激光熔覆在模具修复中的应用讲解
浅谈激光表面熔覆技术

激光表面熔覆技术用于制备高强度、耐磨、耐腐蚀的金属材料。 通过激光熔覆技术制备出具有优异性能的非金属材料如陶瓷、玻璃等。 激光表面熔覆技术应用于制备复合材料实现多种材料的结合提高材料的综合性能。 激光表面熔覆技术制备的材料在航空航天、汽车、能源等领域得到广泛应用。
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
激光表面熔覆技 术是一种利用高 能激光束将合金 粉末熔覆在基材 表面形成具有优 异性能的涂层的 工艺方法。
激光表面熔覆技术 通过快速熔化和凝 固过程使合金粉末 与基材表面形成冶 金结合具有较高的 结合强度和耐腐蚀 性。
激光表面熔覆技术 可以应用于各种金 属材料和复合材料 的表面改性提高材 料的耐磨性、耐腐 蚀性和高温性能等 方面的性能。
汇报人:
在汽车制造领域激光表面熔覆技术可以用于发动机缸体、曲轴等关键部件的表面强化提高其 耐磨性和耐久性。
激光表面熔覆技术在金属表面修复方面的应用能够快速、高效地修复损坏的零件提高其使用 寿命。
通过激光表面熔覆技术可以在零件表面添加耐磨、耐腐蚀等性能提高其表面质量延长使用寿 命。
在汽车制造领域激光表面熔覆技术可用于发动机缸体、曲轴等关键零件的表面强化提高其耐 磨性和耐久性。
促进工业创新:激光表面熔覆技术的出现为工业制造提供了新的解决方案有助于推动工业创 新。
提升产品质量:激光表面熔覆技术能够实现高精度、高质量的表面熔覆高能源利用效率促进能源转 型
推动相关产业的发展创造更多 就业机会
提升社会经济效益促进社会可 持续发展
送粉速度:控制熔覆层的填充 程度和高度
激光熔覆修复技术在40Cr轴类零件现场修复中的应用

表3 不同激光工艺参数的金相组织
扫描速度 /mm·s-1
激光功率 /kW
0.8
1.0
1.2
1.4
1.6
2
4
6
8
热加工
39 2021年 第6期
焊接与切割
Welding & Cutting
d
b c
a)多层修复整体形貌 b)修复区底部与基体结合区形貌
图3 单因素试验熔覆深度、熔覆宽度和热影响区统计结果
2 试验设计
2.1 试验材料 试验用的基体材料为风机主轴40Cr钢,试验
前,将试样表面的油、锈和氧化物除去。采用的 Ni60A粉末颗粒直径为53~150μm,在扫描电子显微 镜(SEM)下,发现粉末形状为规则的球体,球状 粉末具有良好的流动性,如图1所示。基体与粉末材 料的主要化学成分见表1。
热加工
合金堆焊层的组织结构、硬度和耐蚀性能,结果表 明,Ni60堆焊层硬度约为500HV,明显高于基体。 李金华等[13]采用正交试验法研究了激光熔覆过程中 相对工艺参数对Ni60合金粉末组织和显微硬度的影 响,结果表明,不同工艺参数下熔覆层的显微硬度 差异不大,主要集中在680~720HV,而熔覆层的高 度波动较大。
组
序号
1-1
1-2
1
1-3
1-4
1-5
2-1
2-2
2
2-3
2-4
2-5
功率 /kW 0.8
1 1.2 1.4 1.6 0.8 1 1.2 1.4 1.6
扫描速度 /mm·s-1 2 2 2 2 2 4 4 4 4 4
图2 激光修复试验系统
表2 修复工艺参数
送粉率 /r·min-1
模具的激光修复简介(1)

模具的激光修复简介摘要:利用激光熔敷合金粉末的方法对模具进展了修复。
研究了工艺参数对熔敷效果的影响,并对其修复过程进展了分析。
结果说明,预处理、送粉量、激光的扫描速度是决定模具修复质量的关键。
通过优化工艺参数、机体预热的方法可以提高模具修复质量。
关键词:激光熔敷;模具;工艺参数;修复质量模具使用寿命取决于抗磨损和抗机械损伤能力,一旦磨损过度或机械损伤,须经修复才能恢复使用。
目前可采用的修复技术有电镀、电弧或火焰堆焊、热喷涂(火焰、等离子)等。
电镀层一般很薄,不超过0.3mm,而且与基体结合差,形状损坏部位难于修复,在堆焊、热喷涂或喷焊时,热量注入大,能量不集中,模具热影响区大,易畸变甚至开裂,喷涂层稀释率大,降低了基体和材料的性能。
利用激光熔覆的方法可实现对模具的修复。
用高功率激光束以恒定功率P与热粉流同时入射到模具外表上,一局部入射光被反射,一局部光被吸收,瞬时被吸收的能量超过临界值后,金属熔化产生熔池,然后快速凝固形成冶金结合的覆层,如图1所示。
图中α为熔覆层宽度、h为熔覆厚度、hm为熔化深度、α为接触角。
激光束根据CAD二次开发的应用程序给定的路线,来回扫描逐线逐层地修复模具。
由于激光束的高能密度所产生的近似绝热的快速加热,对基体的热影响较小,引起的畸变可以忽略,特别是经过修复后的模具几乎不需再加工。
1 激光修复系统激光修复技术是集高功率激光、计算机、数控机床、CAD/ CAM、先进材料、数控技术等多学科的应用技术。
修复系统主要由硬件设备和制造过程软件组成。
硬件设备包括激光器、数控系统与工作台、送粉装置、光路系统、水冷装置、保护气系统和在线控制所涉与的数据采集装置。
软件系统包括制造零件成型软件擞据通讯和在线控制软件。
激光修复过程如图2所示。
CO2激光器发出的激光经C数控机床Z轴(垂直工作台)反射镜后,进入三维光束成形聚焦组合镜,再进入同轴送粉工作头,组合镜和工作头都固定在机床Z轴上,由数控系统统一控制。
激光熔覆技术在汽车冲压模具修复上的应用

必须计算好熔覆区域的搭接比例。
一汽模具制造有限公司引进的德国阿诺德 5 轴激
光设备,配备两个机床头,具备两种功能,分别为淬火
和熔覆,设备如图 1 所示。设备的基本结构为 5 轴联
动数控加工系统,由半导体激光器、传输光纤、激光加
工头、移动式工作台、整机电气控制系统、烟尘吸收及
净化装置、CAM 编程软件、负压式送粉器以及激光安
全防护系统等组成,激光源为 Laserline 的二极管半导
体激光器,输出功率 4,000W,具有独立的人机交互界
面,水-水冷却器及加工传输光纤,配备 IWS 开发的激
光功率监测和控制软件。激光熔覆头为德国
IWS-COAX 系列的 COAX12,光学加工头上配备激光
熔敷头。熔覆头技术参数同送粉器、激光器参数匹
来完成,根据加工数据 offset 料厚和提取工件的干涉
面便于计算出的程序轨迹模拟仿真。对已导入 Dcam
的加工数据进行加工中心、对照面等基准信息核对。
其 次 ,进 行 编 程 中 心 设 立 。 激 光 光 束 为 直 径
图 1 德国阿诺德激光设备
《模具制造》2023 年第 3 期
ϕ4mm 左右圆光斑,用此来确立中心孔的孔心,因此在
轨迹(tool path)等。基本思路是根据要加工的曲面形
床运动过程中过多的分布点会产生停顿,同步喷粉会
件中坐标系区域,通过设置不同的坐标系来加工各个
thinning 功能,在不改变运动轨迹的前提下,减少点的
状来建立矢量曲线,由此生成刀路轨迹。Frames 是软
区域的工件部分。图 3 所示为 Layer 和 Frames 的框架,
overlaying.By optimizing the claddig process,the repair of the work area of drawig die with a
浅述激光熔覆技术的应用

浅述激光熔覆技术的应用【摘要】激光熔覆技术是一种先进的表面修复和涂覆技术,应用广泛。
在汽车制造领域,激光熔覆技术可以提高汽车零部件的耐磨耐蚀性能;在航空航天领域,可以用于修复和加固飞机引擎零部件;在能源装备领域,可用于延长发电设备的使用寿命;在模具制造领域,可以提高模具的耐磨性和使用寿命;在机械制造领域,可以提高机械零部件的表面硬度。
激光熔覆技术的应用为各个领域带来了更高的效率和更长的使用寿命,并且随着技术的不断发展,其应用领域还将继续扩大。
激光熔覆技术的发展前景十分广阔,为各行业的发展带来了新的机遇和挑战。
【关键词】激光熔覆技术, 应用领域, 汽车制造, 航空航天, 能源装备, 模具制造, 机械制造, 发展前景1. 引言1.1 激光熔覆技术简介激光熔覆技术是一种通过激光束熔化表面材料并与基体材料相融合的先进表面处理技术。
它可以在不改变工件整体性能的情况下,通过在表面形成具有良好性能的合金层或涂层来提高工件的耐磨性、耐腐蚀性和疲劳强度。
激光熔覆技术具有热影响区小、熔覆层与基体结合强度高、成形能力强等优点,因此在各个行业得到广泛应用。
激光熔覆技术的基本过程包括准备基体表面、激光预热、激光熔覆合金粉末等步骤。
通过控制激光功率、扫描速度和熔覆层厚度等参数,可以实现对熔覆层性能的调控,从而满足不同工件的需求。
随着激光技术的发展和应用领域的不断扩大,激光熔覆技术在汽车制造、航空航天、能源装备、模具制造和机械制造等领域都有重要应用,为各行各业提供了高效、精密的表面处理解决方案。
随着材料科学、激光技术和工程技术的进步,激光熔覆技术的发展前景将更加广阔。
2. 正文2.1 汽车制造领域的应用激光熔覆技术在汽车制造领域的应用广泛而重要。
通过激光熔覆技术,汽车制造商可以实现高精度、高效率和高质量的零件制造。
这对于汽车行业来说至关重要,因为汽车零件的质量直接影响到汽车的性能和安全性。
在汽车制造中,激光熔覆技术可以用于修复受损零件、增强零件表面硬度和耐磨性、提高零件的耐蚀性能等。
激光熔覆技术的原理和应用

激光熔覆技术的原理和应用1. 激光熔覆技术的简介激光熔覆技术是一种常用于金属表面改性和复合材料制备的先进加工技术。
它利用高能激光束对工件表面进行局部熔化,使金属或合金液态化并与基材相互混合,形成一层高质量的涂层。
激光熔覆技术具有熔化速度快、固化快、热影响区小、涂层与基材结合强等优点,因而在航空航天、汽车制造、能源装备等领域得到广泛应用。
2. 激光熔覆技术的原理激光熔覆技术的实质是利用高能激光束对工件表面进行局部加热,使其达到熔点,然后进行快速冷却,使其凝固成为一层均匀致密的涂层。
其原理主要包括以下几个方面:2.1 激光加热高能激光束在与工件表面接触时,光能转化为热能,使工件局部区域温度升高。
激光加热具有高度集中的特点,可以实现对工件表面的高温局部加热,而对其他区域几乎没有热影响。
2.2 金属熔化通过激光加热,金属或合金在达到熔点的条件下发生熔化。
激光熔化的特点是熔池温度高、熔池容积小、凝固速度快。
这使得熔化的金属能够在非常短的时间内冷却并固化,形成一层均匀致密的涂层。
2.3 冷却和凝固金属熔池在短时间内冷却并凝固形成固体涂层。
冷却速度的快慢直接影响涂层的组织结构和性能。
激光熔覆技术的快速冷却速度可以避免大晶粒的形成,并在晶界处形成细小的析出相,提高涂层的强度和硬度。
3. 激光熔覆技术的应用激光熔覆技术在多个领域有着广泛的应用,下面列举了其中一些典型的应用:3.1 表面修复和修饰通过激光熔覆技术可以对损坏的金属零件进行修复和修饰。
激光熔覆可以填充表面缺陷、修复裂纹,提高零件的使用寿命和性能。
3.2 硬质合金涂层制备激光熔覆技术可以在金属基材表面涂覆硬质合金材料,提高金属零件的耐磨性、耐腐蚀性和抗疲劳性。
硬质合金涂层广泛应用于机械零件、切削工具等领域。
3.3 功能性涂层制备通过激光熔覆技术可以在金属基材表面制备各种功能性涂层,如热障涂层、阻尼涂层、导电涂层等。
这些涂层可以为金属零件赋予新的性能和功能,拓展其应用范围。
《激光熔覆修复模具技术工艺规范》

《激光熔覆修复模具技术工艺规范》激光熔覆修复模具技术是一个工艺流程系统。
首先,应根据制品的服役条件或失效分析,确定对涂层的性能要求,据以选择恰当的熔覆合金材料和工艺。
然后、实施激光熔覆工序施工,包括:基体的表面预处理,激光熔覆工艺及精加工,熔覆层质量检验。
每道工序都必须严格按操作规程进行,检验合格,方能进行下一道工序。
一熔覆层系统设计1.1 确定对熔覆层的功能尺寸要求应确切了解欲激光熔覆模具的服役条件,或制品在使用过程中的失效原因,确定对熔覆层的功能尺寸要求。
1.2熔覆层材料的选择只有熟悉并掌握丰富、全面的材料科学知识,才能做到正确合理地进行熔覆层系统设计,选择熔覆层材料。
有关这方面的资料,可参考“机械制造工艺材料技术手册”第九篇“热喷涂材料技术手册”(机械工业出版社,1993,第一版)。
1.3 激光熔覆工艺选择激光熔覆工艺的确定,应根据熔覆层材料的熔点、热导率、耐热震性及熔覆层与模具基体的结合强度要求,结合生产效率、成本等综合考虑。
二激光熔覆修复模具的基本程序激光熔覆修复模具操作基本程序如下表:三激光熔覆修复工艺正确的激光熔覆工艺参数。
应使被熔覆的合金粉末均匀熔覆到经预处理的基体表面上,形成优质涂层。
激光熔覆修复工艺参数的选择对激光熔覆修复过程、熔覆修复件的综合性能有着直接的重要影响。
激光熔覆层的质量除了受熔覆材料和基体材料的熔点、导热系数、热膨胀系数、密度等物理性质和相互之间的化学匹配性制约之外,主要取决于激光参数(输出功率、光斑形状和尺寸、光束输出模式)和工艺参数(扫描速度、预置粉层厚度、搭结率、预热温度及保护气体等)。
3.1 基材熔覆表面预处理表面预处理是为了除掉基材熔覆部位的污垢和锈蚀,使其表面状态满足后续的前置熔覆材料或者同步供料熔覆的要求,主要包括喷涂表面的预处理和非喷涂表面的预处理。
①喷涂表面的预处理。
基材表面常用火焰喷涂或者等离子喷涂,因此需要进行去油和喷砂处理。
去油一般用加热法,即基材表面加热到300-450℃左右去油;也可用清洗剂去油,常用的清洗剂包括碱液、三氯乙烯、二氯乙烯等。
机床大讲堂第39讲——基于激光熔覆技术的铝合金模具修复研究

机床大讲堂第39讲——基于激光熔覆技术的铝合金模具修复研究基于激光熔覆技术的铝合金模具修复研究导读选用铁基金属粉末,采用同轴送粉光纤激光熔覆工艺对铝合金注塑模具磨破损区域进行了修复,并对其进行了机械性能测试与分析。
结果表明:同轴送粉光纤激光熔覆技术能够实现铝合金模具的成功修复,在合理工艺参数下铁基金属粉末和铝合金基体之间形成了良好的冶金结合,表面硬度得到很大提高。
随着现代科技的飞速发展,各种新技术新方法在模具修复中得到广泛推广和应用,其中常用的有堆焊修复技术、热喷涂和热喷焊修复技术、电刷镀修复技术和电火花修复技术。
近年来,在国内外又兴起了一种新的零件修复技术即激光熔覆。
该技术通常采用预置粉末或同步送粉方式在基体修复区表面加入金属粉末,利用高能激光束瞬间将基体表面微熔,同时使其表面的金属粉末(与基体材质相同或相近)全部熔化,激光撤去后快速凝固,获得与基体呈冶金结合的致密熔覆层,使零件表面恢复几何外形尺寸,并使表面熔覆层强化。
模具激光熔覆修复技术解决了电弧堆焊、氩弧堆焊、等离子弧堆焊等传统修复方法无法解决的工艺过程热应力和热变形大的难题。
本文对铝合金模具激光熔覆修复技术进行了试验研究,研究结果为该技术的工程应用提供了一定的理论和技术支持。
1试验装置和原理基于激光熔覆技术的模具破损区修复是在图1所示的多功能激光加工中心上进行的,主要由IPG光纤激光器(型号YLR-3000)、6轴KUKA机器人(型号KR30)、PERCITEC YC52熔覆头和FHPF-10同轴送粉器等组成。
通过西门子PLC系统利用良好的人机界面集中控制激光发射、机器人运动、送粉和保护气开关等。
同轴送粉器将四路粉末汇聚一点,送入激光束内,粉末被加热至熔化状态,并在基体或前一熔覆层上凝固,与其形成冶金结合。
一层熔覆完毕后,激光头上升一定的高度(对应熔覆层的厚度),以保持激光光斑大小不变,继续进行后一层的熔覆修复。
经过多次循环,即可修复好已磨损的金属模具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程:激光表面改性技术
主讲教师:林继兴
激光在模具修复中的应用
教学目标 通过本次课程的学习,了解激光处理在模具修复中的 应用。
背景
模具应用非常广:80%零部件都需要模具成型 项目实例:电力金具产品——铜端子零件热锻模。
图1 铜端子零件
图2 铜端子热锻模
模具失效
模具失效形式:龟裂、起皱、断裂、表面损伤等。
图3 失效花表面强化、PVD、 CVD等方法均可在一定程度上延长模具的使用寿命,但上 述方法存在工艺复杂、处理周期长、处理后模具存在较大 畸变、形成的镀层薄而脆、磨损极快、容易出现早期裂纹
等缺点。
亟需一种工艺简单、效率高、性能优异的新技术!
新老工艺对比
氮化处理
图5 着色探伤——无裂纹
熔覆问题与对策2
与现有工艺 对比分析
模具使用 寿命帅选
降低试模成本
图6 冷热疲劳试验机
小 结
1、模具使用寿命关系到企业生产成本与效率,现有工 艺复杂,周期长,激光处理工艺简单、效率高、性能
优异;
2、激光处理包括模具服役前的激光强化,服役中的激 光保养,失效后的激光熔覆修复。
作业思考题
1、激光处理与常规修复技术相比,有哪些技术优势?
2、激光表面强化、激光保养(消除疲劳源、去应力)、
激光熔覆在功率大小怎么排序,为什么?
堆焊/其他 表面处理 方法
报废
精加工模具
整体热处理
激光强化
激光保养
熔覆修复
激光处理步骤:激光三部曲
Step 3 • 模具失效后 Step 2 • 模具服役中 Step 1
• 激光修复——激光熔覆
• 激光保养 •模具服役前
•激光表面强化
熔覆问题与对策1
高硬度易裂
图4 着色探伤——裂纹
粉末掺杂
三束激光