教育思想和课程方案
(一)关于数学教育的目标 (二)关于教育原则---六条教学原则 (三)关于数学教育的形式 1、日常生活情境 2、团体游戏
四 有关学前儿童数学教育的发展和研究动向
学前儿童数学教育的教学依据和原则
第二章学前儿童数学教育活动的设计与组织
• 一、学前儿童数学教育活动设计的依据与 原则
• 二、学前儿童数学教育活动设计的基本要 素分析
• 三、学前儿童数学教育活动的设计与组织
第一节学前儿童数学教育活动设计的依据与 原则
(一)教育目标
教育目标是培养受教育者的总的要求,它规定着把受教 育者培养成为什么样人的根本性质问题,它是教育活动设 计的出发点和主要依据。 1为教育活动的设计提供了依据 2.为教育活动的方向提供依据 3.为教育活动的范围提供依据 4.为教育活动的难易程度提供依据
5.学习写数字3和4。
六节虫
活动过程: 1.螳螂妈妈带着螳螂宝宝外出游玩,经过一片西瓜地时,发现西瓜地里
有很多的六节虫,螳螂妈妈请每个螳螂宝宝抓一只虫子,帮助农民伯 伯除害虫。
2.引导幼儿观察六节虫,让幼儿数数它有多少节,讨论消灭方法,引出 剪刀后,螳螂妈妈一刀将六节虫一分为二。再次引导幼儿观察“我将 虫子分成了几段?”“左边有几节?右边有几节?”将结果记录在表 格里。
第三章国外学前儿童数学教育的理论与模式
第一节 早期学前儿童数学教育的主要理论 一、列乌申娜的数学教育思想 列乌申娜(1898--1984)苏联著名幼儿教育 专家。 (一)学前儿童数概念的形成与发展 1、数概念的形成 2、感觉和知觉的作用
第三章国外学前儿童数学教育的理论与模式
(二)关于促进学前儿童数学概念发展的教 育教学 1、教学与学前儿童发展 2、学前儿童早期数学教学的内容 3、学前儿童早期数学教学的方法 4、学前儿童早期数学教学的原则 5、关于学前儿童初步逻辑思维能力的培养
能从生活和游戏中感受事物的数量关系并体验到数学的 重要和有趣
——《幼儿园教育指导纲要》
目标1 初步感知生活中数学的有用和有趣 目标2 感知和理解数、量及数量关系 目标3 感知形状与空间关系
——《3-6岁儿童学习与发展指南》
目标2 感知和理解数、量及数量关系
一、依据
(二)教育对象
教育对象身心发展的特点也是数学教育活动设计的另一 条主要依据。
二、活动目标
主要反映的是数学活动所要达到的具体教 育效果。在活动设计中,教师对目标的定 位和表述应具体化、行为化,体现可操作 性。
1、活动目标设计要全面
活动目标的内容应包括认知、情感与操作 技能三个方面
2、活动且标设计具体化、行为化具有可操作性
下面是两位教师设置的“学习10以内数的倒数”的活动目标:
3.教师取出3支粉笔放在手里,问幼儿如果要将3支粉笔放 到两只手里,要怎么分?幼儿开始各抒己见。教师响应幼 儿的回答,并在数字3下划上分解号,写下第一种分解方 法。写的 同时引领幼儿念“3可以分成1和2,1和2合起来 就是3”。
追问:还可以怎么分?按同样的方法写下第二种分解方法。
4.那“4”呢?请小朋友自己探索。给每名幼儿分发4个雪花 片,让幼儿在桌上摆出他们自己的分解方法。教师再总结 幼儿的分解方法,并写上黑板。
皮亚杰把儿童的智力发展解释为一种逻辑运算能力的发展。这种发展 可以分为四个阶段:
• ①感知运动阶段(0-2岁),儿童在这一阶段能够协调感知和动作 之间的活动,能对直接的情景作出动作反应。
• ②前运算阶段(2-6、7岁),尽管儿童在这一阶段仍然依赖于感 知经验,他们开始学习运用符号来表征他们的经验。
4、学前儿童早期数学教学的原则 教育性(发展性)原则 科学性原则和联系生活的原则 可接受性原则 直观性原则 系统性、连贯性原则和巩固性原则 个别对待原则 自觉性原则
二、皮亚杰的学前儿童数学学习研究与建构主义数 学教育
(一)皮亚杰的学前儿童数学思维发展观 1、3-6岁学前儿童数学学习能力的发展 第一、具有明显年龄特征 第二、存在关键期 第三、学前儿童个体差异显著 2、关于认知发展的过程和阶段
第三节 学前儿童数学教育活动的设计与组织
二
二、学前儿童数学教育活动的设计
(一)分科课程中的数学教育活动的设计
1、活动目标:要细化分解,体现层次性 2、活动内容的选择和编排要关注学前儿童的 年龄阶段特点和学科的逻辑,体现渐进性
3、在活动环节的组织中,教师要有意识地丰 富学前儿童的操作策略
第三节 学前儿童数学教育活动的设计与组织
三、活动准备