中考圆知识点总结复习(经典推荐)打印版

合集下载

中考数学圆知识点精讲(打印)

中考数学圆知识点精讲(打印)

圆知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。

2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

圆上任意两点间的部分叫做圆弧,简称弧。

连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

在同圆或等圆中,能够重合的两条弧叫做等弧。

例 P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.解题思路:圆内最长的弦是直径,最短的弦是和OP 垂直的弦,. 知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内 当点在圆外时,d >r ;反过来,当d >r 时,点在圆外。

当点在圆上时,d =r ;反过来,当d =r 时,点在圆上。

当点在圆内时,d <r ;反过来,当d <r 时,点在圆内。

例 如图,在Rt ABC △中,直角边3AB =,4BC =,点E ,F 分别是BC ,AC 的中点,以点A 为圆心,AB 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________.解题思路:利用点与圆的位置关系练习:在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系.知识点三、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。

3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。

圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。

中考圆 知识点总结

中考圆 知识点总结

中考圆知识点总结一、圆的基本概念圆是平面上到一定点的距离等于给定长度的所有点的集合。

这个给定长度叫做圆的半径。

圆的一条封闭曲线叫做圆周,圆心到圆周上任一点的距离叫做半径。

二、圆的性质1. 圆的周长公式:C=πd 或C=2πr2. 圆的面积公式:S=πr²3. 圆心角:以圆心为顶点的角。

它对应的弧叫做这个角的弧4. 圆内接四边形:内接于同一个圆的四条边全是立交于一个点的四边形5. 圆外接四边形:其四顶点在同一个圆上的四边形6. 弧长:圆周上的一小段被称为弧,圆周的任一弧的长即弧长7. 弧度:弧长等于半径长的弧所对函数角的量度叫弧度8. 弧度制:把圆周长等分成361份,每段长为半径长的弧叫做1弧度9. 相似圆周:如果两个弧所对的圆心角的两个弧相等,则这两个arc的两个圆周叫做相似圆周三、圆的定理1. 两条平行余同一个圆的两条切线2. 如果两个arc和中各有一个相等的角的立交于同一条弧的平面内3. 弧与弧所对的角相关联4. 线段与圆相关联5. 邻角对角互补6. 梯形中角平分性质7. 环形中它的两个arc及两个对分-四、圆的变量方法常用的弧度制基本关系:1、1弧度=180/π度2、1度=π/180弧度常用的弧度制与直角度基本关系:1、180度=π弧度2、1度= π/180 弧度圆周率是一个无理数,近似值是3.1415926 。

圆的半径是r ,这样圆周长为C=2πr 。

圆的面积等于S= π(r^2)。

先看C=2πr的这半径(C是所求的圆周长,r是所需求的圆的半径,C=2 πr)由此得到半径的长。

继而计算圆的面积;S=π(r^2)。

五、圆的解析式方程解析式方程就是用$x$和$y$表示方程中的变量,利用解析式方程可以方便表示圆的位置、大小和形状。

圆的解析式方程一般是:$(x-a)^2+(y-b)^2=r^2$其中$(a,b)$为圆心坐标,r为半径。

圆的解析式方程与圆的位置有关。

若圆的圆心位于原点,圆的解析式方程为$x^2+y^2=r^2$,点$(x,y)$满足圆的解析式方程。

初三圆知识点总结

初三圆知识点总结

初三圆知识点总结初三圆知识点总结11、圆的有关概念:(1)确定一个圆的要素是圆心和半径。

(2)①连结圆上任意两点的线段叫做弦。

②经过圆心的弦叫做直径。

③圆上任意两点间的部分叫做圆弧,简称弧。

④小于半圆周的圆弧叫做劣弧。

⑤大于半圆周的圆弧叫做优弧。

⑥在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦顶点在圆上,并且两边和圆相交的角叫圆周角。

⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。

⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。

2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

(3)圆周角定理:圆弧的圆周角等于圆弧圆心角的一半。

推论1在同一圆或等圆内,同一圆弧或等圆弧的圆周角相等,等圆周角的圆弧也相等。

推论2半圆或直径的圆周角都相等,都等于90°。

圆周角为90°的弦是圆的直径。

推论3如果三角形一边的中线等于这条边的一半,那么这个三角形就是直角三角形。

(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。

性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

数学初三圆的知识点总结

数学初三圆的知识点总结

数学初三圆的知识点总结一、圆的概念1.1 圆的定义圆是平面上所有与一个给定点的距离相等的点的集合。

这个距离称为圆的半径,而给定的那个点叫做圆心。

1.2 相关术语(1)圆心:圆的中心点。

(2)半径:圆心到圆上任一点的距离。

(3)直径:通过圆心并且两端点在圆上的线段叫做圆的直径。

(4)弧长:圆上一部分的长度。

(5)圆周:圆的边界。

(6)扇形:由圆心和圆上两点组成的区域。

(7)弦:圆上连接两点的线段。

(8)切线:与圆相切的直线。

1.3 圆的元素圆的位置和形状是由圆心和半径共同决定的,而圆的面积则是与圆的半径有关。

二、圆的性质2.1 圆周率圆周率是圆的重要常数,通常用π表示。

它的值是一个无理数,约等于3.14159。

圆周率在数学中有广泛的应用,涉及到圆的面积、周长和体积等问题。

2.2 圆的面积和周长(1)圆的周长圆的周长公式为:C = 2πr,其中C表示圆的周长,r表示圆的半径,π表示圆周率。

(2)圆的面积圆的面积公式为:S = πr²,其中S表示圆的面积,r表示圆的半径,π表示圆周率。

2.3 圆的关系(1)直径与半径的关系圆的直径是圆的半径的两倍,即d = 2r。

(2)弧长与圆周角的关系弧长l与半径r和所对的圆周角θ之间有一个简单的关系:l = rθ。

(3)圆心角与圆周角的关系圆心角和它所对的圆周角是成等比关系的,即θ = 2α。

(4)弦的性质圆上的两条弦若相交,则交点至两条弦的两端的交点距离相等。

2.4 圆与直线的关系(1)切线定理切线定理指的是,若直线与圆相切,则该直线与圆心的连线和切点的连线是垂直的。

(2)弦切定理弦切定理是指,若一个直线既是弦又是切线,则该直线与圆心的连线和切点的连线也是垂直的。

三、圆的相关定理3.1 圆的基本定理(1)切线定理定理表明,切线与半径的夹角是直角,即触点与圆心与切点的连线共线。

(2)弦长定理定理表明,与直径垂直的弦,把弦分成的两段乘积等于圆的半径的平方。

中考圆知识点总结复习

中考圆知识点总结复习

中考圆知识点总结复习圆是数学中重要的基本概念之一,也是我们日常生活中经常遇到的形状。

在中考数学中,圆的知识点是不可避免的,掌握好圆的相关知识对于中考数学的考试至关重要。

本文将对中考数学中关于圆的知识点进行总结复习,希望对同学们的复习有所帮助。

一、圆的基本概念1. 圆的定义:在平面上的所有到一个固定点距离相等的点的集合,这个固定的点叫作圆心,这个相等的距离叫作圆的半径。

2. 直径、半径和周长的关系:圆的直径是通过圆心的两个相对的点之间的线段,它等于半径的两倍,周长等于直径的π倍或者半径的两倍π。

二、圆的性质1. 圆心角的性质:圆内切于同一弧上的两条弦所对圆心的两个角是相等的,当圆心角的度数是180°时,这两条弦构成的角是直角。

2. 圆周角的性质:位于圆的同一弧上的两条弦所对的圆周角相等。

3. 圆内接四边形的性质:圆内接四边形的对角和等于180°。

4. 弦长定理:圆内一条弦和它所对的两个圆周角的性质。

5. 弦切定理和切割定理:切割定理:切线与过切点作直径的两个弧所对的圆周角等于90°。

三、圆的相关计算1. 圆的周长和面积的计算公式:周长C=2πr面积S=πr²2. 圆的内、外接正多边形的周长和面积的计算四、圆的位置关系1. 圆的位置关系的判定:“点和圆的位置关系”、“直线和圆的位置关系”、“圆和圆的位置关系”。

五、圆的几何变换1. 圆的平移、旋转、对称的基本概念。

2. 圆的平移、旋转、对称的性质。

六、圆的应用.1. 圆的应用在实际生活和工作中运用。

2. 圆在建筑、设计、制图中的应用。

3. 圆的运动的应用。

七、典型例题解析1. 利用圆的数学知识解决问题的方法。

2. 典型例题的解题思路和方法。

3. 典型例题的解题技巧和技巧。

八、练习题1. 适当安排时间,每天复习一定的题目,加深对知识点的理解和掌握。

2. 定期进行模拟考试,检测自己对圆的知识点的掌握情况。

3. 及时总结巩固,弥补知识点的不足。

中考数学圆知识点归纳

中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。

2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。

二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。

2.圆内外的点与圆心之间的关系:内接圆和外接圆。

三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。

2.圆的直径是两个切点。

3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。

4.圆上的切线与半径垂直,且只有一条。

(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。

(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。

2.圆的面积:S=πr²(其中r为半径)。

3.弧长:L=2πr(对应圆心角为360°的弧)。

4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。

2.提取关键信息,运用圆的性质和公式进行计算。

3.运用切线的特性求解问题。

4.运用弧的性质,求解弧长、弦长、圆心角等问题。

5.运用角平分线和垂直平分线的性质,求解相关问题。

六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。

2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。

3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。

4.利用圆内切四边形的特性解决问题。

以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。

中考数学圆知识点总结精选

中考数学圆知识点总结一、圆及圆的相关量的定义1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法圆--⊙半径r 弧--⌒直径d扇形弧长/圆锥母线l 周长C 面积S三、有关圆的基本性质与定理(27个)1.点p与圆O的位置关系(设p是一点,则pO是点到圆心的距离):p在⊙O外,pOr;p在⊙O上,pO=r;p在⊙O内,pO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

中考圆的复习资料(经典+全)

圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。

3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。

CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。

知识点2 圆心角:顶点在圆心的角叫做圆心角。

弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。

题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。

中考圆形知识点总结归纳

中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。

2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。

3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。

4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。

二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。

2. 面积:圆的面积等于半径的平方乘以π。

三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。

2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。

3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。

4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。

四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。

2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。

五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。

2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。

综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。

希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学——《圆》
【知识结构】
⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪



⎪⎪


⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪



⎪⎪

⎪⎪


⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨
⎧⎪⎪⎪⎪⎪⎪⎩
⎪⎪
⎪⎪⎪⎪⎨⎧⎪⎪⎩
⎪⎪
⎨⎧侧面积、全面积计算侧面展开图定义圆柱和圆锥形面积计算圆面积、扇形、组合图形周长计算圆周长、弧长、组合图画法应用边长、面积的计算计算半径、边心距、中心角计算概念正多边形正多边形与圆内含
内切相交外切外离圆和圆的位置关系切割线定理及推论相交弦定理及推论相交性质判定相切相离直线和圆的位置关系反证法点的轨迹圆内接四边形圆周角定理距之间的关系圆心角、弧、弦、弦心垂径定理及推论基本性质三点定圆定理点与圆的位置关系定义圆的有关性质圆
一、圆及与圆相关的概念
二、圆的对称性
(1)圆既是轴对称图形,又是中心对称图形。

(2)对称轴——直径所在的直线,对称中心——圆心。

三、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;知2推3定理:①AB是直径②AB CD
⊥③CE DE
=④弧BC=弧BD⑤弧AC=弧AD
推论2:圆的两条平行弦所夹的弧相等。

四、圆心角定理
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

知1推3定理:
①AOB DOE
∠=∠;②AB DE
=;③OC OF
=;④弧BA=弧BD
五、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

2、推论:
1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角
所对的弧是等弧;
2
对的弦是直径。

3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角
三角形。

六、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内
对角。

七、点与圆的位置关系
1、点在圆内⇒
d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
八、三点定圆定理——三角形外接圆
1、三点定圆:不在同一直线上的三个点确定一个圆。

2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外
接圆。

3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

九、直线与圆的位置关系
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
B
B
O
十、切线的性质与判定定理
1、判定定理:过半径外端且垂直于半径的直线是切线
(两个条件,缺一不可)
2、性质定理:切线垂直于过切点的半径
推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

十一、切线长定理
切线长定理:从圆外一点引圆的两条切线,它们的切线长
相等,这点和圆心的连线平分两条切线的夹角。

十二、内切圆及有关计算。

(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。

(2)△ABC中,∠C=90°,AC=b,BC=a,AB=c,则内切圆的半径r=
2c
b
a-
+。

(3)S
△ABC =)
(
2
1
c
b
a
r+
+,其中a,b,c是边长,r是内切圆的半径。

(4
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。

十三、圆与圆的位置关系
外离(图1)⇒无交点⇒d R r
>+;
外切(图2)⇒有一个交点⇒d R r
=+;
相交(图3)⇒有两个交点⇒R r d R r
-<<+;
内切(图4)⇒有一个交点⇒d R r
=-;
内含(图5)⇒无交点⇒d R r
<-;
十四、圆内正多边形的计算
(1)正三角形
在⊙O中△ABC是正三角形,有关计算在Rt BOD
∆中进行:::2
OD BD OB=;
图4图5
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆
中进行,::OE AE OA =
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆中进行
,::2AB OB OA =.
十五、扇形、圆柱和圆锥的相关计算公式
1、扇形:(1)弧长公式:180
n R
l π=;
(2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形
弧长 S :扇形面积 2、圆柱:
(1)圆柱侧面展开图
2S S S =+侧表底=222rh r ππ+ (2)圆柱的体积:2
V r h π= 3、圆锥侧面展开图
(1)S S S =+侧表底=2Rr r ππ+
(2)圆锥的体积:21
3V r h π=
十六、补充定理 一、圆幂定理
1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:PA PB PC PD ⋅=⋅ 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:2CE AE BE =⋅
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项。

即:2PA PC PB =⋅
3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 即:PC PB PD PE ⋅=⋅
二、两圆公共弦定理
圆公共弦定理:
三、圆的公切线
两圆公切线长的计算公式:
(1)公切线长:12Rt O O C ∆中,22
1AB CO =
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和
l
O
C 1
D 1D
B
A。

相关文档
最新文档