与圆有关的计算-中考数学知识点归纳总结(华师大版)
【华师大版】2020中考数学总复习知识点梳理:第六单元 圆 第23讲 与圆有关的计算

第23讲与圆有关的计算
一、知识清单梳理
知识点一:正多边形与圆关键点拨与对应举例
1.正多边形与圆(1)正多边形的有关概念:边长(a)、
中心(O)、中心角(∠AOB)、半径(R))、
边心距(r),如图所示①.
(2)特殊正多边形中各中心角、长度比:
中心角=120°中心角=90°中心角=60°,△BOC为等边△
a:r:R=2:1:2a:r:R=2::2a:r:R=2:2
例:(1)如果一个正多
边形的中心角为
72°,那么这个正多
边形的边数是5.
(2)半径为6的正四
边形的边心距为32,
中心角等于90°,面
积为72.
知识点二:与圆有关的计算公式2.弧长
和
扇形面积
的计算扇形的弧长l=
180
n rπ
;
扇形的面积S=2
360
n r
π=1
2
lr
例:已知扇形的圆心
角为45°,半径长为
12,则该扇形的弧长
为3π.
3.圆锥
与
侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥
的母线,扇形的弧长等于圆锥
的底面周长.
(2)计算公式:
在求不规则图形的面
积时,注意利用割补
法与等积变化方法归
为规则图形,再利用
规则图形的公式求
,S侧==πrl 解.
例:如图,已知一扇形的半
径为3,
圆心角
为
60°,则图中阴影部分的面积为。
华东师大初中数学中考总复习:圆综合复习--知识讲解(基础)【精编】.doc

中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径. 3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系 1.点与圆的位置关系如图所示.d 表示点到圆心的距离,r 为圆的半径.点和圆的位置关系如下表:点与圆的位置关系 d 与r 的大小关系点在圆内 d <r 点在圆上 d =r 点在圆外 d >r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d 为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆 1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径. 2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比. 3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6 【思路点拨】连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2. 【答案】C ; 【解析】 连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB , ∴AD=BD ,即AB=2BD , ∵∠CEB=30°, ∴∠COB=60°, ∵OD=1,∴BD=1×tan60°=, ∴AB=2, 故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是( )A 、2cmB 、3cmC 、4cmD 、221cm【答案】解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD , ∴AB=2AM , ∵CD=5cm ,∴OD=OA=12CD=12×5=52cm , ∵OM :OD=3:5, ∴OM=35OD=×=, ∴在Rt △AOM 中,AM =22OA OM -=2253()()22-=2, ∴AB=2AM=2×2=4cm. 故选C .类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长. 【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可. 【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2. ∵ OD =OB ,OC =OC . ∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°, ∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径, ∴ ∠ADB =90°. 在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2, ∴ △DAB ∽△BOC ,∴AD BDOB BC,∴ OB BDBC AD=.在Rt △DAB 中,由勾股定理得22226242BD AB AD =-=-=.∴ 342622BC ⨯==. 【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径. 举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)). ∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4. ∴ ∠1+∠3=∠2+∠4, 即∠OEG =∠ODG =90°. ∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)). 在△ADC 中,∠ADC =90°, ∴ ∠A+∠ACD =90°. 又∵ CD 是⊙O 的直径, ∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点, ∴ AG =GE =DG ,∴ ∠A =∠AEG . 又∵ OE =OC ,∴ ∠OEC =∠ACD . 又∵ ∠A+∠ACD =90°, ∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG . ∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM ,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n 中,.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积.【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC 中,以AC 为直径的⊙O 交BC 于D ,过C 作⊙O 的切线,交AB 的延长线于P ,∠PCB=∠BAC .(1)求证:AB=AC ;(2)若sin ∠BAC=35,求tan ∠PCB 的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE∥PC,∴∠PCB=∠CBE,∵sin∠BAC==,∴=,∵AB=AC,∴tan∠CBE===,∴tan∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【高清课堂:圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+. 又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【高清课堂:圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°,∴2sin45222AB AC'==⨯=°.。
华师大版数学中考复习课件第六章 圆(1)

圆周角,则∠A=○21 ___∠__D___;
证明圆周角相等
1 相等
(2)
︵
BC
︵
= BD
, 则 ∠ A = ○22
___∠__B_C__D____
半圆(或直径)所对的圆周 (1)若 AB 是直径,则∠ACB=○25 (1)分别连结直径两
推 角是○23 ___9_0_°___;90°的 __9_0_°____;
第 11 页
第一篇 过教材 ·考点透析
中考复习与训练 数学·配华师
2.圆周角定理的推论 如图,在⊙O 中,AB 为直径,CD 为弦,且 CD⊥AB.
第 12 页
第一篇 过教材 ·考点透析
中考复习与训练 数学·配华师
文字描述
数学符号
作用
(1)∠A 和⑳___∠__D___是B︵C 所对的
推 论
在同圆或等圆中,同弧或 等 弧 所 对 的 ⑲ __圆__周__角__
︵︵
若∠AOB=∠COD,则AB =CD ,AB=CD,OM=ON.
2.圆心角定理的推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一
组量相等,那么它们所对应的其余各组量都分别相等.
第5页
第一篇 过教材 ·考点透析
中考复习与训练 数学·配华师
考点三 垂径定理
考情概览
地区 遂宁 年份
端点与圆上一点,
论
2 圆 周 角 所 对 的 弦 是 ○24 (2)若∠ACB=○26 ___9_0_°___,则 AB 得直角;(2)确定圆
第六章 圆
6.1 圆的基本性质
中考复习与训练 数学·配华师
考点精析
考点一 圆的有关概念及性质
2019年华师大版中考总复习知识点梳理:第21讲圆的基本性质

第六单元圆第21讲圆的基本性质一、知识清单梳理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图c点,∠BAC=40°,则∠D的2019-2020学年数学中考模拟试卷一、选择题1.一个不透明的袋子中装有红球3个,白球1个,除颜色外无其他差别随机摸出一个球后不放回,再摸出一个球,则两次都摸到红球的概率是( ) A .916B .34C .38D .122.如图,一个半径为r 的圆形纸片在边长为8 (8>)的等边三角形内任意运动,则在该边三角形内,这个圆形纸片“接触不到的部分”的面积是( )A .283r π B .24)3r π C .8﹣πr 2D .(π)r 23.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg ,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900kgB.105kgC.3150kgD.5850kg4.如图,在平面直角坐标系中,过点A 且与x 轴平行的直线交抛物线y =13(x+1)2于B ,C 两点,若线段BC 的长为6,则点A 的坐标为( )A.(0,1)B.(0,4.5)C.(0,3)D.(0,6)5.如图,在矩形ABCD 中,E 是AD 上一点,沿CE 折叠△CDE ,点D 恰好落在AC 的中点F 处,若CD ,则△ACE 的面积为( )A .1B C .2D .6.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,则CD 的长为( )A .B .4C .D .87.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=26,BD=18,AB=x,那么x 的取值范围是 ( )A .4< m <13B .4< m <22C .9< m <13D .4< m <98.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .B .C .D .9.在Rt △ABC 中,∠C =90°,a =1,c =4,则sinB =( )A .5B .14C .13D .410.一个不透明的袋子中装有4个标号为1,2,3,4的小球,它们除标号外其余均相同,先从袋子中随机摸出一个小球记下标号后放回搅匀,再从袋子中随机摸出一个小球记下标号;把第一次摸出的小球标号作为十位数字,第二次摸出的小球标号作为个位数字,则所组成的数是3的倍数的概率是( ) A .14B .13C .512D .51611.二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c >3b ;(3)5a+7b+2c >0;(4)若点A(-3,y 1)、点B(12-,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 2<y 3;(5)若方程a(x+1)(x-5)=c 的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2,其中正确的结论有( )A .1个B .2个C .3个D .4个12.如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA+MD+ME 的最小值为( )D.10二、填空题13.把多项式34x x -分解因式的结果是______.14.如图,在正方形ABCD 中,AB =4,分别以B 、C 为圆心,AB 长为半径画弧,则图中阴影部分的面积为______.15.将6 800 000用科学记数法表示_____.16.函数y x中,自变量x 的取值范围是 . 17.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.18.计算()322x-的结果等于_____.三、解答题19.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x亩,大黄鱼10y亩,蛏子10z亩.(1)用x的式子分别表示y、z;(2)问如何安排劳力与养殖亩数收益最大?20.为了让学生了解环保知识,增强环保意识,红星中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:______.(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)”答:______.(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?答:______.21.中国“蛟龙”号深潜器目前最大深潜极限为7062.68米。
九年级下册华师大版数学圆知识点

九年级下册华师大版数学圆知识点数学是一门抽象而理性的学科,而圆则是数学中非常重要且常见的一个概念。
在九年级下册的华师大版数学教材中,圆的知识点是一个不可忽视的重点内容。
接下来,我们将对九年级下册华师大版数学中关于圆的知识点进行系统地介绍与讨论。
首先,让我们回顾一下圆的基本概念。
在数学中,圆是由平面中所有到定点距离相等的点组成的集合。
圆通常由圆心和半径来描述。
圆心是圆的中心点,而半径则是从圆心到圆上任意一点的距离。
了解这些基本概念可以帮助我们更好地理解和应用圆的知识。
一、圆的周长和面积是圆的基本属性,也是圆的重要应用。
圆的周长可以通过公式C=2πr计算得出,其中C表示圆的周长,r表示圆的半径。
同样,圆的面积可以通过公式A=πr²计算得出,其中A表示圆的面积。
这些公式的应用可以帮助我们计算圆的周长和面积,解决实际问题,如园艺设计、建筑设计等。
二、在九年级下册华师大版数学中,圆与直线的关系也是一个重要的知识点。
首先,我们来讨论直径与弦之间的关系。
直径是通过圆心的一条直线,而弦是圆上任意两点之间的线段。
在任何一个圆中,直径始终等于两个相对的弦之和。
这个关系在解决实际问题中非常有用,特别是在解决圆形活动场地的划分、圆形轮胎等问题时。
三、九年级下册华师大版数学中,圆和角的关系也是重要的一个内容。
在圆的内部或外部,同一个圆心对应的两条弧所对应的角相等。
这个性质被称为圆心角的性质。
在解决圆环编织、风力发电机桨叶运动范围等问题时,这个性质可以帮助我们得出准确的结论。
四、欧拉公式是九年级下册华师大版数学中关于圆的一个高阶概念。
这个公式被认为是数学中最美丽的公式之一。
欧拉公式是通过圆的半径、弧度以及复数等概念而得出的。
以上是九年级下册华师大版数学中关于圆的知识点的重要内容。
通过对这些知识的学习与实践,我们可以更好地理解和应用圆的性质。
圆是数学中一个富有魅力的概念,它在我们日常生活中随处可见。
掌握圆的知识,不仅可以帮助我们解决实际问题,还可以培养我们的抽象思维和数学推理能力。
华师大版九年级圆知识点

华师大版九年级圆知识点华师大版九年级圆知识点按照如下格式进行讲解:一、圆的概念与性质圆是平面上所有离圆心的距离都相等的点的集合。
圆上的每一条线段都是圆的弦,而通过圆心的弦称为直径。
圆的性质包括:1. 圆心角:圆心角是指以圆心为顶点的角,它的度数等于所对圆弧的度数。
圆心角的度数范围是0°到360°。
2. 弧长:圆上任意弧所对应的圆心角所在的圆弧长度称为弧长。
弧长公式可以表示为:L = 2πr(θ/360°),其中L是弧长,r是半径,θ是圆心角的度数。
3. 弦长:圆上的弦的长度称为弦长。
弦长公式可以表示为:l = 2r*sin(θ/2),其中l是弦长,r是半径,θ是圆心角的度数。
4. 切线:切线是与圆仅有一个交点的直线。
切线与半径垂直,形成直角。
二、圆的相关定理1. 圆的面积:圆的面积公式为S = πr^2,其中S是圆的面积,r 是半径。
2. 弧长与半径关系:给定圆心角θ,则圆弧所对应的弧长L与半径r的关系是L = 2πr*(θ/360°)。
3. 圆的切线定理:切线与半径的垂直关系可以推导出切线与切点之间的夹角等于所对的弧和半径的夹角。
4. 切线长度定理:切线段的平方等于切点到圆心的距离与切点到圆心所对应的弧之积。
5. 弦的性质:等长的弦对应的弧长相等;相等的弧对应的弦长相等;垂直于弦的直径平分弦。
三、圆的解题技巧1. 圆心角的计算:根据已知的圆心角度数,可以计算出相应的弧长,应用圆的性质;或者根据圆心角所成的弦长,可以计算出圆的半径。
2. 弧长的计算:根据已知的圆弧对应的圆心角及圆的半径,可以计算出弧长。
3. 切线的计算:利用圆的性质和切线的定理,可以计算出切线与切点之间的夹角、切线长度等。
4. 配准问题:对于两个圆的配准问题,可以利用两圆的半径和圆心之间的关系,求解出未知量。
通过对九年级圆知识点的学习,我们能够了解到圆的概念与性质,掌握圆的相关定理,学会运用解题技巧,提高数学问题的解决能力。
九年级数学 圆中的计算问题华东师大版知识精讲

九年级数学 圆中的计算问题华东师大版【本讲教育信息】一. 教学内容:§28.3 圆中的计算问题二. 重点、难点: 1. 重点:⑴弧长和扇形的面积; ⑵圆锥的侧面积和全面积 2. 难点:弧长和扇形面积公式的推导三. 知识梳理:(一)弧长和扇形的面积 1. 弧长的计算公式如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为:2360180n n rl r ππ=⋅=. 2. 扇形的面积公式如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形面积为213602n r S S lr π==或 说明:⑴对于弧长公式和扇形面积公式,无须死记硬背,应在明确其“来历”的基础上理解掌握.⑵在应用弧长公式180n rl π=或扇形面积公式2360n r S π=进行计算时,要注意公式中的n的意义,n 表示1°的圆心角的倍数,因此不带单位.⑶扇形的另一个面积公式12S lr =与三角形的面积公式有些类似.形式基本一样,可以联系起来记忆.(二)圆锥的侧面积和全面积如图,我们把圆锥底面圆周上任意一点与圆锥顶点的连线叫做圆锥的母线.连结顶点与底面圆心的线段叫做圆锥的高.如图,沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和.说明:⑴研究圆锥的侧面积和全面积,必须先将其展开.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.⑵若设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积就是其展开图——扇形的面积,122r l rl ππ⋅⋅=S=;圆锥的全面积是侧面积与底面积的和,是2rl r ππ+.另外,知道扇形的半径和弧长,还可以求得扇形的圆心角.【典型例题】例1. 如图,一块长为8的正方形木板ABCD ,在水平桌面上绕点A 按逆时针方向旋转到ADEF 的位置,则顶点C 从开始到结束所经过的路径长为( )A. 16 ;B. 162 ;C. 8π ;D. 42π分析:在旋转过程中,AC 的长度保持不变,所以顶点C 从开始到结束所经过的路径长是以A 为圆心,AC 长为半径的90°的弧长,因为AC =82,所以,ππ241802890=⋅⋅=l ,故选D .例2. 如图,⊙A 、⊙B 、⊙C 、⊙D 互相外离,它们的半径都是1,顺次连结四个圆心得到四边形ABCD ,则图中四边形内的四个扇形面积之和为( )A. 2π;B.π;C.32π ; D. 21π分析:根据题中的条件无法求出四个扇形的圆心角的度数,因而从整体考虑,可以发现四个扇形的圆心角分别是四边形的四个内角,所以四个扇形的圆心角的度数之和为360°,故选B .例3. 如图,如果圆锥的底面圆的半径是8,母线长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 .分析:由圆锥的底面圆的半径是8,可以求出底面圆的周长,也就是扇形CAB 的弧长,再利用弧长公式2360180n n rl r ππ=⋅=即可求扇形的圆心角的度数. 解:∵圆锥底面圆的半径是8,∴BC l r C ==⋅=ππ162 ∵母线长为15∵180Rn l BC ⌒π=∴1801516⋅=ππn 192=n∴圆心角的度数为192°.例4. 如图,一把纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为17cm ,则贴纸部分的面积为_______.(结果保留π)分析:扇形面积公式有两个,一是2360n r S π=,另一个是12S lr =,贴纸部分的面积实际是由两个扇形的面积相减所得.由解意很容易列出关于所求贴纸部分的面积:2212025120(2517)360360ππ⋅⋅⋅⋅--=187π(cm 2).例5. 如图1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为A. R =2rB. R =94r C. R =3r D. R =4r分析:注意题中的“底面圆的半径”与“扇形的半径”是两个不同的概念.要找到圆的半径与扇形半径之间的关系,需要得到一个等量关系,由圆锥的有关概念,根据圆锥底面圆的周长等于扇形的弧长,可得2πr =90180πR∴R =4r ∴答案选D例6. 如图所示,半径是10cm 的圆纸片,剪去一个圆心角是120°的扇形(图中阴影部分),用剩下部分围成一圆锥,求圆锥的高和底面圆的半径.分析:首先,根据题意画出圆锥体的示意图,从图中可知,要求圆锥的底面圆的半径需求出其所在圆的周长,而底面圆的周长为左图中剩下扇形的弧长,这样转化到求弧长的问题;关于圆锥的高,只要由底面半径与圆锥的母线长构造直角三角形即可.解:如答图中的甲、乙图,∵n =360°-120°=240°,R =10cm ,如图(甲)所示,24010401801803OAmB n r l πππ⨯===扇形(cm ) 如图乙中连结O ′P ,则O ′P ⊥CD ,设⊙O ′半径为r , ∵'',2OAmB O O C l C r π==扇形,∴4023r ππ=,∴r =203(cm ) ∴ O ′P =22'22201010533PD O D ⎛⎫-=-=⎪⎝⎭(cm )例7. 已知矩形ABCD 中,AB =1cm ,BC =2cm ,以B 为圆心,BC 长为半径作41圆弧交AD 于F ,交BA 的延长线于E ,求阴影部分面积.分析:要求阴影部分面积,只须将它转化为求规则图形的面积的和差,故需连结BF ,ABF BFE S S S △扇形阴-=解:连结BF∵BC =2,F 点在以B 为圆心,BC 为半径的圆上 ∴BF =2∵矩形ABCD ,AB =1,BF =2 ∴∠ABF =60° ∴ππ323602602=⋅⋅=BFES 扇形3BA BF AF ,BAF Rt 22=-=∆中231321=⨯⨯=ABF S △∴ABF BFE S S S △扇形阴-= =2cm )2332(-π 答:阴影部分面积为2cm )2332(-π.例8. 如图已知圆锥的底面半径r =10cm ,母线长为40cm .⑴求它的侧面展开图的圆心角和表面积;⑵若一只甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B ,它所走的最短路程是多少?SAB分析:⑴把圆锥的侧面沿母线SA 展开,如图 则⋂'AA 的长为2πr =20π,SA =40 所以20π=40180n π⋅所以n =90°所以圆锥的侧面展开图的圆心角是90°S 表面=S 侧+S 底=29040360π⋅+π·102=500π(cm 2)⑵由圆锥的侧面展开图可见,甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B 所走的最短路程是线段AB 的长在Rt △ASB 中,∠ASB =90°,SA =40,SB =20所以AB =22SA +SB =205cm答:圆锥的侧面展开图的圆心角是90°,圆锥的表面积是500π2cm ,甲虫所走的最短路程长205cm .例9. 如图,扇形OAB 的圆心角为90°,分别以OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个封闭图形的面积,那么P 和Q 的大小关系是( )A. P =Q ;B. P >Q ;C. P <Q ;D. 无法确定.分析:本题中两个封闭图形的面积不易直接求,可用代数方法来求,根据图形的对称性,另两个封闭图形的面积相等,不妨设为M ,再设OA =2r ,由图形可得M +Q =221r ⋅π,2M +P +Q =2r ⋅π,解得P =Q ,故选A .[方法探究]在一个问题不能直接解决的情况下,就要善于从另一个角度来寻找其它的途径.本题是通过设未知数,把几何问题转化为代数问题,即通过方程思想,使问题迎刃而解.例10. 如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(精确到0.1米)?解析:由题意要求圆弧BF 的长,只要求得圆心角∠BAF 的度数即可,根据左右对称,所以将∠BAC 置于一个直角三角形中来计算其度数.过点B 作BE ⊥地面于点E ,作BG ⊥AD 于点G ,则有GD =BE =2,又AD =AC +CD =3.5,所以AG =1.5,则在Rt ΔABG 中,AB =3,AG =1.5,所以∠BAC =60°,所以∠BAF =120°.则弧BF 的长=1203180π⋅⋅=2π≈6.3(米).例11. 如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与同心的半圆型,弯道与直道相连接.已知直道BC 的长为86.96米,跑道的宽为1米(π=3.14,结果精确到0.01米) ⑴求第一条跑道的弯道部分⋂AB 的半径;⑵求一圈中第二条跑道比第一条跑道长多少米?⑶若进行200米比赛,求第六道的起点F 与圆心O 的连线FO 与OA 的夹角∠FOA 的度数.解析:⑴弯道的半圆周长为400286.962-⨯=113.04(米),由圆周长L =2πr ,所以半圆弧线长'l r π=,则第一道弯道部分的半径r ='113.043.14l π==36.00(米)⑵第二道与第一道的直跑道长相等,第二道与第一道的弯跑道的半径之差为1米,第二道与第一道的弯跑道长的差即为两圆周长之差,即2π(r +1)-2πr =2π=6.28(米).⑶从第一道200米,是以A 点为始点,第六道上的运动员需要跑86.96米的直道和113.04米的弯道,即弧长为113.04米,又第六道弯道半圆的半径为41米, 由弧长与半圆、圆心角的关系得n =,所以∠FOA =180°°°.【模拟试题】(答题时间:30分钟)1. 一个扇形的弧长是20πcm ,面积是240π2cm ,则扇形的半径是( )A. 6cmB. 21cmC. 24 cmD. 62 cm2. 一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ) A. 60° B. 90° C. 120° D. 180°3. 底面圆半径为3cm ,高为4cm 的圆锥侧面积是( )A. 7. 5π2cmB. 12π2cmC. 15π2cmD. 24π2cm4. 扇形的半径OA =20cm ,∠AOB =135 ,用它做成一个圆锥的侧面,此圆锥底面的半径是( )A. B. C. 15cm D. 30cm5. 如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是,则圆中的三个扇形即(三个阴影部分)的面积之和为( )A.12π2cm B.8π2cm C. 6π2cm D.4π2cm6. 一个圆锥的底面积是25π2cm ,母线长13cm ,则这个圆锥的侧面积是 .7. 一个圆锥的侧面展开图是一个面积为8π的半圆,则这个圆锥的全面积是________. 8. 如图所示,已知⊙1O 内切于扇形AOB ,切点为C 、D 、E ,⊙1O 的面积为16π,∠AOB =60°,求扇形AOB 的周长和面积.9. 如图所示是一管道的横截面示意图,某工厂想测量管道横截面的面积,工人师傅使钢尺与管道内圆相切并交外圆于A 、B 两点,测量结果为AB =30cm , 求管道阴影部分的面积为多少?【试题答案】1. C2. C3. C4. B5. B6. 65π2cm7.12π8. 24π提示:连结O 1C ,OO 1并延长OO 1,则必过切点E ,设⊙O 1的半径为r ∴1O S 圆21,16r S O ππ==圆,∴216r ππ=,r =4, ∴O 1C =4, ∵OA ,OB 切圆1O 于C ,D ,∠AOB =60°, ∴∠AOE =30° ∵∠COO 1=30°,O 1C =4,∴O 1O =8, ∴R =OE =OO 1+O 1E =8+4=12 ∴24412242,41801260+=⨯+=+==⨯=⋂⋂ππππr l l lAOB OAB AOB扇形∴224360OABn R S ππ==扇形. 9. 解:设钢尺AB 与管道内圆相切于C 点,连结OC 、OA ,则OC ⊥AB ,设OC =r ,OA =R ,∵AB =30cm ,OC ⊥AB ,∴AC =152AB=, ∴222222()15225S OA OC R r AC ππππππ=⋅-⋅=-=⨯=⨯=阴影(cm 2)。
华师版 初中九年级数学 中考总复习常考易考 教材基础知识整理梳理 第六单元 圆 第22讲 与圆有关的位置关系

(2)到圆心的距离等于半径的直线是圆的切线.
(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.
4.切线
的性质
(1)切线与圆只有一个公共点.
(2)切线到圆心的距离等于圆的半径.
(3)切线垂直于经过切点的半径.
利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.
*5.切线长
(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.
(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
到三角形的三个顶点的距离相等
6.三角形的内切圆
与三角形各边都相
切的圆叫三角形的
内切圆,内切圆的
圆心叫做三角形的
内心,这个三角形叫
圆的外切三角形
到三角形三条角平分线的交点
到三角形的三条边的距离相等
例:如图,AB、AC、DB是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为2.
知识点四:三角形与圆
5.三角形的外接圆
图形
相关概念
圆心的确定
内、外心的性质
内切圆半径与三角形边的关系:
(1)任意三角形的内切圆(如图a),设三角形的周长为C,则S△ABC=1/2Cr.
(2)直角三角形的内切圆(如图b)
相切
相交
由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.
例:已知:⊙O的半径为2,圆心到直线l的距离为1,将直线l沿垂直于l的方向平移,使l与⊙O相切,则平移的距离是1或3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:(1)如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.
(2)半径为6的正四边形ቤተ መጻሕፍቲ ባይዱ边心距为 ,中心角等于90°,面积为72.
知识点二:与圆有关的计算公式
2.弧长和
扇形面积
的计算
扇形的弧长l= ;扇形的面积S= =
例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.
第23讲与圆有关的计算
一、知识清单梳理
知识点一:正多边形与圆
关键点拨与对应举例
1.正多边形与圆
(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.
(2)特殊正多边形中各中心角、长度比:
中心角=120°中心角=90°中心角=60°,△BOC为等边△
3.圆锥与
侧面展开图
(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.
(2)计算公式:
,S侧= =πrl
在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.
例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为