小学奥数 换元法.教师版
奇妙的换元法(1)

奇妙的换元法一、引入所谓换元法,就是在一个比较复杂的数学式子中,把整个式子的一部分看作一个量,然后用一个字母去代替它,从而简化复杂式子的结构,使问题易于解决。
今天这一讲我们着重学习换元法的应用。
二、例题选讲例1. 把1)1(2)(2-++-+n m n m 分解因式分析:在原式中,重复出现了m+n ,不妨把m+n 看成u解:设m+n = u1)1(2)(2-++-+n m n m= 1)1(22-+-u u 换元= 322--u u= )1)(3(+-u u 回代= )1)(3(++-+n m n m*此例通过换元使原多项式的形式简洁了,分解容易了。
因而,在因式分解中,换元法有较为普遍的应用。
例2.分解因式 8)43)(33(22-++-+x x x x分析:此式展开后是n 的四次多项式,若将其展开,一定复杂。
根据本题特征,可设 y x x =+32。
通过换元,将x 的四次多项式转化为y 的二次多项式,化繁为简,变难为易。
解:设y x x =+32,则原式 = 8)4)(3(-+-y y 换元= 202-+y y= )5)(4(+-y y = )53)(43(22++-+x x x x 回代= )53)(4)(1(2+++-x x x x*本题除了可设y x x =+32换元以外,还有其它的换元方法(可设y x x =-+332或y x x =++432均可)例3. 分解因式2)1()2)(2-+-+-+xy y x xy y x ( 分析:直接分解因式较困难,观察所给式子,发现式子中只有x+ y 和xy ,若将x+ y 和xy 换元成a 和b ,则原式可以化为2)1()2)(2-+--b a b a (的形式,分解因式后再将a 、b 用x+ y 与xy 代入即可。
解:设x+ y = a ,xy = b 则原式 = 2)1()2)(2-+--b a b a (= 1242222--++--b b b ab a a= 1)22()2(22++-++-b a b ab a= 1)(2)(2+---b a b a= 2)1(--b a = 2)1(--+xy y x= 2)]1()1([y y x --- = 2)]1)(1[(y x --= 22)1()1(--y x*从本题特征看,把x+ y 、xy 各看作一个整体换元可使问题简化,事实上本题解法较多,同 学们可以自己在课后加以研究。
小学思维数学:换元法-带答案解析

换元法对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++) 例题精讲教学目标【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学奥数精讲 换元法

对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学数学奥赛1-3-5 换元法.教师版

对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】计算:1111111111 (1)()(1)()2424624624 ++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a+++=,111246b++=,则:原式11 ()()66a b a b=-⨯-⨯-1166ab b ab a=--+1()6a b=-11166=⨯=【答案】1 6【巩固】11111111111111 (1)()(1)()23423452345234 +++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a=++,则原式化简为:1111(1555a a a a+(+)(+)-+)=【答案】1 5【巩固】计算:621739458739458378621739458378739458 126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a++=;739458358947b+=,原式378378207207a b a b⎛⎫⎛⎫=⨯+-+⨯⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b=-⨯=⨯=【答案】9例题精讲教学目标换元法【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试 【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -) 10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
小学数学 换元法.教师版

【题型】计算
【解析】令1 1 1 1 a , 1 1 1 b ,则:
246
246
原式 (a 1) b a (b 1)
6
6
ab 1 b ab 1 a
6
6
1 (a b) 1 1 1
6
66
【答案】 1 6
【巩固】 (1 1 1 1) (1 1 1 1) (1 1 1 1 1) (1 1 1)
21 31 41
原式
a
b
1 51
a
1 51
b
ab 1 a ab 1 b
51
51
1 (a b) 1 1 1
51
51 11 561
【答案】 1 561
【巩固】计算(1 1 1 1 ) (1 1 1 1 ) (1 1 1 1 1 ) (1 1 1 ) 5 7 9 11 7 9 11 13 5 7 9 11 13 7 9 11
【巩固】计算下面的算式
( 7.88 6.77 5.66 ) ( 9.31 10.98 10 ) ( 7.88 6.77 5.66 10 ) ( 9.31 10.98 )
【考点】换元法
【难度】2 星
【题型】计算
【关键词】希望杯,2 试
【解析】换 元 的 思 想 即 “ 打 包 ” , 令 a 7.88 6.77 5.66 , b 9.31 10.98
378 207
621 126
378 207
9
【答案】 9
1
【巩固】计算:( 0.1 0.21 0.321 0.4321 ) ( 0.21 0.321 0.4321 0.54321 )
( 0.1 0.21 0.321 0.4321 0.54321 ) ( 0.21 0.321 0.4321 )
小学奥数教师版-1-3-5 换元法

换元法教学目标对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.”三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.例题精讲【例1】计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【考点】换元法【难度】2星【题型】计算【解析】令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a=--+1()6a b =-16611=⨯=【答案】16【巩固】11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++【考点】换元法【难度】2星【题型】计算【解析】设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【答案】15【巩固】计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法【难度】2星【题型】计算【解析】令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯=【答案】【巩固】9计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法【难度】2星【题型】计算【解析】设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】【巩固】0.054321计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【考点】换元法【难度】2星【题型】计算【关键词】希望杯,2试【解析】换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】(10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____。
换元法是什么:将复杂的式子化成简单明了的形式(化繁为简)

换元法讲解:将复杂的式子化繁为简
换元法是数学学习中的一种常见方法。
对结构比较复杂的多项式,把其中某些部分看成一个整体,用新字母代替,从而将复杂的式子化成简单明了的形式。
实质就是,
用一个符号代表一堆复杂的东西,计算起来比较省力。
来看下面这个例题
【例1】计算3+9+27+81+243+729+2187
分析:这题是等比数列求和,公比是3,共有7项。
采用错位相减法,让等式乘以它的公比。
令A=3+9+27+81+243+729+2187;
则 3A=9+27+81+243+729+2187+6561;
两式相减,
3A-A=2A=6561-3
2A=6558
A=6558÷2=3279
所以,
3+9+27+81+243+729+2187=3279
在计算【例1】中,
细心的你会发现,
G老师令A=3+9+27+81+243+729+2187;
这一步,
就叫做换元。
用字母A代表3+9+27+81+243+729+2187的和。
当然,
也可以不用A,
用B、C、D、E、F、G……都行,
喜欢哪个字母就用哪个。
注意:用换元法解答,在解题的最后一定要记得把元还回来,就像G老师在【例1】中写的最后一步“所以,3+9+27+81+243+729+2187=3279”。
更多小学数学重难点知识讲解,来和“G老师讲奥数”一起学习吧。
小学五年级奥数 分数计算之换元、通项归纳_PDF压缩

⑵ 目的,化简,抵消.
3.小小的倒数:分之一
找通项
【今日讲题】 例1,例4,例5,例6 【讲题心得】
__________________________________________________________________. 【家长评价】
__________________________________________________________________ ______________________________________________________________. 2
739 358
458 947
378 207
621 126
739 358
458 947
378 207
739 358
458 947
【例3】(★★★) (数学解题能力展示试题)计算:
1 2
2 3
3 4
9 10
2
1
1
3
4
1 1 1 1
1 1
2009
【例6】(★★★★)(祖冲之杯竞赛试题)
计算:31
3
1
6
3
1 6
9
3
6
1 9
90
板块二:关于通项归纳
4. 么通这项个:公如式果叫数做列这{an个}的数第列n的项通与项序公号式之.间的关系可以用一个式子来表示,那 例如,有一数列1,4,7,10,……,这个数列的第5项是 ____,第100项 是 _____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.【例 1】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+ 【考点】换元法 【难度】2星 【题型】计算【解析】 令1111246a +++=,111246b ++=,则: 原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯= 【答案】16例题精讲教学目标换元法【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 【考点】换元法 【难度】2星 【题型】计算【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)= 【答案】15【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 令621739458126358947a ++=;739458358947b +=,原式378378207207a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭()3786213789207126207a b =-⨯=⨯= 【答案】9【巩固】 计算:(0.10.210.3210.4321+++)⨯(0.210.3210.43210.54321+++)-(0.10.210.3210.43210.54321++++)⨯(0.210.3210.4321++)【考点】换元法 【难度】2星 【题型】计算【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++,原式=(0.1x +)y ⨯-(0.1y +)0.1x ⨯=⨯(y x -)0.054321=【答案】0.054321【巩固】 计算下面的算式(7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+) 【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,2试【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯(a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯=【答案】0.2【巩固】 (10.120.23)(0.120.230.34)(10.120.230.34)(0.120.23)++⨯++-+++⨯+=____ 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】希望杯,六年级,二试【解析】 设0.120.23a +=,0.120.230.34b ++=原式()()110.34a b b a b a =+⨯-+⨯=-= 【答案】0.34【巩固】 计算:⑴ (10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)⑵621739458739458378621739458378126358947358947207126358947207⎛⎫⎛⎫⎛⎫++⨯++-+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭739458358947⎛⎫+ ⎪⎝⎭【考点】换元法 【难度】2星 【题型】计算【关键词】迎春杯【解析】 ⑴ 该题相对简单,尽量凑相同的部分,即能简化运算.设0.450.56a =+,0.450.560.67b =++,有原式=(1a +)b ⨯-(1b +)0.67a b ab a ab b a ⨯=+--=-=⑵ 设621739458126358947a ⎛⎫=++ ⎪⎝⎭,739458358947b ⎛⎫=+ ⎪⎝⎭原式378378378621378()9207207207126207a b a b a b ⎛⎫⎛⎫=⨯+-+⨯=-⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【答案】⑴0.67 ⑵9【巩固】 计算: 573734573473()123217321713123217133217⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 。
【考点】换元法 【难度】2星 【题型】计算 【关键词】走美杯,初赛,六年级【解析】 设573123217a =++、733217b =+,则有441313444()131313455131239a b a ba b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=-=-=⨯=原式 【答案】539【例 2】 计算:1111111111112200723200822008232007⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-+++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】3星 【题型】计算【解析】 令111232007a =+++,111232008b =+++, 原式()()1112008a b b a b ab a ab b a =+⨯-+⨯=+--=-=【答案】12008【巩固】 111111111111111111213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111111213141a +++=,111213141b ++=, 原式115151a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 115151ab a ab b =+--1()51a b =-1115111561=⨯=【答案】1561【巩固】 计算1111111111111111())()5791179111357911137911+++⨯+++-++++⨯++()(【考点】换元法 【难度】2星 【题型】计算【关键词】清华附中【解析】 设111157911A +++=,1117911B ++=,原式111313A B A B ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 111313A B A A B B =⨯+-⨯-()113A B =-11113565=⨯= 【答案】165【巩固】 计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【解析】 设111112345A ++++=,11112345B +++=原式=1166A B A B ⎛⎫⎛⎫⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=1166A B A A B B ⨯+⨯-⨯-⨯=1166A B ⨯-⨯ 16=⨯(A B -)16=【答案】16【例 3】 计算:212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【考点】换元法 【难度】2星 【题型】计算【关键词】迎春杯【解析】 设123923410t =++++,则有22211111(1)222222t t t t t t t t t ⎛⎫⎛⎫+⨯-+-=+-+--= ⎪ ⎪⎝⎭⎝⎭【答案】【例 4】 计算11112111311143114120092009++++++++++【考点】换元法 【难度】4星 【题型】计算【解析】 设3N =+11412009++. 原式=112N++11111N++=121N N++111N N ++=112121N N N N ++=++. 【答案】1【例 5】 计算:22222811811811111118118118811⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+÷++⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎣⎦【考点】换元法 【难度】3星 【题型】计算【解析】 (法一)设811x =,则原式2211881111288x x x x x x x x +--==⎛⎫⎛⎫++⨯-+⨯⎪ ⎪⎝⎭⎝⎭. (法二)设811118x =+,那么222228112118x =++,所以222228112118x +=-.而2222211112811811111228118118118118888x x ⨯⨯⎛⎫⎛⎫⎛⎫-=+-=+-⨯=+-⨯ ⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭. 这样原式转化为()()222228888121288x x x x x x x x ----=⨯=--+-⨯. 在这里需要老师对于()()()()a b c d a b c a b d ac bc ad bd +⨯+=+⨯++⨯=+++的计算进行简单的说明. 【答案】88【例 6】 计算:22010200920111⨯+【考点】换元法 【难度】2星 【题型】计算【解析】 设a =2009,原式2221)211+2121a a a a a a a +++===+++(()【答案】1【巩固】 计算200820092007200820091+⨯⨯-(4级)【考点】换元法 【难度】2星 【题型】计算【解析】 设2008a =原式(1)(1)(1)1a a a a a ++-=+-22111a a a a +-=+-= 【答案】1。