中考圆知识点总结复习
中考圆的知识点总结(一)

中考圆的知识点总结(一)中考圆的知识点总结前言在中考数学中,圆是一个重要的知识点,掌握圆的性质和相关计算方法对于提高数学成绩至关重要。
本文将对中考圆相关的知识进行总结和归纳,以帮助同学们更好地掌握和应用。
正文1. 圆的定义和性质•圆的定义:圆是平面上到一个定点距离相等的所有点的集合。
•圆的性质:–圆心:圆上所有点到圆心的距离相等。
–半径:圆心到圆上任意一点的距离为半径。
–直径:通过圆心的两个点组成的线段,长度等于半径的两倍。
–弧:在圆上两个点之间的部分。
–相交:两个圆的交点即为相交的部分。
–切线:与圆只有一个交点的直线。
2. 圆的计算公式•圆的周长:C = 2πr,其中r为半径。
•圆的面积:S = πr²。
3. 圆的相关定理•弧长定理:弧长 = 弧度× 半径长度。
•弧度与度的关系:一周对应的弧度为2π弧度,180°对应π弧度,360°对应2π弧度。
•圆心角定理:圆心角的弧度等于对应的弧的弧度。
•切线定理:切线与半径垂直。
4. 圆的应用•判断点是否在圆的内部、外部或边界上。
•利用圆的性质解决几何问题,如求两个圆的位置关系、求切线等。
•应用圆的计算公式计算周长和面积。
结尾通过对中考圆的知识进行总结和归纳,我们可以更好地掌握和运用圆的相关性质和计算方法。
希望同学们在备考中能够深入理解这些知识,灵活运用,取得优异的成绩!5. 圆与三角形的关系•内切圆:三角形内部与三条边都相切的圆。
•外接圆:三角形三个顶点在圆上的圆。
•正切圆:三角形的一个顶点在圆上,另外两边分别与圆相切的圆。
6. 圆与直线的关系•弧的度数:弧所对圆心角的度数,通常表示为θ。
•弦:圆上两个点之间的线段。
•弦长定理:弦长等于过弧中点的直径的两倍乘以sin(θ/2)。
•弦切角定理:切线与弦的交点所对的圆心角等于弦上所对的弧的圆心角的一半。
7. 圆与平行线的关系•切割线定理:若两条平行线分别与一个圆相交,那么它们所切割出的弦、切线和割线都是相等的。
中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。
这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。
2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。
圆心角的度数等于对应的弧所对的圆周的度数。
如果圆心角的度数为360度,那么这个角就是周角。
(2)弧圆上的一段弧是圆周的一部分。
圆的周长就是圆周的长度,可以用角度和弧度来表示。
(3)切线和切点切线是一个直线,它与圆相切于一个点。
在圆上,切线与半径的夹角为90度。
(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。
同位角的性质也可以应用到圆上。
(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。
相似的圆的半径之比等于它们的直径之比。
二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。
2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。
3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。
4. 弧长定理同样的圆上,相对的圆周弧长相等。
5. 切线定理切线和半径的夹角为90度。
6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。
7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。
三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。
比如在工程测量中,需要计算环形的周长和面积。
2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。
3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。
四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。
1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。
2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。
二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。
三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。
四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。
五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。
六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。
七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。
八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。
初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
中考圆知识点总结复习

初中圆复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
图4图5推论2:圆的两条平行弦所夹的弧相等。
连线中考数学一轮复习系列专题19圆的基本性质

基础知识知识点一、圆的有关概念1. 圆的定义①(动态定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.以点O为圆心的圆记做“⊙O”.②(静态定义)圆是到定点的距离等于定长的点的集合.即:圆上各点到圆心的距离都等于定长(半径),反之到圆心距离等于半径的点一定在圆上;2.等圆:能够完全重合的圆叫等圆.同圆或等圆的半径相等.3.确定圆的条件确定一个圆有两个基本条件①圆心(定点)——用来确定圆的位置;②半径(定长)——用来确定圆的大小.经过不在同一直线上的三点确定一个圆.知识点二、弦、弧、圆心角等相关概念1. 弦与直径:①弦:连接圆上任意两点的线段叫做弦,记做:弦AB,弦CD等.②直径:经过圆心的弦叫做直径,直径等于半径的2倍.直径是圆中最长的弦.2. 弧与半圆①弧:圆上任意两点之间的部分叫做圆弧,简称弧,用符号“”表示,如以A、B为端点的弧记做AB,②半圆:圆上任意一条直径的两个端点把圆分成两条弧,其中的每条弧都叫做半圆.③劣弧、优弧:小于半圆的弧叫做劣弧,用弧上的两点表示;大于半圆的弧叫做优弧,用弧上三点表示.④等弧:能够完全重合的弧叫等弧.知识点三、弧、弦、圆心角之间的关系1. 圆的旋转不变性把圆绕着圆心旋转任意一个角度,都与原来的图形重合,我们把这种性质称为圆的旋转不变性.圆是中心对称图形,圆心是它的对称中心.2. 弧、弦、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角的度数与它所对的弧的度数相等.知识点四、垂径定理1. 圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,用符号语言叙述为:∵ CD为⊙O的直径,CD⊥AB于点E∴ AE=EB,AC BC,AD DB3. 垂径定理基本图形的性质:(1)有4对全等的直角三角形:Rt△CAD与Rt△CBD;Rt△CAM与Rt△CBM;Rt△OAM与Rt△OBM;Rt△MAD与Rt△MBD;特别在Rt△CAD与Rt△CBD中,直径CD是它们公共的斜边,AM、BM是CD上的高.(2)有3个等腰三角形;△CAB、△OAB、△DAB.弦AB是它们的公共底边,直径CD是它们的顶角平分线和底边AB的垂直平分线.(3)有3对弧相等:AC BC,AD BD,CAD CBD.(4)添加辅助线的方法:连接半径或作垂直于弦的直径,是两种重要的添线方法.知识点五.圆周角定理1. 定义:顶点在圆上,并且两边都与圆相交的角叫圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等,3. 圆周角定理的推论①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.②圆内接四边形的对角互补.典型例题解析例1.(菏泽)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD弧的度数为_____.例2. (山西)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为( )A.30° B.40° C.50° D.80°例3. (绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O与矩形ABCD边BC,AD分别相切和相交(E,F是交点).已知EF=CD=8,则⊙O的半径为___________.例4. (黑龙江)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.例5. (济南) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2. 3 C. 32D.3例6. (安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例7. 如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.巩固练习1. (湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A. 35 °B.45°C. 55°D.65°2. 如图所示,在⊙O中,,那么()A.AB>2CD B.AB<2CD C.AB=2CD D.无法比较3. (嘉兴)如图,○O的直径CD垂直弦AB于点E,且CE=2,DE=8则AB的长为()(A)2 (B)4 (C)6 (D)84. (钦州)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60° B.45° C.30° D.20°5. (南通)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______度.6. (广元)若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为 .7 . (龙岩) 如图,A、B、C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC= 。
中考圆的复习资料(经典+全)

圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。
3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。
CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。
知识点2 圆心角:顶点在圆心的角叫做圆心角。
弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。
定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。
题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。
中考圆形知识点总结归纳

中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。
2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。
3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。
4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。
二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。
2. 面积:圆的面积等于半径的平方乘以π。
三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。
2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。
3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。
4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。
四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。
2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。
五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。
2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。
综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。
希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;A五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角∴2AOB ACB ∠=∠图4图5BD2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒注意:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
即:在⊙O 中, ∵四边ABCD 是内接四边形∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠九、切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:BABAO即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线 ∴PA PB =;PO 平分BPA ∠十一、圆幂定理1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。
即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
如图:12O O 垂直平分AB 。
即:∵⊙1O 、⊙2O 相交于A 、B 两点∴12O O 垂直平分ABDBA十三、圆的公切线 两圆公切线长的计算公式:(1)公切线长:12Rt O O C ∆中,221AB CO =(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和十四、圆内正多边形的计算 (1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::2OD BD OB =;(2)正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::OE AE OA =(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::2AB OB OA =.十五、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n Rl π=;(2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π=3、圆锥侧面展开图lOC 1D 1(1)S S S =+侧表底=2Rr r ππ+(2)圆锥的体积:213V r h π=十六、内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+ 。
(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。
(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC 切⊙O 于点B ,AB 为弦,∠ABC 叫弦切角,∠ABC=∠D 。
C考点一:与圆相关概念的应用利用与圆相关的概念来解决一些问题是必考的内容,在复习中准确理解与圆有关的概念,注意分清它们之间的区别和联系.1.运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题BO A D【例1】已知:如图所示,在△ABO中,∠AOB=90°,∠B=25°,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.【例2】如图,A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为().A. 30°B. 45°C. 50°D.60°2.利用圆的定义判断点与圆,直线与圆、圆与圆的位置关系【例3】已知⊙O的半径为3cm,A为线段OM的中点,当OA满足:(1)当OA=1cm时,点M与⊙O的位置关系是 .(2)当OA=时,点M与⊙O的位置关系是 .(3)当OA=3cm时,点M与⊙O的位置关系是 .【例4】⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是().A. 相交B. 相切C. 相离D. 无法确定【例5】两圆的半径分别为3cm和4cm,圆心距为2cm,那么两圆的位置关系是______________.3.正多边形和圆的有关计算【例6】已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.4.运用弧长及扇形面积公式进行有关计算【例7】如图,矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点E,则阴影部分的面积为(结果保留).5.运用圆锥的侧面弧长和底面圆周长关系进行计算【例8】已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是 .考点二:圆中计算与证明的常见类型1.利用垂径定理解题垂径定理及其推论中的三要素是:直径、平分、过圆心,它们在圆内常常构成圆周角、等分线段、直角三角形等,从而可以应用相关定理完成其论证或计算.【例1】在⊙O中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1∶5两部分,AB=6,则弦CD 的长为 .A. 2B. 4C. 4D. 22.利用“直径所对的圆周角是直角”解题“直径所对的圆周角是直角”是非常重要的定理,在解与圆有关的问题时,常常添加辅助线构成直径所对的圆周角,以便利用上面的定理.【例2】如图,在⊙O的内接△ABC中,CD是AB边上的高,求证:∠ACD=∠OCB.3.利用圆内接四边形的对角关系解题圆内接四边形的对角互补,这是圆内接四边形的重要性质,也揭示了确定四点共圆的方法.【例3】如图,四边形ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,AB=2,则点B到AE的距离为________.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.题库BOAPC一. 选择题:1. ⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥R ,则P 点 [ ] A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为[ ] A 、2或3 B 、3 C 、4 D 、2 或43.如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是[ ]° ° ° °4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于[ ] ° ° ° °5.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是[ ] A、相离 B、相切 C、相切或相交 D、相交 6、如图,PA切⊙O 于A,PC交⊙O 于点B、C ,若PA =5,PB =B C,则PC的长是[ ] A、10 B、5 C、25 D、357.如图,某城市公园的雕塑是由3个直径为1m 的圆两两相垒立在水平的地面上,则雕塑的最高点到地面的距离为[ ] A .232+ B.233+ C.222+ D. 223+8、已知两圆的圆心距是9,两圆的半径是方程2x 2-17x+35=0的两根,则两圆有[ ]条切线。