中考圆知识点经典总结(最新最全)

合集下载

圆中考 知识点总结

圆中考 知识点总结

圆中考知识点总结圆是中学数学中的一个重要知识点,在中考数学中起着重要的作用。

因此,掌握圆的相关知识对于中考数学是非常重要的。

本文将对中考数学中关于圆的知识点进行总结,帮助学生更好地复习和掌握圆的相关知识。

知识点总结一、基本概念1. 圆的定义:圆是由平面上距离一个确定点一定距离的点的全体组成的集合。

2. 圆的要素:圆心、半径、直径、弧、圆周。

3. 圆的性质:圆的直径是圆周的两倍,圆周上任意两点与圆心的距离相等。

二、圆的相关公式1. 圆的周长公式:C=2πr。

2. 圆的面积公式:S=πr²。

三、圆的相关定理1. 直径定理:直径所对应的两个锐角为直角。

2. 圆的切线定理:过圆外一点引圆的切线与过该点作圆的半径垂直。

3. 圆的切线与弦的性质:相交弦定理、弦切定理。

4. 圆的内切与外切定理:内切定理、外切定理。

四、圆的相关应用1. 圆的面积和周长的应用:计算圆的面积、周长和扇形面积等。

2. 圆的几何关系:切线与圆的位置关系、相交弦的性质等。

3. 圆的倒影与旋转:圆的旋转变换、圆的倒影变换。

五、解题技巧1. 熟练掌握圆的相关公式和定理,能够正确应用公式和定理解题。

2. 多做练习,培养解决问题的能力,提高解题技巧。

3. 注意细节,正确理解题目的意思和要求,避免因理解错误而导致错误答案。

六、经典例题1. 已知AB是∠O的平分线,且AC⊥BC,求证:AC=BC。

2. 已知AB与CD是两条相交的直径,P是与AB、CD相交的一点,求证:PA²+PB²=PC²+PD²。

3. 如图,ΔABC是等边三角形,M、N分别是BC、AB的中点,P为AM的垂足,若PA=2,则求BP的长。

4. 四通五达服装公司要在正方形草坪内竖立一些旗杆,使得每个旗杆都最多不见这块草坪中心的五分之一。

那么最多可以竖立几个旗杆?结语通过对圆的相关知识点进行总结,我们可以更好地掌握圆的相关概念、公式、定理和应用。

中考数学圆知识点总结

中考数学圆知识点总结

中考数学圆知识点总结一、圆的基本概念1.1 圆的定义圆是由平面上到定点到距离等于定值的所有点的集合。

这个定点叫做圆心,这个定值叫做圆的半径。

1.2 圆的元素圆的元素有圆心、半径、直径、弦、弧、扇形等。

1.3 圆的相关概念圆周率π:定圆的周长与直径的比值。

圆心角:以圆心为顶点的角。

圆周角:角的顶点在圆周上,并且角的两边都是圆上的弧。

1.4 圆的性质圆的性质有很多,比如半径相等的圆,直径相等的圆,弦长相等的圆等等。

二、圆的计算2.1 圆的周长圆的周长又叫做圆周长,也叫做圆的周长,通常用字母C表示。

圆的周长等于圆的直径乘以圆周率π。

C=πd2.2 圆的面积圆的面积是圆内部的所有点的集合,通常用字母A表示。

圆的面积等于圆心角的正弦值乘以半径的平方再乘以圆周率π。

A=πr²2.3 圆的相关角和弧长的求解在圆中,角和弧是密切相关的。

圆心角的度数等于它所对的弧所代表的圆周的长度所占整个圆周的比例。

所以我们可以利用这个性质来求解圆的相关问题。

三、圆的相关定理3.1 圆的切线与切点圆的切线与切点是圆的一个重要定理,它的性质有点多。

比如一个圆与直线相切,与圆外一点两切线为公切线或两切线的交点到原圆的距离相等。

3.2 圆的相交定理圆的相交定理也是圆的一个重要定理。

比如两个圆相交于两个不同的点,那么连接这两个交点和两个圆心就组成了一个四边形,并且它的对角线相交于一点。

3.3 圆的正接弦定理圆的正接弦定理是圆的一个重要定理。

它表示一个圆内部的一个锐角与它所对的正切弦之间的关系,这个定理在圆的相关计算中是非常重要的。

四、圆的应用圆在现实生活中有很多应用,比如钟面就是一个圆,轮胎也是一个圆,圆锥形的灯泡和圆球等等都是圆的应用。

而在数学中,圆也是几何图形中的一个重要内容,比如在三角函数中,圆和三角函数是密切相关的。

在平面几何中,圆与直线相交的问题也是经常出现的。

所以掌握圆的知识对于学生来说是非常重要的。

总之,圆是中考数学中的一个重要知识点。

中考圆的知识点总结总结

中考圆的知识点总结总结

中考圆的知识点总结总结一、圆的定义和性质1. 圆的定义圆是一个平面上和一个确定点的距离都相等的点的集合。

这个确定点就是圆心,而圆心到圆上的任意点的距离就是半径。

2. 圆的性质(1)圆心角圆心角是以圆心为顶点的角,它的两条边分别是圆周上的两条弦。

圆心角的度数等于对应的弧所对的圆周的度数。

如果圆心角的度数为360度,那么这个角就是周角。

(2)弧圆上的一段弧是圆周的一部分。

圆的周长就是圆周的长度,可以用角度和弧度来表示。

(3)切线和切点切线是一个直线,它与圆相切于一个点。

在圆上,切线与半径的夹角为90度。

(4)同位角同位角是两条平行线被一条截线所切割而形成的一对内角和一对外角。

同位角的性质也可以应用到圆上。

(5)相似两个或者更多的圆是相似的,如果它们有着相同的形状但是不同的尺寸。

相似的圆的半径之比等于它们的直径之比。

二、圆的相关定理1. 圆周角定理圆周角等于圆心角的一半。

2. 圆的面积和周长圆的面积等于πr^2,圆的周长等于2πr,其中r是圆的半径,π是一个无理数,约等于3.14159。

3. 弦长定理在同一个圆上,相交弦的两个切点到圆心的距离相等。

4. 弧长定理同样的圆上,相对的圆周弧长相等。

5. 切线定理切线和半径的夹角为90度。

6. 弧上的角定理同样的圆上,一个圆周弧所对的圆心角等于这个弧上的其他角的和。

7. 线段对定理在一个圆上,两条相交的弧所对的线段互为比例。

三、圆的应用1. 圆的周长和面积的应用圆的周长和面积是经常在实际生活中用到的数学概念。

比如在工程测量中,需要计算环形的周长和面积。

2. 圆的图形补充圆的图形补充,包括扇形、环形等概念,也是圆的知识点之一。

3. 圆的运动学应用在运动学中,圆的运动规律和路径也是一个重要的应用。

四、典型例题下面列举一些典型的中考圆的例题,帮助大家更好地复习和巩固知识。

1. 如果一条切线和一条半径分割了一个角为30度的圆心角,那么这条切线和半径的夹角是多少度?A. 60度B. 45度C. 30度D. 15度答案:A. 60度2. 已知圆的半径为8cm,求圆的面积和周长。

中考圆形知识点总结

中考圆形知识点总结

中考圆形知识点总结一、圆的定义圆是由平面上任意一点到圆心的距离都相等的一组点的集合,这个相等的距离就是圆的半径,用R或r表示。

如果把圆心用O表示,圆上一点用A表示,那么圆的表示就是O为圆心,R为半径的圆,通常写作O(R)。

二、圆的性质1. 圆的周长和面积圆的周长,即圆周长,也称为圆的周长。

由于圆是一个闭合曲线,所以圆的周长是指圆的周围的长度。

圆的周长L可以用公式L=2πr来表示,其中π取约等于3.14。

圆的面积A也和圆的半径r有关,圆的面积A=πr^2。

2. 圆的直径圆的直径是圆上任意两点之间经过圆心的线段的长度,它恰好是圆的半径的两倍,即d=2r。

3. 圆心角的度数圆心角是指以圆心为顶点的角,圆心角的度数可以用角度或弧度来表示。

圆心角的度数等于所对圆弧的中心角。

例如,一个圆的圆周角是360°,因此圆周角所对的圆弧的中心角也等于360°。

4. 圆锥相似圆锥相似是指对于两个圆,如果它们的半径之比相等,则这两个圆是相似的。

5. 圆内接四边形在一个圆中,如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。

在圆内接四边形中,相对的角相等,两对相对边之积相等。

6. 圆对称圆对称是指图形绕圆心旋转180°后,图形不变。

圆对称的图形具有很高的美感,例如很多具有圆对称的图案都可以被人们所接受和欣赏。

三、相关定理1. 圆心角定理圆心角定理是指圆心角的度数等于所对圆弧的中心角,即一个圆心角的度数等于它所对的圆弧的度数。

2. 弦长定理弦长定理是指一个圆上任意一条弦所对的两个弧的长度之和,等于这条弦的长度的平方。

3. 垂径定理垂径定理是指一个圆上的直径垂直于与之相交的弦,且中点与圆心和交点共线。

4. 弧长、扇形面积圆的弧长可以用弧度来表示,即弧长s=θr,其中r为半径,θ为圆心角的弧度。

圆的扇形面积也可以用弧度来表示,扇形的面积等于所对圆心角的弧度的一半乘以半径的平方。

四、计算题1. 计算圆的周长和面积计算圆的周长和面积是圆形题目中最基本的计算题,需要根据给定的半径或直径进行计算。

中考圆的知识点总结

中考圆的知识点总结

中考圆的知识点总结一、圆的相关定义1. 圆的定义:圆是平面上到定点距离等于定长的点的集合。

2. 圆的要素:圆心、半径,圆周、圆内、圆外。

二、圆的相关定理1. 圆的周长和面积(1)周长:圆的周长等于圆的直径乘以π(π≈3.14)。

公式:周长=2πr(2)面积:圆的面积等于圆的半径平方乘以π。

公式:面积=πr²2. 圆心角和圆心角的度数(1)圆心角:以圆心为顶点的角叫做圆心角。

(2)度数:圆周的一份叫做圆周角,圆周角是度数。

一个完整的圆周角是360°。

3. 弧长和弧度(1)弧长:圆的一部分。

弧长的公式:弧长=2πr(圆的半径r乘以圆心角的度数除以360°)。

(2)弧度:圆心角所对应的弧长的长度。

1弧度=弧长/半径。

4. 直角三角形中的圆(1)直角三角形内切圆:直角三角形的内切圆的圆心在直角三角形的斜边上。

(2)直角三角形外切圆:直角三角形的外切圆的圆心在直角三角形的斜边上。

5. 圆与三角形的关系(1)正弦定理:a/sinA=b/sinB=c/sinC(2)余弦定理:a²=b²+c²−2bc⋅cosA(3)正弦定理:a/sinA=b/sinB6. 圆的相交和切线(1)相交:两个圆相交的情况有几种:相离(两个圆不相交)、内切(一个圆在另一个圆内部)、外切(一个圆在另一个圆外部)、内含(一个圆在另一个圆内部,但没有公共点)。

(2)切线:从圆外一点引一条与圆相切的线叫做切线。

7. 圆的应用(1)建筑中的圆:建筑中圆的形状、圆的结构。

(2)生活中的圆:轮胎、钟表、CD/DVD等。

三、圆的相关练习1. 计算圆的周长和面积。

2. 计算圆心角的度数和弧度。

3. 求解直角三角形内切圆和外切圆的问题。

4. 应用正弦定理、余弦定理和正切定理求解相关问题。

5. 求解相交圆的相交情况和切线的情况。

以上就是中考圆的相关知识点总结,希望对大家的学习有所帮助。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。

3. 半径(r):圆心到圆上任意一点的距离。

4. 直径(d):通过圆心的最长弦,是半径的两倍长度。

5. 弦(c):连接圆上任意两点的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定的弧。

10. 切线(t):与圆只有一个公共点的直线。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的弦。

3. 圆的任意两点之间的弧,优弧总是大于劣弧。

4. 切线与半径相交于圆外的一点,形成直角。

5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。

6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。

4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。

四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。

2. 圆与圆的关系:内含、外离、相交、内切、外切。

3. 圆的切线问题:求切线长度、切点坐标等。

4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。

5. 圆的面积问题:根据圆的半径、直径、周长等求面积。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。

2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。

3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。

初中数学中考圆的知识点总结归纳(中考必备)

初中数学中考圆的知识点总结归纳(中考必备)

中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。

中考数学圆知识点归纳

中考数学圆知识点归纳

中考数学圆知识点归纳一、圆的定义和性质:1.圆的定义:平面上的所有到圆心距离相等的点的集合。

2.圆的部分:弧、弦、弧长、弦长、圆心角、半径、直径、切线、弧度、坐标公式等。

二、圆的特殊位置和位置关系:1.圆上的点与圆心之间的关系:圆周角是直径的角为直角。

2.圆内外的点与圆心之间的关系:内接圆和外接圆。

三、圆的性质:1.半径相等的圆相等,直径相等的圆相等。

2.圆的直径是两个切点。

3.两圆相交,切点在弦上,切点与所对弧不在一条直径上。

4.圆上的切线与半径垂直,且只有一条。

(切线切圆问题)5.过圆外一点可以作无数条切线,其中只有一条切线与圆通过该点处的切线垂直。

(外切线和切线问题)四、圆的计算:1.圆的周长:C=2πr(其中r为半径)。

2.圆的面积:S=πr²(其中r为半径)。

3.弧长:L=2πr(对应圆心角为360°的弧)。

4.弧度制和角度制的转换:弧度=角度×(π/180°)角度=弧度×(180°/π)五、利用圆的知识解决问题:1.根据已知条件作出相关几何图形,运用定理和性质求解问题。

2.提取关键信息,运用圆的性质和公式进行计算。

3.运用切线的特性求解问题。

4.运用弧的性质,求解弧长、弦长、圆心角等问题。

5.运用角平分线和垂直平分线的性质,求解相关问题。

六、与圆相关的解题技巧:1.制图时,可以借助直角三角形和等腰三角形的性质。

2.运用圆的部分的特性,构造性质,使用类似全等三角形的方法求解问题。

3.运用余弦定理、正弦定理等三角函数的性质,结合圆的特性求解问题。

4.利用圆内切四边形的特性解决问题。

以上为中考数学圆知识点的归纳,希望对你复习和备考有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆知识点学案
考点一、圆的相关概念
1、圆的定义
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

2、圆的几何表示
以点O为圆心的圆记作“⊙O”,读作“圆O”
考点二、弦、弧等与圆有关的定义
(1)弦
连接圆上任意两点的线段叫做弦。

(如图中的AB)
(2)直径
经过圆心的弦叫做直径。

(如途中的CD)
直径等于半径的2倍。

(3)半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(4)弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
考点三、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

垂径定理及其推论可概括为:
过圆心
垂直于弦
直径平分弦知二推三
平分弦所对的优弧
平分弦所对的劣弧
考点四、圆的对称性
1、圆的轴对称性
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性
圆是以圆心为对称中心的中心对称图形。

考点五、弧、弦、弦心距、圆心角之间的关系定理
1、圆心角
顶点在圆心的角叫做圆心角。

2、弦心距
从圆心到弦的距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

考点六、圆周角定理及其推论
1、圆周角
顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理
一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

考点七、点和圆的位置关系
设⊙O的半径是r,点P到圆心O的距离为d,则有:
d<r⇔点P在⊙O内;
d=r⇔点P在⊙O上;
d>r⇔点P在⊙O外。

考点八、过三点的圆
1、过三点的圆
不在同一直线上的三个点确定一个圆。

2、三角形的外接圆
经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心
三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)
圆内接四边形对角互补。

考点九、直线与圆的位置关系
直线和圆有三种位置关系,具体如下:
(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;
(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,
(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
直线l 与⊙O 相交⇔d<r ; 直线l 与⊙O 相切⇔d=r ; 直线l 与⊙O 相离⇔d>r ;
考点十、圆内接四边形
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中, ∵四边ABCD 是内接四边形
∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒
DAE C ∠=∠
考点十一、切线的性质与判定定理
1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线
2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

考点十二、切线长定理
切线长定理: 从圆外一点引圆的两条切线,它们的切线长
相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =;PO 平分BPA ∠
考点十三、圆幂定理
1、相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅ 推论:如果弦与直径垂直相交,那么弦的一半是它分直径
所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交
点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线
D
B
A
∴ 2PA PC PB =⋅
3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如右图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅
考点十四、两圆公共弦定理 圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点
∴12O O 垂直平分AB
考点十五、圆的公切线 两圆公切线长的计算公式:
(1)公切线长:12Rt O O C ∆
中,221AB CO ==;
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和
考点十六、三角形的内切圆和外接圆 1、三角形的内切圆
与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

考点十七、圆和圆的位置关系 1、圆和圆的位置关系
如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。

如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。

如果两个圆有两个公共点,那么就说这两个圆相交。

2、圆心距
两圆圆心的距离叫做两圆的圆心距。

3、圆和圆位置关系的性质与判定
设两圆的半径分别为R 和r ,圆心距为d ,那么 两圆外离⇔d>R+r 两圆外切⇔d=R+r
两圆相交⇔R-r<d<R+r (R ≥r ) 两圆内切⇔d=R-r (R>r ) 两圆内含⇔d<R-r (R>r )
4、两圆相切、相交的重要性质
如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。

考点十八、圆内正多边形的计算 1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

3、正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行

::2OD BD OB =;
4、正四边形
同理,四边形的有关计算在Rt OAE ∆
中进行,::OE AE OA = 5、正六边形
同理,六边形的有关计算在Rt OAB ∆
中进行,::2AB OB OA =.
考点十九、与正多边形有关的概念 1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

考点二十、正多边形的对称性 1、正多边形的轴对称性 正多边形都是轴对称图形。

一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

l
O
3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。

相关文档
最新文档