信息论与编码理论-第3章信道容量-习题解答

合集下载

信息论与编码理论习题答案

信息论与编码理论习题答案

信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。

解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。

问各得到多少信息量。

解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。

解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。

信息论第三章答案

信息论第三章答案

信息论第三章答案3.2.设二元对称信道的传的矩阵32313132。

(1)、若P (0)=43,P(1)=41,求H(X),H(X/Y),H(Y/X)和I(X;Y); (2)、求该信道的信道容量及其达到信道容量时的输入概率分布。

解:(1)、H(X)=-symbol bit x p ii /81.0)41log 4143log 43()(=+?-=∑ H(Y/X) =-)/(log )/()(i j i j i j i x y p x y p x p ∑∑ =-(32log 324131log 314131log 314332log 3243?+?+?+?) = 0.92bit/symbolP )/()()/()()()()(21211112111x y p x p x y p x p y x p y x p y +=+= =31413243?+?=0.58 同理可得:p(2y )=0.42H (Y)=-(0.42×log0.42+0.58×l og0.58)=0.980bit/symbol得:H(X/Y)=H(X)-H(Y)+H(Y/X)=0.81-0.98+0.92=0.75bit/symbolI(X;Y)=H(X)-H(X/Y)=0.81-0.75=0.06bit/symbol(2)由题:C=maxI(X;Y)=logm-mi H =log2-(32log 3231log 31+)=0.082bit/symbol 因为信道容量达到最大值即X 等概率出现即:p(i x )=21 3.6、有一个二元对称信道,其信道矩阵为??098.02.002.098.0。

设该信源以1500二元符号/每秒的速度传输输入符号。

现有一消息序列共有14000个二元符号,并设P(0)=P(1)=21,问从消息传输的角度来考虑,10秒钟内能否将这些消息序列无失真的传递完?解:由题得:C=max[H(Y)-ni H ]=log2-ni H =1+0.98log0.98+0.02log0.02=0.859bit/symbol 即每输入一个信道符号,接收到的信息量是0.859bit,已知信源输入1500二元符号/每秒,那么每秒钟的信息量是:1I =(1500symbol/s )×0.859bit/symbol=1288bit/s10秒钟传输:2I =101I =12880bit传送14000个二元符号,P(0)=P(1)=21 则有:3I =14000×(21log 21×2)=14000bit 得出:2I ﹤3I 即10秒内不能将消息序列无失真传递完3.11、已知离散信源?=4.02.03.01.0)(4321x x x x X P X ,某信道的信道矩阵为2.04.03.01.02.01.02.05.01.01.02.06.04.01.03.02.0试求:(1)、“输入3x ,输出2y ”的概率;(2)、“输出4y ”的概率;(3)、“收到3y 的条件下推测输入2x ”的概率。

信息论与编码第3版第3章习题解答

信息论与编码第3版第3章习题解答

第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。

解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。

解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。

信息论与编码习题答案

信息论与编码习题答案

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。

2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。

3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。

5. 已知n =7的循环码42()1g x x x x =+++,则信息位长度k 为 3 ,校验多项式 h(x)= 31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

(√ )3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。

信息论与编码_第3章信道容量

信息论与编码_第3章信道容量
x1 y1 y2 y3 y4 y5 y6
0.5 0.5
条件熵: H(X|Y) =0, H(Y|X) ≠ 0 互信息量: I(X; Y)=H(X) < H(Y) 信道容量: C = log |A|=logn.
x2
0.6 0.3 0.1 x3 1
16
3.2 离散无记忆信道容量
例3-2-1 设离散无噪有损信道的转移概率矩阵为
x1 x2 x3 1 1 1 y1 y2 y3
条件熵: H(X|Y)= H(Y|X)=0 互信息量: I(X;Y)=H(Y)=H(X) 信道容量: C=log|A|=log|B|=logn.
14
3.2 离散无记忆信道容量
无噪有损信道 X与Y是多对一关系.
1 1 P(Y | X ) = 0 0 0 0 1 1 .
随机变量的取值分类 根据输入与输出 随机变量的取值分类 离散信道(数字信道 时间、取值离散 数字信道: 离散) 离散信道 数字信道 时间、取值离散 连续信道(模拟信道 取值连续 模拟信道: 连续) 连续信道 模拟信道 取值连续 半连续信道( 时间、取值一个离散,另一个连续 半连续信道 时间、取值一个离散, 一个连续) 离散 连续 波形信道(时间 取值连续 时间、 连续) 波形信道 时间、取值连续
j
25
3.2 离散无记忆信道容量
准对称信道的最佳分布是等概的 设准对称信道的转移概率矩阵能够被列分割为等个对称 子矩阵。 当输入符号为等概分布时,互信息量在集合 上的统计平均值为
I ( X = ai , Y ) = ∑ p (b j / ai ) log
j
p ( b j / ai )
=∑
s
j∈Ω s
C = log n + ∑ p (b j | ai ) log p (b j | ai ) − ∑ N s log M s

西电《信息与编码理论》习题答案(高教-王育民-李晖-梁传甲)

西电《信息与编码理论》习题答案(高教-王育民-李晖-梁传甲)

信息与编码理论习题解第二章-信息量和熵2.1解:平均每个符号长为:1544.0312.032=⨯+⨯秒每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解:同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366所以得到的信息量为585.2)366(log 2= 比特(b) 一对骰子总点数为12的概率是361所以得到的信息量为17.5361log 2= 比特 2.4 解:(a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13X 牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯ 所以得到的信息量为21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解:可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得,Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫ ⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫ ⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特2.7 解:X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特)01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 &2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)=6log 2 比特 H(X)= H(X 1) =6log 2=2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X)= 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y) =1.0143比特I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log )()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)=3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-== (b )同理 418)00()()00(==∑=i i i u p u q w bits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 8180)000()()000(==∑=i i i u p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(42268180p p p p u p u q w i i i +-+-==∑= bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.92.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式)或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。

信息论第3章课后习题答案

信息论第3章课后习题答案

信息论第3章课后习题答案信息论是一门研究信息传输、存储和处理的学科。

它的核心理论是香农信息论,由克劳德·香农于1948年提出。

信息论的应用范围广泛,涵盖了通信、数据压缩、密码学等领域。

在信息论的学习过程中,课后习题是巩固知识、检验理解的重要环节。

本文将对信息论第3章的课后习题进行解答,帮助读者更好地理解和掌握信息论的基本概念和方法。

1. 证明:对于任意两个随机变量X和Y,有H(X,Y)≤H(X)+H(Y)。

首先,根据联合熵的定义,有H(X,Y)=-∑p(x,y)log2p(x,y)。

而熵的定义为H(X)=-∑p(x)log2p(x)和H(Y)=-∑p(y)log2p(y)。

我们可以将联合熵表示为H(X,Y)=-∑p(x,y)log2(p(x)p(y))。

根据对数的性质,log2(p(x)p(y))=log2p(x)+log2p(y)。

将其代入联合熵的表达式中,得到H(X,Y)=-∑p(x,y)(log2p(x)+log2p(y))。

再根据概率的乘法规则,p(x,y)=p(x)p(y)。

将其代入上式中,得到H(X,Y)=-∑p(x,y)(log2p(x)+log2p(y))=-∑p(x,y)log2p(x)-∑p(x,y)log2p(y)。

根据熵的定义,可以将上式分解为H(X,Y)=H(X)+H(Y)。

因此,对于任意两个随机变量X和Y,有H(X,Y)≤H(X)+H(Y)。

2. 证明:对于一个随机变量X,有H(X)≥0。

根据熵的定义,可以得到H(X)=-∑p(x)log2p(x)。

由于概率p(x)是非负的,而log2p(x)的取值范围是负无穷到0之间,所以-p(x)log2p(x)的取值范围是非负的。

因此,对于任意一个随机变量X,H(X)≥0。

3. 证明:对于一个随机变量X,当且仅当X是一个确定性变量时,H(X)=0。

当X是一个确定性变量时,即X只能取一个确定的值,概率分布为p(x)=1。

信息论与编码理论习题答案

信息论与编码理论习题答案
= 3、3 设有一离散无记忆信源,U=,其熵为。考察其长为得输出序列,当时满
足下式
(a)在=0、05,=0、1 下求 (b)在=,=下求 (c)令就是序列得集合,其中
试求L=时情况(a)(b)下,T 中元素个数得上下限. 解:===0、81 bit
= ==—
= =0、471 则根据契比雪夫大数定理
0、2
001
100
a4
0、1
0001
1000
(a) 各码就是否满足异字头条件?就是否为唯一可译码?
(b) 当收到 1 时得到多少关于字母 a 得信息?
(c) 当收到 1 时得到多少关于信源得平均信息?
2、14 对于任意概率事件集 X,Y,Z,证明下述关系式成立 (a)+,给出等号成立得条件 (b)=+ (c)
证明:(b) =-
==—-
=+ (c) =-
=[—] [-]
=—
= 当=,即X给定条件下,Y 与 Z 相互独立时等号成立 (a) 上式(c)左右两边加上,可得 ++ 于就是+ 2、28 令概率空间,令 Y 就是连续随机变量。已知条件概率密度为 ,求: (a)Y 得概率密度 (b) (c) 若对 Y 做如下硬判决
求,并对结果进行解释. 解:(a) 由已知,可得
= =
=+
= (b) ==2、5 bit
=
= =2 bit =-=0、5 bit (c) 由可得到V得分布律

—1
p
1/4
再由可知
V
-1
p(V|x=-1)
1/2
p(V|x=1)
0
bit
=1 bit == 0、5 bit
0 1/2
0 1/2 1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码理论-第3章信道容量-习题解答-071102(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。

i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。

二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,} 注意单位3-2 求下列三个信道的信道容量及其最佳的输入概率分布。

1b 2b 3b 3a 2a 1a Y X 1b 2b 3a 2a 1a Y X 1b 2b 2a 1a Y X 3b 11111110.70.3第一种:无噪无损信道,其概率转移矩阵为: 1 0 0P=0 1 00 0 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦信道容量:()max (;)P X C I X Y bit/符号()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==离散无记忆信道(DMC)只有输入为等概率分布时才能达到信道容量,C=log3=1.5850 bit/符号输入最佳概率分布如下:111,,333⎧⎫⎨⎬⎩⎭第二种:无噪有损信道,其概率转移矩阵为: 1 0P=0 10 1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,离散输入信道, ()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H Y H Y X H Y X C I X Y H Y ==-∴=∴==H(Y)输出为等概率分布时可达到最大值,此值就是信道容量 此时最佳输入概率:123p(a )+p(a )=0.5,p(a )=0.5 信道容量:C=log(2)=1 bit/符号 第三种:有噪无损信道,由图可知:()()()()max{(;)}max{()(|)}(|)0max{(;)}max{()}p x p x p x p x C I X Y H X H X Y H X Y C I X Y H X ==-∴=∴==输入为等概率分布时可达到信道容量,此时信道容量p(x)C=max{H(X)}=log(2)=1 bit/符号 输入最佳概率分布:11,22⎧⎫⎨⎬⎩⎭3-3 设4元删除信道的输入量{1,2,3,4}X ∈,输出量{1,2,3,4,}Y E ∈,转移概率为(|)1(|)1-ε 0 0 0 ε0 1-ε 0 0 ε P=0 0 1-ε 0 ε0 0 0 1-ε ε1-ε 0 0 0 ε0 1-ε 0 0 ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε εP Y i X i P Y E X i εε===-===⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中1,2,3,4i = 1)该信道是对称DMC 信道吗 2)计算该信道的信道容量;3)比较该信道与两个独立并联的二元删除信道的信道容量。

(1)本通信过程的转移概率分布如下所示:1-ε 0 0 0 ε0 1-ε 0 0 ε P=0 0 1-ε 0 ε0 0 0 1-ε ε⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 可以分解为两个矩阵: 1-ε 0 0 0 ε0 1-ε 0 0 ε p1= p2=0 0 1-ε 0 ε0 0 0 1-ε ε⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 可以看出该信道不是对称DMC 信道,它是准对称DMC 信道。

(2)该信道的信道容量为:(直接套用准对称信道计算公式)2log (|)log (|)log log (4)(1,)(1)log(1)log(4)2(1)log(1)log()(1)log(1)log(4)12log()22(/)4j k j k s sjsC n p b a p b a N M H bit εεεεεεεεεεεεεεεε=+-=------=+--+----=+=-∑∑符号 (3)两个独立并联的二元删除信道其转移概率如下:1-ε ε 00 ε 1-ε⎡⎤⎢⎥⎣⎦可以写成:1-ε 0 ε 0 1-ε ε ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦与的形式独立并联的二元信道的信道容量为两个信道容量的和。

其信道容量为:1(1-ε,ε )(1-ε)log(1-ε)εlog(2ε)=1-εC H =--- bit/符号 两个独立并联和删除信道的信道容量=2C=22-ε bit/符号 本信道的信道容量与两个并联删除信道信道容量相等。

3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。

2)根据()H ε的变化曲线,定性分析信道的容道容量,并说明当12εε=的信道容量。

解:(1)设输入信号的概率颁布是{p,1-p}111121212()()(|)()(|)(1)(1)p b p a p b a p a p b a p p =⨯+⨯=⨯-ε+-⨯ε212122212()()(|)()(|)(1)(1)p b p a p b a p a p b a p p =⨯+⨯=⨯ε+-⨯-ε11221212121212()()log ()()log ()[(1)(1)]log[(1)(1)][(1)(1)]log[(1)(1)][(1)(1)]H Y p b p b p b p b p p p p p p p p H p p =--=-⨯-ε+-⨯ε⨯-ε+-⨯ε-⨯ε+-⨯-ε⨯ε+-⨯-ε=⋅-ε+-⋅ε2,1111222212(|)()(|)log (|)[(1)log(1)1log()](1)[(1)log(1)log()]()(1)()i j i j i i j H Y X p a p b a p b a p p p H p H ==-=-⨯-ε-ε+εε---ε-ε+εε=⋅ε+-⋅ε∑(2)()H ε的变化曲线,是一个上凸函数,当输入等概率分布时达到信道容量。

()()1212()max{(;)}max{()(|)}max{[(1)(1)]()(1)()}p x p x p x C I X Y H Y H Y X H p p p H p H ==-=⨯-ε+-⨯ε-⨯ε+-⨯ε由于函数H (ε)是一个凸函数,有一个性质:1212((1))()(1)()f f f θ⋅α+-θ⋅α≥θ⋅α+-θ⋅α 可知:C ≥0假设12εε==ε时此信道是一个二元对称信道,转移概率分布为:11Q ε-εε⎡⎤=⎢⎥ε-⎣⎦ 信道容量:121-log -(1-)log(1-)1-()C H εεεεεεεε==== 3-5 求下列两个信道的容量,并加以比较。

1-p-εp-ε2εp-ε1-p-ε2ε⎡⎤⎢⎥⎣⎦ 120102p p p p εεεεεε---⎡⎤⎢⎥---⎣⎦第一个:可以写成:1-p-ε p-εp-ε 1-p-ε⎡⎤⎢⎥⎣⎦与2ε2ε⎡⎤⎢⎥⎣⎦11(1-p-ε,p-ε,2ε)(12ε)log(12ε)2εlog(4ε)C H =----- bit/符号第二个:120102p p p p εεεεεε---⎡⎤⎢⎥---⎣⎦⎡⎤⎢⎥⎣⎦1-p-ε p-εp-ε 1-p-ε与2ε 00 2ε⎡⎤⎢⎥⎣⎦两个对称形式21(1-p-ε,p-ε,2ε,0)(12ε)log(12ε)2εlog(2ε)C H =-----bit/符号122ε<0C C -=-所以:信道一的信道容量大于信道二的信道容量,信道容量的不增性。

3-6设信道前向转移概率矩阵为1000101Q p p p p ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦1)求信道容量和最佳输入概率分布的一般表达式;2)当0p =和1/2p =时,信道容量分别为多少并针对计算结果做出说明。

(1)此信道为非对称信道,设输入概率分布为:{}123123p ,p , p p +p + p 1=输出概率分布为:{}123123q ,q , q q +q + q 1=[]1111121231312312212122232312323331max (;)max[()(|)]()()(|)()(|)()(|)100()()(|)()(|)()(|)0(1)(1)()()C I X Y H Y H Y X q p b p a p b a p a p b a p a p b a p p p p q p b p a p b a p a p b a p a p b a p p p p p p p p pq p b p a ==-==⨯+⨯+⨯=⨯+⨯+⨯===⨯+⨯+⨯=⨯+⨯-+⨯=⨯-+⨯==⨯3123233312323(|)()(|)()(|)0(1)(1)p b a p a p b a p a p b a p p p p p p p p p +⨯+⨯=⨯+⨯+⨯-=⨯+⨯-3,1122332323(|)()(|)log (|)1log1(1)log(1)log log (1)log(1)()(1)log(1)()log i j i j i i j H Y X p x p y x p y x p p p p p p p p p p p p p p p p p p p p p==-=-⨯⨯-⨯---⨯⨯-⨯-⨯--=-+---+∑[]12323max (;)max[()(|)]max[(,,)(,1)(,1)]C I X Y H Y H Y X H q q q p H p p p H p p ==-=----把C 对P 1,P 2,P 3 分别求导:123δC δC δC =0 =0 =0δp δp δp ,可得: 232323233232log(1)(1)log[(1)]log[(1)](,1)0log(1)(1)log[(1)]log[(1)](,1)0p p p p p p p p p p p p H p p p p p p p p p p p p p p H p p -----+-+---=⎧⎨-----+-+---=⎩可得: P 2 = P 3 22log(12)log (,1)0p p H p p ----= 可以解得:23(,1)122H P P p p -==+最佳输入概率分布的表达式为:(,1-)(,1-)(,1-)2111,,222222H P P H P P H P P ⎧⎫-⎨⎬+++⎩⎭设(,1)22H P P N -+=则123()21 p =1 p =p =N Nmax{()(|)}22212(1)log(1)log ()p x C H Y H Y X H p N N N N N-=-=-----(2)p=0时,100010001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是一个对称信道,当输入等概率分布时可以达到信道容量,输入转移概率为111,,333⎧⎫⎨⎬⎩⎭N=3,所以2221(1)log(1)log 1.58503333C =----= bit/符号(3)p=1/2时,1001102211022Q ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,可得N=4, 1111111log log (,)12224222C H =---= bit/符号3-7设BSC 信道的前向转移概率矩阵为0.980.020.020.98Q ⎡⎤=⎢⎥⎣⎦设该信道以1500个二元符号/秒的速度传输输入符号,现在一消息序列共有14000个二元符号,并设在这消息中(0)(1)1/2P P ==,问从信息传输的角度来考虑,10秒钟内能否将这消息序列无失真地传输完。

相关文档
最新文档