2020年四川大学数学分析考研真题
2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.0x +→时,下列无穷小量中最高阶是( )A.()201x t e dt -⎰B.0ln(1)x ⎰C.sin 20sin xt dt ⎰D.1cos 0-⎰2.设函数()f x 在区间(-1,1)内有定义,且0lim ()0,x f x →=则( )A.当00,()0x f x x →==在处可导.B.当00,()0x f x x →==在处可导.C.当0()00.x f x x →==在处可导时,D.当0()00.x f x x →==在处可导时,3.设函数()f x 在点(0,0)处可微,(0,0)(0,0)0,,,1fff n x y ⎛⎫∂∂==- ⎪∂∂⎝⎭非零向量d 与n 重直,则()A.(,)lim 0x y →=存在 B.(,)lim 0x y →=存在C.(,)lim 0x y →=存在D.(,)lim 0x y →=4.设R 为幂级数1n nn a x ∞=∑的收敛半径,r 是实数,则( )A.1n nn a x ∞=∑发散时,||r R ≥B.1n nn a x ∞=∑发散时,||r R ≤C.||r R ≥时,1n nn a x ∞=∑发散D.||r R ≤时,1n nn a x ∞=∑发散5.若矩阵A 经初等变换化成B ,则( )A.存在矩阵P ,使得P A =BB.存在矩阵P ,使得BP =AC.存在矩阵P ,使得PB =AD.方程组Ax =0与Bx =0同解6.已知直线22211112:x a y b c L a b c ---== 与直线33322222:x a y b c L a b c ---==相交于一点,法向量,1,2,3.i i i i a a b i c ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦则 A.1a 可由23,a a 线性表示B.2a 可由13,a a 线性表示C.3a 可由12,a a 线性表示D.123,,a a a 线性无关7.设A,B,C 为三个随机事件,且11()()(),()0()()412P A P B P C P AB P AC P BC ======,则A,B,C 中恰有一个事件发生的概率为 A.34 B.23 C.12 D.5128.设12(),,,n x x x …为来自总体X 的简单随机样本,其中1(0)(1),()2P X P X x ====Φ表示标准正态分布函数,则利用中心极限定理可得100155i i P X =⎛⎫≤ ⎪⎝⎭∑的近似值为 A.1(1)-ΦB.(1)ΦC.1(0,2)-ΦD.(0,2)Φ 二、填空题:9—14小题,每小题2分,共24分。
2020年数学分析高等代数考研试题参考解答

2020年数学分析高等代数考研试题参考解答安徽大学2008年高等代数考研试题参考解答北京大学1996年数学分析考研试题参考解答北京大学1997年数学分析考研试题参考解答北京大学1998年数学分析考研试题参考解答北京大学2015年数学分析考研试题参考解答北京大学2016年高等代数与解析几何考研试题参考解答北京大学2016年数学分析考研试题参考解答北京大学2020年高等代数考研试题参考解答北京大学2020年数学分析考研试题参考解答北京师范大学2006年数学分析与高等代数考研试题参考解答北京师范大学2020年数学分析考研试题参考解答大连理工大学2020年数学分析考研试题参考解答赣南师范学院2012年数学分析考研试题参考解答各大高校考研试题参考解答目录2020/04/29版各大高校考研试题参考解答目录2020/06/21版各大高校数学分析高等代数考研试题参考解答目录2020/06/04广州大学2013年高等代数考研试题参考解答广州大学2013年数学分析考研试题参考解答国防科技大学2003年实变函数考研试题参考解答国防科技大学2004年实变函数考研试题参考解答国防科技大学2005年实变函数考研试题参考解答国防科技大学2006年实变函数考研试题参考解答国防科技大学2007年实变函数考研试题参考解答国防科技大学2008年实变函数考研试题参考解答国防科技大学2009年实变函数考研试题参考解答国防科技大学2010年实变函数考研试题参考解答国防科技大学2011年实变函数考研试题参考解答国防科技大学2012年实变函数考研试题参考解答国防科技大学2013年实变函数考研试题参考解答国防科技大学2014年实变函数考研试题参考解答国防科技大学2015年实变函数考研试题参考解答国防科技大学2016年实变函数考研试题参考解答国防科技大学2017年实变函数考研试题参考解答国防科技大学2018年实变函数考研试题参考解答哈尔滨工程大学2011年数学分析考研试题参考解答哈尔滨工业大学2020年数学分析考研试题参考解答合肥工业大学2012年高等代数考研试题参考解答湖南大学2006年数学分析考研试题参考解答湖南大学2007年数学分析考研试题参考解答湖南大学2008年数学分析考研试题参考解答湖南大学2009年数学分析考研试题参考解答湖南大学2010年数学分析考研试题参考解答湖南大学2011年数学分析考研试题参考解答湖南大学2019年高等代数考研试题参考解答湖南大学2020年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2011年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学分析考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之高等代数考研试题参考解答湖南师范大学2012年数学基础综合之数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学分析考研试题参考解答湖南师范大学2013年数学基础之高等代数考研试题参考解答湖南师范大学2013年数学基础之数学分析考研试题参考解答湖南师范大学2014年数学分析考研试题参考解答华东师范大学2002年数学分析考研试题参考解答华东师范大学2012年数学分析考研试题参考解答华东师范大学2013年高等代数考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2013年数学分析考研试题参考解答华东师范大学2014年高等代数考研试题参考解答华东师范大学2014年数学分析考研试题参考解答华东师范大学2015年高等代数考研试题参考解答华东师范大学2015年数学分析考研试题参考解答华东师范大学2016年高等代数考研试题参考解答华东师范大学2016年数学分析考研试题参考解答华东师范大学2020年高等代数考研试题参考解答华东师范大学2020年数学分析考研试题参考解答华南理工大学2005年高等代数考研试题参考解答华南理工大学2006年高等代数考研试题参考解答华南理工大学2007年高等代数考研试题参考解答华南理工大学2008年高等代数考研试题参考解答华南理工大学2009年高等代数考研试题参考解答华南理工大学2009年数学分析考研试题参考解答华南理工大学2010年高等代数考研试题参考解答华南理工大学2010年数学分析考研试题参考解答华南理工大学2011年高等代数考研试题参考解答华南理工大学2011年数学分析考研试题参考解答华南理工大学2012年高等代数考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2012年数学分析考研试题参考解答华南理工大学2013年高等代数考研试题参考解答华南理工大学2013年数学分析考研试题参考解答华南理工大学2014年高等代数考研试题参考解答华南理工大学2014年数学分析考研试题参考解答华南理工大学2015年高等代数考研试题参考解答华南理工大学2015年数学分析考研试题参考解答华南理工大学2016年高等代数考研试题参考解答华南理工大学2016年数学分析考研试题参考解答华南理工大学2020年高等代数考研试题参考解答华南理工大学2020年数学分析考研试题参考解答华南师范大学1999年高等代数考研试题参考解答华南师范大学1999年数学分析考研试题参考解答华南师范大学2002年高等代数考研试题参考解答华南师范大学2013年数学分析考研试题参考解答华中科技大学1999年高等代数考研试题参考解答华中科技大学2000年数学分析考研试题参考解答华中科技大学2001年数学分析考研试题参考解答华中科技大学2002年高等代数考研试题参考解答华中科技大学2002年数学分析考研试题参考解答华中科技大学2003年数学分析考研试题参考解答华中科技大学2004年数学分析考研试题参考解答华中科技大学2005年高等代数考研试题参考解答华中科技大学2005年数学分析考研试题参考解答华中科技大学2006年高等代数考研试题参考解答华中科技大学2006年数学分析考研试题参考解答华中科技大学2007年高等代数考研试题参考解答华中科技大学2007年数学分析考研试题参考解答华中科技大学2008年高等代数考研试题参考解答华中科技大学2008年数学分析考研试题参考解答华中科技大学2009年高等代数考研试题参考解答华中科技大学2009年数学分析考研试题参考解答华中科技大学2010年高等代数考研试题参考解答华中科技大学2010年数学分析考研试题参考解答华中科技大学2011年高等代数考研试题参考解答华中科技大学2011年数学分析考研试题参考解答华中科技大学2013年高等代数考研试题参考解答华中科技大学2013年数学分析考研试题参考解答华中科技大学2014年高等代数考研试题参考解答华中科技大学2020年数学分析考研试题参考解答华中师范大学1998年数学分析考研试题参考解答华中师范大学1999年数学分析考研试题参考解答华中师范大学2001年数学分析考研试题参考解答华中师范大学2002年数学分析考研试题参考解答华中师范大学2003年数学分析考研试题参考解答华中师范大学2004年高等代数考研试题参考解答华中师范大学2004年数学分析考研试题参考解答华中师范大学2005年高等代数考研试题参考解答华中师范大学2005年数学分析考研试题参考解答华中师范大学2006年高等代数考研试题参考解答华中师范大学2006年数学分析考研试题参考解答华中师范大学2014年高等代数考研试题参考解答华中师范大学2014年数学分析考研试题参考解答吉林大学2020年数学分析考研试题参考解答暨南大学2013年数学分析考研试题参考解答暨南大学2014年数学分析考研试题参考解答江南大学2007年数学分析考研试题参考解答江南大学2008年数学分析考研试题参考解答江南大学2009年数学分析考研试题参考解答兰州大学2004年数学分析考研试题参考解答兰州大学2005年数学分析考研试题参考解答兰州大学2006年数学分析考研试题参考解答兰州大学2007年数学分析考研试题参考解答兰州大学2008年数学分析考研试题参考解答兰州大学2009年数学分析考研试题参考解答兰州大学2010年数学分析考研试题参考解答兰州大学2011年数学分析考研试题参考解答兰州大学2020年高等代数考研试题参考解答兰州大学2020年数学分析考研试题参考解答南京大学2010年数学分析考研试题参考解答南京大学2014年高等代数考研试题参考解答南京大学2015年高等代数考研试题参考解答南京大学2015年数学分析考研试题参考解答南京大学2016年高等代数考研试题参考解答南京大学2016年数学分析考研试题参考解答南京大学2020年数学分析考研试题参考解答南京航空航天大学2010年数学分析考研试题参考解答南京航空航天大学2011年数学分析考研试题参考解答南京航空航天大学2012年数学分析考研试题参考解答南京航空航天大学2013年数学分析考研试题参考解答南京航空航天大学2014年高等代数考研试题参考解答南京航空航天大学2014年数学分析考研试题参考解答南京师范大学2012年高等代数考研试题参考解答南京师范大学2013年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年高等代数考研试题参考解答南京师范大学2014年数学分析考研试题参考解答南开大学2002年数学分析考研试题参考解答南开大学2003年数学分析考研试题参考解答南开大学2004年高等代数考研试题参考解答南开大学2005年高等代数考研试题参考解答南开大学2005年数学分析考研试题参考解答南开大学2006年高等代数考研试题参考解答南开大学2006年数学分析考研试题参考解答南开大学2007年高等代数考研试题参考解答南开大学2007年数学分析考研试题参考解答南开大学2008年高等代数考研试题参考解答南开大学2008年数学分析考研试题参考解答南开大学2009年高等代数考研试题参考解答南开大学2009年数学分析考研试题参考解答南开大学2010年高等代数考研试题参考解答南开大学2010年数学分析考研试题参考解答南开大学2011年高等代数考研试题参考解答南开大学2011年数学分析考研试题参考解答南开大学2012年高等代数考研试题参考解答南开大学2012年数学分析考研试题参考解答南开大学2014年高等代数考研试题参考解答南开大学2014年数学分析考研试题参考解答南开大学2016年高等代数考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2016年数学分析考研试题参考解答南开大学2017年高等代数考研试题参考解答南开大学2017年数学分析考研试题参考解答南开大学2018年高等代数考研试题参考解答南开大学2018年数学分析考研试题参考解答南开大学2019年高等代数考研试题参考解答南开大学2019年数学分析考研试题参考解答南开大学2020年高等代数考研试题参考解答南开大学2020年数学分析考研试题参考解答南开大学2020年数学分析考研试题参考解答清华大学2011年数学分析考研试题参考解答厦门大学1999年高等代数考研试题参考解答厦门大学2000年高等代数考研试题参考解答厦门大学2001年高等代数考研试题参考解答厦门大学2009年高等代数考研试题参考解答厦门大学2009年数学分析考研试题参考解答厦门大学2010年高等代数考研试题参考解答厦门大学2010年数学分析考研试题参考解答厦门大学2011年高等代数考研试题参考解答厦门大学2011年数学分析考研试题参考解答厦门大学2012年高等代数考研试题参考解答厦门大学2012年数学分析考研试题参考解答厦门大学2013年高等代数考研试题参考解答厦门大学2013年数学分析考研试题参考解答厦门大学2014年高等代数考研试题参考解答厦门大学2014年数学分析考研试题参考解答厦门大学2015年高等代数考研试题参考解答厦门大学2016年高等代数考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2016年数学分析考研试题参考解答厦门大学2017年高等代数考研试题参考解答厦门大学2018年高等代数考研试题参考解答厦门大学2019年高等代数考研试题参考解答厦门大学2020年数学分析考研试题参考解答上海交通大学2020年高等代数考研试题参考解答上海交通大学2020年数学分析考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年高等代数考研试题参考解答首都师范大学2011年数学分析考研试题参考解答首都师范大学2012年高等代数考研试题参考解答首都师范大学2012年数学分析考研试题参考解答首都师范大学2013年高等代数考研试题参考解答首都师范大学2013年数学分析考研试题参考解答首都师范大学2014年高等代数考研试题参考解答首都师范大学2014年数学分析考研试题参考解答首都师范大学2020年高等代数考研试题参考解答首都师范大学2020年数学分析考研试题参考解答四川大学2005年数学分析考研试题参考解答四川大学2006年数学分析考研试题参考解答四川大学2009年数学分析考研试题参考解答四川大学2011年数学分析考研试题参考解答四川大学2020年数学分析考研试题参考解答苏州大学2010年数学分析考研试题参考解答苏州大学2011年数学分析考研试题参考解答苏州大学2012年数学分析考研试题参考解答同济大学2011年数学分析考研试题参考解答同济大学2020年高等代数考研试题参考解答同济大学2020年数学分析考研试题参考解答武汉大学2010年高等代数考研试题参考解答武汉大学2010年数学分析考研试题参考解答武汉大学2011年高等代数考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2011年数学分析考研试题参考解答武汉大学2012年数学分析考研试题参考解答武汉大学2012年线性代数考研试题参考解答武汉大学2013年高等代数考研试题参考解答武汉大学2013年数学分析考研试题参考解答武汉大学2014年高等代数考研试题参考解答武汉大学2014年数学分析考研试题参考解答武汉大学2015年高等代数考研试题参考解答武汉大学2015年数学分析考研试题参考解答武汉大学2020年高等代数考研试题参考解答武汉大学2020年数学分析考研试题参考解答西南大学2002年数学分析考研试题参考解答西南大学2003年数学分析考研试题参考解答西南大学2004年数学分析考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2006年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年高等代数考研试题参考解答西南大学2007年数学分析考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年高等代数考研试题参考解答西南大学2008年学分析考研试题参考解答西南大学2009年高等代数考研试题参考解答西南大学2009年学分析考研试题参考解答西南大学2010年高等代数考研试题参考解答西南大学2010年学分析考研试题参考解答西南大学2011年高等代数考研试题参考解答西南大学2011年学分析考研试题参考解答西南大学2012年高等代数考研试题参考解答西南大学2012年学分析考研试题参考解答西南师范大学2000年高等代数考研试题参考解答湘潭大学2011年数学分析考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年高等代数考研试题参考解答浙江大学2009年数学分析考研试题参考解答浙江大学2010年高等代数考研试题参考解答浙江大学2010年数学分析考研试题参考解答浙江大学2011年高等代数考研试题参考解答浙江大学2011年数学分析考研试题参考解答浙江大学2012年高等代数考研试题参考解答浙江大学2012年数学分析考研试题参考解答浙江大学2013年数学分析考研试题参考解答浙江大学2014年高等代数考研试题参考解答浙江大学2014年数学分析考研试题参考解答浙江大学2015年数学分析考研试题参考解答浙江大学2016年高等代数考研试题参考解答浙江大学2016年数学分析考研试题参考解答浙江大学2020年高等代数考研试题参考解答浙江大学2020年数学分析考研试题参考解答中国海洋大学2020年数学分析考研试题参考解答中国科学技术大学2010年数学分析考研试题参考解答中国科学技术大学2010年线性代数与解析几何考研试题参考解答中国科学技术大学2011年分析与代数考研试题参考解答中国科学技术大学2011年高等数学B考研试题参考解答中国科学技术大学2011年数学分析考研试题参考解答中国科学技术大学2011年线性代数与解析几何考研试题参考解答中国科学技术大学2012年分析与代数考研试题参考解答中国科学技术大学2012年高等数学B考研试题参考解答中国科学技术大学2012年数学分析考研试题参考解答中国科学技术大学2012年线性代数与解析几何考研试题参考解答中国科学技术大学2013年分析与代数考研试题参考解答中国科学技术大学2013年高等数学B考研试题参考解答中国科学技术大学2013年数学分析考研试题参考解答中国科学技术大学2014年分析与代数考研试题参考解答中国科学技术大学2014年高等数学B考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年数学分析考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2014年线性代数与解析几何考研试题参考解答中国科学技术大学2015年分析与代数考研试题参考解答中国科学技术大学2015年高等数学B考研试题参考解答中国科学技术大学2015年高等数学理考研试题参考解答中国科学技术大学2015年数学分析考研试题参考解答中国科学技术大学2015年线性代数与解析几何考研试题参考解答中国科学技术大学2016年数学分析考研试题参考解答中国科学技术大学2020年数学分析考研试题参考解答中国科学院大学2013年高等代数考研试题参考解答中国科学院大学2013年数学分析考研试题参考解答中国科学院大学2014年高等代数考研试题参考解答中国科学院大学2014年数学分析考研试题参考解答中国科学院大学2016年高等代数考研试题参考解答中国科学院大学2016年数学分析考研试题参考解答中国科学院大学2020年高等代数考研试题参考解答中国科学院大学2020年数学分析考研试题参考解答中国科学院数学与系统科学研究院2001年数学分析考研试题参考解答中国科学院数学与系统科学研究院2002年数学分析考研试题参考解答中国科学院数学与系统科学研究院2003年数学分析考研试题参考解答中国科学院数学与系统科学研究院2004年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年高等代数考研试题参考解答中国科学院数学与系统科学研究院2005年数学分析考研试题参考解答中国科学院数学与系统科学研究院2006年高等代数考研试题参考解答中国科学院数学与系统科学研究院2006年数学分析考研试题参考解答中国科学院数学与系统科学研究院2007年数学分析考研试题参考解答中国科学院研究生院2011年数学分析考研试题参考解答中国科学院研究生院2012年数学分析考研试题参考解答中国科学院-中国科学技术大学2000年数学分析考研试题参考解答中国人民大学1999年高等代数考研试题参考解答中国人民大学1999年数学分析考研试题参考解答中国人民大学2000年高等代数考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2000年数学分析考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年高等代数考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2003年数学分析考研试题参考解答中国人民大学2004年高等代数考研试题参考解答中国人民大学2004年数学分析考研试题参考解答中国人民大学2017年高等代数考研试题参考解答中国人民大学2017年数学分析考研试题参考解答中国人民大学2018年高等代数考研试题参考解答中国人民大学2018年数学分析考研试题参考解答中国人民大学2019年高等代数考研试题参考解答中国人民大学2019年数学分析考研试题参考解答中国人民大学2020年高等代数考研试题参考解答中国人民大学2020年数学分析考研试题参考解答中南大学2011年数学分析考研试题参考解答中南大学2013年高等代数考研试题参考解答中山大学2005年数学分析高等代数考研试题参考解答中山大学2006年数学分析高等代数考研试题参考解答中山大学2007年高等代数考研试题参考解答中山大学2007年数学分析考研试题参考解答中山大学2008年数学分析高等代数考研试题参考解答中山大学2008年数学分析考研试题参考解答中山大学2009年数学分析高等代数考研试题参考解答中山大学2009年数学分析考研试题参考解答中山大学2010年数学分析高等代数考研试题参考解答中山大学2010年数学分析考研试题参考解答中山大学2011年数学分析高等代数考研试题参考解答中山大学2011年数学分析考研试题参考解答中山大学2012年高等代数考研试题参考解答中山大学2012年数学分析考研试题参考解答中山大学2013年高等代数考研试题参考解答中山大学2013年数学分析考研试题参考解答中山大学2014年高等代数考研试题参考解答中山大学2014年数学分析考研试题参考解答中山大学2015年高等代数考研试题参考解答中山大学2015年数学分析高等代数考研试题参考解答中山大学2015年数学分析考研试题参考解答中山大学2016年高等代数考研试题参考解答中山大学2016年数学分析考研试题参考解答中山大学2017年高等代数考研试题参考解答中山大学2017年数学分析考研试题参考解答中山大学2018年高等代数考研试题参考解答中山大学2018年数学分析考研试题参考解答中山大学2019年高等代数考研试题参考解答中山大学2019年数学分析考研试题参考解答重庆大学2020年数学分析考研试题参考解答。
2020年全国硕士研究生招生考试《数学一》真题及解析

2020年全国硕士研究生招生考试《数学一》真题及解析1. 【单项选择题】当x→0+时,下列无穷小量中是最高阶的是( ).A.B.C.D.正确答案:D参考解析:2. 【单项选择题】A.B.C.D.正确答案:C参考解析:3. 【单项选择题】A.B.C.D.正确答案:A 参考解析:4. 【单项选择题】A.B.C.D.正确答案:A参考解析:5. 【单项选择题】若矩阵A经初等列变换化成B,则( ).A. 存在矩阵P,使得PA=BB. 存在矩阵P,使得BP=AC. 存在矩阵P,使得PB=AD. 方程组Ax=0与Bx=0同解正确答案:B参考解析:6. 【单项选择题】A.B.C.D.正确答案:C 参考解析:7. 【单项选择题】A.B.C.D.正确答案:D 参考解析:8. 【单项选择题】A.B.C.D.正确答案:B参考解析:9. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:-1【解析】10. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:【解析】11. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:n+am【解析】12. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:4e13. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:a4-4a2【解析】14. 【填空题】请查看答案解析后对本题进行判断:答对了答错了正确答案:参考解析:15. 【解答题】求函数f(x,y)=x3+8y3-xy的极值.请查看答案解析后对本题进行判断:答对了答错了参考解析:16. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:17. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:18. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:19. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:20. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:21. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:22. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:23. 【解答题】请查看答案解析后对本题进行判断:答对了答错了参考解析:。
2020年考研数学(一)真题及解析

2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。
2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2020年考研数学二真题及答案解析

2020考研数学二真题及解析完整版来源:文都教育一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.0x +→,下列无穷小量中最高阶是()A.()20e 1d x t t -⎰B.(30ln d x t t ⎰C.sin 20sin d x t t ⎰D.1cos 30sin d t t -⎰答案:D解析:A.()232001~3x x t x e dt t dt -=⎰⎰B.(35322002ln 1~5x x t dt t x =⎰⎰C.sin 223001sin ~3x x t dt t dt x =⎰⎰D.2311cos 32200sin ~x tdt t dt -⎰⎰25122025x t =52252152102x ⎛⎫== ⎪⎝⎭2.11ln |1|()(1)(2)x x e x f x e x -+=--第二类间断点个数()A.1B.2C.3D.4答案:C 解析:0,2,1,1x x x x ====-为间断点11110000ln |1|ln |1|ln |1|lim ()lim lim lim (1)(2)222x x x x x e x e x e x e f x e x x x ----→→→→+++===-=----0x =为可去间断点1122ln |1|lim ()lim (1)(2)x x x x e x f x e x -→→+==∞--2x =为第二类间断点1111ln |1|lim ()lim 0(1)(2)x x x x e x f x e x ---→→+==--1111ln |1|lim ()lim (1)(2)x x x x e x f x e x ++-→→+==∞--1x =为第二类间断点1111ln |1|lim ()lim (1)(2)x x x x e x f x e x -→-→-+==∞--1x =-为第二类间断点3.10(1)xx x x =-⎰A.2π4B.2π8C.π4D.π8答案:A 解析:10(1)xxx x -⎰令u x =,则原式=1220d (1)u uu u -⎰12020222021sin 2cos d cos 1224uu t u t t t t t πππ=-==⋅=⎰⎰令4.2()ln(1),3f x x x n =-≥时,()(0)n f =A.!2n n --B.!2n n -C.(2)!n n --D.(2)!n n -答案:A 解析:2()02()12(1)22(2)()(1)1(2)222()ln(1),3()[ln(1)]()[ln(1)]()[ln(1)](1)!(1)[ln(1)](1)(2)!(1)[ln(1)](1)(3)!(1)[ln(1)](1)()2;(n n n n n n n n nn n n n f x x x n f x C x x C x x C x x n x x n x x n x x x x x ------=-≥'''=-+-+----=----=----=-'''= ()212()) 2.(1)!(1)(2)!(1)(1)(3)!(1)()22(1)(1)2(1)!(0)2n n n n n n n n n n f x x n x x x x n f n --=----⋅---∴=⋅+⋅⋅⋅---∴=--5.关于函数0(,)00xy xy f x y x y y x ≠⎧⎪==⎨⎪=⎩给出以下结论①(0,0)1fx ∂=∂②2(0,0)1f ∂=∂∂③(,)(0,0)lim (,)0x y f x y →=④00lim lim (,)0y x f x y →→=正确的个数是A.4B.3C.2D.1答案:B解析:①0(0,0)(,0)(0,0)lim x f f x f x x→∂-=∂00lim1x x x→-==②0xy ≠时,f y x∂=∂0y =时,1f x∂=∂0x =时,0f x ∂=∂200(0,0)(0,)(0,0)1lim lim x x y y f y f f x y yy →→''-∂-==∂∂不存在.③(,)(0,0)(,)(0,0)0,lim (,)lim 0x y x y xy f x y xy →→≠==(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y y f x y x →→===(,)(0,0)(,)(0,0)0,lim(,)lim 0x y x y x f x y y →→===(,)(0,0)lim (,)0x y f x y →∴=④000,lim (,)lim 0x x xy f x y xy →→≠==000,lim (,)lim 0x x y f x y x →→===000,lim (,)lim x x x f x y y y →→===从而00limlim (,)0.y x f x y →→=6.设函数()f x 在区间[2,2]-上可导,且()()0f x f x '>>,则()A.(2)1f ->-B.(0)(1)f e f >-C.2(1)(1)f e f <-D.3(2)(1)f e f <-答案:B解析:由()()0f x f x '>>知()10()f x f x '->即(ln ())0f x x '->令()ln ()F x f x x =-,则()[-2,2]F x 在上单增因21-<-,所以(2)(1)F F -<-即ln (2)2ln (1)1f f -+<-+(1)(2)f e f ->-同理,10,(1)(0)F F -<-<即ln (1)1ln (0)f f -+<(0)(1)f e f >-7.设四阶矩阵()ij A a =不可逆,12a 的代数余子式1212340,,,,A αααα≠为矩阵A 的列向量组.*A 为A 的伴随矩阵.则方程组*A x =0的通解为().A.112233x k k k ααα=++,其中123,,k k k 为任意常数B.112234x k k k ααα=++,其中123,,k k k 为任意常数C.112334x k k k ααα=++,其中123,,k k k 为任意常数.D.122334x k k k ααα=++,其中123,,k k k 为任意常数答案:C解析:∵A 不可逆∴|A|=0∵120A ≠∴()3r A =∴*()1r A =∴*0A x =的基础解系有3个线性无关的解向量.∵*||0A A A E ==∴A 的每一列都是*0A x =的解又∵120A ≠∴134,,ααα线性无关∴*0A x =的通解为112334x k k k ααα=++8.设A 为3阶矩阵,12,αα为A 属于特征值1的线性无关的特征向量,3α为A 的属于特征值-1的特征向量,则满足1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭的可逆矩阵P 可为().A.1323(,,)αααα+-B.1223(,,)αααα+-C.1333(,,)αααα+--D.1232(,,)αααα+--答案:D解析:1122,A A αααα==33A αα=-1100010001P AP -⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ∴的1,3两列为1的线性无关的特征向量122,ααα+P 的第2列为A 的属于-1的特征向量3.α1232(,,)P αααα∴=+-二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9.设()221ln 1x t y t t ⎧=+⎪⎨=++⎪⎩,则212t d y dx ==_______.解析:2221d 1d 11d d d d 1t y y t t t t x t x t t ⎛⎫+ ⎪+++⎝⎭==+1t=2222d d d 1d d d d d d d d d 1y y t y t t t x t x x tt ⎛⎫ ⎪⎛⎫⎝⎭- ⎪⎝⎭===+231t t +=-2212t dy dx ==-10.11301y dy x dx +=⎰⎰_____.解析:11301y dy x dx +⎰⎰22130013001320111x x dx x dy x dx dy x x dx =+=+=+⎰⎰⎰⎰⎰11332013320321(1)(1)312(1)332219x d x x =++=⋅+⎛⎫=- ⎪⎝⎭⎰11.设arctan[sin()]z xy x y =++,则(0,)|dz π=______.解析:d d d z z z x y x x∂∂=+∂∂2(0,π)1[cos()],π11[sin()]z z y x y x xy x y x∂∂=++=-∂+++∂2(0,π)1[cos()],11[sin()]z z x x y y xy x y y∂∂=++=-∂+++∂∴(0,π)(π1)d d z x y x ∂=--∂12.斜边长为2a 等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为g ,水密度为ρ,则该平板一侧所受的水压力为______解析:建立直角坐标系,如图所示0202303=2()d 2d 122313aaaF gx a x x g ax x x a g x x ga ρρρρ⋅-=-⎛⎫=- ⎪⎝⎭=⎰⎰13.设()y y x =满足20y y y '''++=,且(0)0,(0)1y y '==,则0()d y x x +∞=⎰_____解析:特征方程2210λλ++=121λλ∴==-12()()xy x C C x e -=+000()d ()2()d [()2()][(0)2(0)]1y x x y x y x xy x y x y y +∞+∞+∞'''=-+'=-+'=+=⎰⎰14.行列式011011110110aaa a --=--________解析:22242011011011011110110110*********11111000021214.00a a a a a a aa a a a a a a a aa a aa a a aa a a----=----+-+-==----=--=-三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答写出文字说明、证明过程或演算步骤.15.(本题满分10分)求曲线1(0)(1)x x x y x x +=>+的斜渐近线方程.解析:1lim lim (1)xx x x y x x x x+→+∞→+∞=+lim (1)xxx x x →+∞=+ln ln(1)e lim e x xx x x +→+∞=(ln ln(1))lim e x x x x -+→+∞=11ln lim e x x x +-⋅+→+∞=1ln 11lim e x x x ⎛⎫- ⎪+⎝⎭→+∞=111lim e e x x x ⎛⎫⋅- ⎪-+⎝⎭→+∞==1lim (e )x y x -→+∞-11lim e (1)x x x x x x +-→+∞⎛⎫=- ⎪+⎝⎭1lim e (1)x x x x x x -→+∞⎛⎫=- ⎪+⎝⎭ln 11lim e e x x x x x -+→+∞⎛⎫=⋅- ⎪⎝⎭ln 111lim e e 1x x x x x +-+→+∞⎛⎫=- ⎪⎝⎭1lim e ln 11x x x x x -→+∞⎛⎫=⋅+ ⎪+⎝⎭1011ln 111lim e t t t t t+-→⋅++=1201ln 1lim e t t t t +-→++=1120ln(1)1lim e e 2t t t t +--→-+==∴曲线的斜渐近线方程为111e e 2y x --=+16.(本题满分10分)已知函数()f x 连续且100()lim 1,()(),'()x f x g x f xt dt g x x →==⎰求并证明'()0g x x =在处连续.解析:因为0()lim 1x f x x →=0(0)lim ()0x f f x →∴==所以10(0)(0)0g f dt ==⎰因为1001()()()x g x f xt dt xt u f u du x ==⎰⎰当0x ≠时,02()()()xxf x f u dug x x -'=⎰当0x =时,02000()()(0)1()1(0)limlim lim 022x x x x f u du g x g f x g x x x →→→-'====-⎰02(),0()1,02xf u du x xg x x ⎧⎪≠⎪'∴=⎨⎪=⎪⎩⎰又因为2000()lim ()lim ()x x x xf x g x f u du x →→'=-⎰020()()11lim 122x x f u du f x x x →⎡⎤⎢⎥=-=-=⎢⎥⎢⎥⎣⎦⎰()0g x x '∴=在处连续17.(本题满分10分)求二元函数33(,)8f x y x y xy =+-的极值解析:求一阶导可得22324f x y xf y x y∂=-∂∂=-∂令100601012f x x x f y y y ∂⎧⎧==⎪⎪=⎧∂⎪⎪⎨⎨⎨∂=⎩⎪⎪==⎪∂⎪⎩⎩可得求二阶导可得2222226148f f f x y x x y y ∂∂∂==-=∂∂∂当0,00. 1.0x y A B C -====-=时.20AC B -<故不是极值.当11612x y ==时1. 1. 4.A B C ==-=2110.10,612AC B A ⎛⎫->=> ⎪⎝⎭故且极小值极小值33111111,8661261212216f ⎛⎫⎛⎫⎛⎫=+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.已知222122()()1x x f x x f x x ++=+,求()f x ,并求直线12y =,32y =与函数()f x 所围图形绕x 轴旋转一周而成的旋转体的体积。
2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,第小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.1.0x +→时,下列无穷小量中最高阶是( )A.()201x t e dt -⎰B.0ln(1)x ⎰C.sin 20sin xt dt ⎰D.1cos 0-⎰2.设函数()f x 在区间(-1,1)内有定义,且0lim ()0,x f x →=则( )A.当00,()0x f x x →==在处可导.B.当00,()0x f x x →==在处可导.C.当0()00.x f x x →==在处可导时,D.当0()00.x f x x →==在处可导时,3.设函数()f x 在点(0,0)处可微,(0,0)(0,0)0,,,1fff n x y ⎛⎫∂∂==- ⎪∂∂⎝⎭非零向量d 与n 重直,则()A.(,)lim 0x y →=存在 B.(,)lim 0x y →=存在C.(,)lim 0x y →=存在D.(,)lim 0x y →=4.设R 为幂级数1n nn a x ∞=∑的收敛半径,r 是实数,则( )A.1n nn a x ∞=∑发散时,||r R ≥B.1n nn a x ∞=∑发散时,||r R ≤C.||r R ≥时,1n nn a x ∞=∑发散D.||r R ≤时,1n nn a x ∞=∑发散5.若矩阵A 经初等变换化成B ,则( )A.存在矩阵P ,使得P A =BB.存在矩阵P ,使得BP =AC.存在矩阵P ,使得PB =AD.方程组Ax =0与Bx =0同解6.已知直线22211112:x a y b c L a b c ---== 与直线33322222:x a y b c L a b c ---==相交于一点,法向量,1,2,3.i i i i a a b i c ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦则 A.1a 可由23,a a 线性表示B.2a 可由13,a a 线性表示C.3a 可由12,a a 线性表示D.123,,a a a 线性无关7.设A,B,C 为三个随机事件,且11()()(),()0()()412P A P B P C P AB P AC P BC ======,则A,B,C 中恰有一个事件发生的概率为 A.34 B.23 C.12 D.5128.设12(),,,n x x x …为来自总体X 的简单随机样本,其中1(0)(1),()2P X P X x ====Φ表示标准正态分布函数,则利用中心极限定理可得100155i i P X =⎛⎫≤ ⎪⎝⎭∑的近似值为 A.1(1)-ΦB.(1)ΦC.1(0,2)-ΦD.(0,2)Φ 二、填空题:9—14小题,每小题2分,共24分。
2020年考研数学二真题及解析

2020全国硕士研究生入学统一考试数学二试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x +→时,下列无穷小量中最高阶是( ) (A )()21xt e dt -⎰(B)(0ln 1xdt +⎰(C )sin 20sin xt dt ⎰(D)1cos 0-⎰【答案】(D )【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。
(A )()()222011x t x e dt e x '-=-~⎰(B )(()(22ln 1ln 1x t dt x x'+=⎰(C )()()sin 2220sin sin sin xt dt x x '=⎰(D )()1cos 22301sin sin(1cos )2xt dt x x x-'=-⎰经比较,选(D )(2)函数11ln 1()(1)(2)x x e xf x e x -+=--的第二类间断点的个数为 ( )(A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()lim lim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---;1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x exf x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞----故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。