二元函数的连续性

合集下载

二元函数连续性

二元函数连续性

lim
P→ P0
f (P) =
f ( P0 )
( P 0 ∈定义区域)
例4 求极限
lim (1+ x + y) ⋅ ex2 + y2
( x, y)→(0,0)
解:函数f (x, y) = (1+ x + y) ⋅ ex2 + y2是二元初等函数, 定义域是R2 ,并且它在点(0,0)(∈ R2 )处连续,
=.
x→0 y→0
xy + 1 + 1
2
三、在有界闭区域上连续函数的性质
性质1 (有界性与最大值最小值定理)
如果函数f在有界闭区域D上连续,则f在 D上有界,且能取得最大值和最小值。
说明:性质1是说,若f(P)在有界闭区域D 上连续,则必定存在大于0的常数M,使得 对一切属于D的点P,有
f (P) ≤ M ,且存在P1、P2 ∈ D,使得 f (P1) = max{ f (P) P ∈ D}, f (P2 ) = min{ f (P) P ∈ D}.
它是由常数及具有不同自变量的一元基本初等函数
经过有限次四则运算和复合运算得到的。
如 = f ( x, y)
lnsin( xy) +
x x2
− +
y y2
等等
3、一切多元初等函数在其定义区域内是连续的.
定义区域:是指包含在定义域内的区域或闭区 域.
注:在多元初等函数定义区域内的连续点处求 极限可用“代入法”。
2、连续性定义的另一种形式
设f (x, y)在P0 (x0 , y0)的全增量 ∆z = f (x0 + ∆x, y0 + ∆y) − f (x0 , y0),则

高等数学第16章第3节二元函数的连续性

高等数学第16章第3节二元函数的连续性

§ 3 二元函数的连续性一 二元函数的连续性定义 设f 为定义在点集2R D ⊂上的二元函数.()。

的孤立点的聚点,或者是它或者是D D D P ∈0对于任给的正数ε,总存在相应的正数δ,只要(),;D P U P δ0∈,就有 ()()ε<-0P f P f ,()1则称f 关于集合D 在点0P 连续。

在不至于误解的情况下,也称f 在点0P 连续。

若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数。

由上述定义知道:若0P 是D 的孤立点,则0P 必定是f 关于D 的连续点;若0P 是D 的聚点,则f 关于D 在连续等价于()().lim 00P f P f DP P P =∈→()2如果0P 是D 的聚点,而()2式不成立()应情形相同其含义与一元函数的对,则称0P 是f 的不连续点或称间断点。

特别当()2式左边极限存在但不等于)(0P f 时,0P 是f 的可去间断点.如上节例1、2给出的函数在原点连续;例4给出的函数在原点不连续,又若把例3的函数改为{}⎪⎪⎩⎪⎪⎨⎧=+≠=∈+=),0,0(),(,1,0,|),(),(,),(222y x m m x m x y y x y x y x xyy x f其中m 为固定实数,亦即函数f 只定义在直线mx y =上,这时由于(),0,01),(lim 2),(),(00f m my x f mx y y x y x =+==→ 因此f 在原点沿着直线mx y =是连续的。

设()000,y x P 、()00,,,y y y x x x D y x P -=∆-=∆∈则称()()()0000,,,y x f y x f y x f z -=∆=∆ ()()0000,,y x f y y x x f -∆+∆+=为函数f 在点0P 的全增量。

和一元函数一样,可用增量形式来描述连续性,即当0l i m ),()0,0(),(=∆∈→∆∆z Dy x y x时,f 在点0P 连续。

3 二元函数的连续性

3 二元函数的连续性
z
数,即
1, 当 (x, y) D时, f (x, y) = 无定义, 当(x, y) D时.
lim f ( x , y ) 1 f ( x0 , y0 )
x
1 o
可知, (x0, y0) D
x x0 y y0
但曲面 z = f (x, y)不是通常意义下的连续曲面.
xy 1 1 . 例 6 求 lim x 0 xy y 0
xy 1 1 xy 1 1 解 lim lim x 0 xy ( x 0 xy xy 1 1) y 0 y 0
1 1 . lim x 0 xy 1 1 2 y 0
例 7 设 D x , y x , y Q R 2 . z f x , y 定义 在 D 上, 且在 D 上恒等于 1, 在别的点上无定义的函
在(0,0)处的连续性.
解 取 x cos ,
y sin
f ( x , y ) f (0,0)
(sin3 cos3 ) 2
0, , 当 0 2

x2 y2 时
f ( x , y ) f (0,0) 0 连续.
由定义知:
则 P 0 是 f 关于 D 的连续点. 若 P 0 是 D 的孤立点,
若 P 0 是 D 的聚点,则 f 关于 D 在 P 0 连续等价于
lim f P f P 0 .
若 lim f P f P 0 , 则 P 0 是 f 的不连续点.
§3 二元函数的连续性
一、二元函数的连续性概念 二、有界闭域上连续函数的性质
一、二元函数的连续性概念
1、连续的定义

二元函数连续性

二元函数连续性
解:函数f (x, y) = (1+ x + y) ⋅ ex2 + y2是二元初等函数, 定义域是R2 ,并且它在点(0,0)(∈ R2 )处连续,
所以 lim (1+ x + y) ⋅ ex2 + y2 ( x, y)→(0,0) = f (0,0) =1
例5 求极限 lim ln(x + ey )
f
(x,
y)在P0 (x0 ,
y 0 )连续

lim
( ∆x ,∆y )→( 0, 0 )
∆z
=
0
即,二元函数在某点连续的充要条件是它 在该点的全增量极限为零。
3. 二元连续函数的几何意义
二元函数f (x, y)在区域D上连续,表示它的图形是 区域D上一片无“洞”,无“裂缝”的连续曲面。
二、多元连续函数的运算性质
公共数学教研室 Hale Waihona Puke 明清一、二元函数的连续性概念
1、连续的定义
设二元函数f (x, y)的定义域为D ⊂ R2 ,
P0 (x0 , y0 )是D的聚点,且P0 ∈ D.如果
lim
( x, y)→( x0 , y0 )
f (x, y) =
f (x0 , y0 )
则称函数f (x, y)在P0 (x0 , y0 )连续。否则, 称f (x, y)在P0 (x0 , y0 )间断,P0 (x0 , y0 )为 f (x, y)的间断点。
0,
x2 + y2 = 0
在(0,0)的连续性.
解:取 y = kx
lim
x→0 y→0
xy x2 + y2
=
lim
x→0 y = kx

二元函数连续性

二元函数连续性

性质2 (介值定理) 有界闭区域D上的多元连续函数一定能取得 介于最大值和最小值之间的任何值。
说明:性质2告诉我们, 设f在有界闭区域D上连续,记m, M为f在D上的 最小值和最大值,则对于任意满足不等式
m C M
的实数C,必存在点P0 D, 使得 f (P0) C.
1、连续性的定义(两种形式)。 2、多元初等函数的连续性。 3、有界闭区域上多元连续函数 的性质。
解:取 y kx
lim xy x0 x2 y2
y0
lim
x0
x
2
y kx
kx2 k2x2
k 1 k2
其值随k的不同而变化,故极限不存在.
所以函数在(0,0)处不连续.
2、连续性定义的另一种形式
设f (x, y)在P0(x0 , y0 )的全增量 z f (x0 x, y0 y) f (x0 , y0 ),则
1、 若 f ( P ) 在 D 上 任 何 点 都 连 续 , 则称f (P)是D上的连续函数。 2、二元函数连续性概念,可类似地
推广到n元函数f (P)上去。 3、二元函数函数f (x, y)在点P0连续 必须满足三个条件:1)在P0点有定义; 2)在P0点极限存在;3)极限值和函数 值相等。
f (x, y)在P0(x0 , y0)连续
lim z 0
(x,y )(0,0)
即,二元函数在某点连续的充要条件是它 在该点的全增量极限为零。
3. 二元连续函数的几何意义
二元函数f (x, y)在区域D上连续,表示它的图形是 区域D上一片无“洞”,无“裂缝”的连续曲面。
二、多元连续函数的运算性质
公共数学教研室 戴明清
一、二元函数的连续性概念
1、连续的定义

连续的定义

连续的定义
16.3-7 首页 上页 下页 返回 结束 铃
Mathematical Analysis
绵阳师范学院
练习
0 讨论函数 f ( x, y ) y
解:因为
( x , y )( x0 , y0 ) x有理数集
x 为有理数 的连续性. x 为无理数
lim
f ( x, y) 0而
( x , y )( x0 , y0 ) x无理数集
y=x2
f=0 f=0 k y=kx
当 k 0时,取 | k | , | x | 时
| f ( x , kx ) f (0,0) | 0
因此函数 f ( x , y )在点( 0 , 0 ) 沿任何方向都连续.
但函数 f ( x , y )在点 ( 0 , 0 ) 极限不存在,所以不连续.
绵阳师范学院
特别 lim f P 存在但不等于 f P 0 时, P 0 是 f 的
PP 0 P D
可去间断点. 注意 二元函数可能在某些点处间断,也可能在 曲线上的所有点处均间断. xy , x 0, y 0, 2 2 例如, f ( x , y ) x y (0, 0) 是间断点. 0, x 0, y 0.
16.3-12 首页 上页 下页 返回 结束 铃
Mathematical Analysis
绵阳师范学院
4. 连续函数的局部性质
若 f x , y 在某点连续,则可证明它在这一点
近旁具有局部有界性、局部保号性.
两个连续函数的和、差、积、商(若分母不
为0)仍是连续函数. 复合函数的连续 返回 结束 铃
Mathematical Analysis
绵阳师范学院

二元函数的连续性

二元函数的连续性

§ 3 二元函数的连续性一、 二元函数的连续性概念由一元函数连续概念引入 .1. )(P f 关于集合D 在0P 连续的定义定义 P100设),()(y x f P f =是定义在2R D ⊂上的二元函数,D P ∈0,0P 为D 的一个聚点,或者是孤立点. 若,);(),(,0,00D P U y x P δδε∈∀>∃>∀有ε<-)()(0P f P f ,则称)(P f 关于集合D 在0P 连续,简称)(P f 在0P 连续.D P ∈0,0P 为D 的一个聚点,)(P f 在0P 连续)()(lim 00P f P f P P =⇔→ 函数),(y x f 有定义的孤立点必为连续点 .“D P U y x P );(),(0δ∈∀”用方邻域叙述用圆邻域叙述函数的增量: 全增量、 偏增量 .用增量的语言叙述)(P f 在0P 连续. (用增量定义连续性) .2. )(P f 在集合D 连续.如果f 在集合D 内每一点连续,则称f 在D 连续,或称f 是D 上的连续函数. 函数在区域上的连续性 .3. )(P f 在0P 不连续.间断点例 (P101)⎪⎪⎩⎪⎪⎨⎧=++≠++=. 0 , 1, 0 , ),(2222222y x m m y x y x xy y x f证明函数),(y x f 在点) 0 , 0 (沿方向mx y =连续 .例 (P95例4 )⎩⎨⎧+∞<<∞-<<=. , 0, ,0 , 1),(2其他x x y y x f 证明函数),(y x f 在点) 0 , 0 (沿任何方向都连续 , 但点) 0 , 0 (并不连续.补例 求函数)(22y x tg z +=的不连续点。

(讨论函数的连续性)4. 二元连续和单元连续定义 ( 单元连续 )二元连续与单元连续的关系 (P101) 例 (P101)⎩⎨⎧=≠=. 0 , 0, 0 , 1),(xy xy y x f 函数),(y x f 在原点处不连续 但在原点处f 对x 和对y 分别都连续.5. 二元连续函数的性质局部保号性 若f 在点a 连续,并且0)(>a f ,则存在a 的领域)(a O δ,当)(a O x δ∈时有0)(>x f . 局部有界性运算性质 两个连续函数的和、差、积、商(若分母不为0)都是连续函数. 定理16.7(复合函数连续性)P102设D 是2R 中的开集,D y x ∈),(00。

数学分析二元函数的连续性

数学分析二元函数的连续性

使得当 |xx0|1 时,

| f(x,y)f
min{1,
}
2L
(x0,y)|2当 |x 源自x 0|,|y y 0|时,|f(x,y)f(x0,y0)||f(x,y)f(x0,y)f(x0,y)f(x0,y0)| |f(x,y)f(x0,y)||f(x0,y)f(x0,y0)|
2L|yy0|2L2L2L
x 0 y 0
4. 二元连续函数的几何意义:
定义在区域 D 上的二元连续函数z = f (X) = f (x, y)表示了在D上的一片没有 "空洞", 没 有 "裂缝" 的连续曲面.
这里条件 "D 是一区域" 是必要的. 若D不是 区域, z = f (X)可能不是通常意义下的连续曲面.
例. 设 D = {(x, y) | x, y 均为有理数} R2. z =f (x, y)
则称 f (X) 在 X0 连续, X0 称为 f (X) 的连续点.
否则称 f (X) 在 X0 间断, X0 称为 f (X) 的间断点.
若 f (X) 在 D 上每一点都连续, 则称 f (X) 在 D 上连续, 记为 f (X) C (D).
易知, 例2中 f (x, y)在(0, 0)间断(极限不存在), 例 1 中 ,f(x ,y ) xsyi1 n在x 直 y 0 上 线
例4 讨论函数
f(x,y)x2xyy2, x2y20
0,
x2y20
在(0,0)的连续性.
解 取 ykx
lim
x0
x
2
xy
y2
y0
lxim0 x2
kx2 k2 x2
ykx
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f
(Qn )
0
由于D为有界闭域,因此存在收敛子列 Pnk
Pn
,并设lim k
Pnk
P0 D
再在Qn 中取出与 Pnk 下标相同的子列 Qnk ,
则因
0 (Pnk , Qnk )
1 nk
0, k
得到
而有lim k
Qnk
lim
k
Pnk
P0,最后,由f在P0连续,
lim
证明 由f在点Q0连续可知:任给正数 ,存在相应正数 , 使得当u u0 , v v0 时,有 f (u,v) f (u0 ,v0 ) 又由、在点P0连续可知:对上述正数,总存在正数,使得当x x0 ,
y y0 时,都有 u u0 (x, y) (x0 , y0 ) v v0 (x, y) (x0 , y0 )
从而P0 D 由于f在D上连续,当然在点 P0也连续,因此有
lim
k
f (Pnk )
f (P0 )
这与不等式 (3)相矛盾,所以 f是D上的有界函数。
下面证明f在D上能取到最大、最小值 。设 m inf f (D), M sup f (D)
可证必有一点 Q D,使f (Q) M。否则对任意 P D,都有M f (P) 0
例如 函数
f
(
x,
y)
xy , x2 y2
m, 1 m2
(x, y) (x, y) | y mx, x 0
(x, y) (0,0)
其中m为固定实数,即函数 f只定义在直线 y mx上。
由于
lim f (x, y) m f (0,0)
( x, y)(0,0)
1 m2
ymx
因此f在原点沿着直线 y mx是连续的。
从一端开始逐个检查直线段,必定存在某直线段,F在它两端的
函数值异号,设连结 P1(x1, y1),P2 (x2, y2 ) 的直线段含于D,
其方程为
x
y
x1 y1
t(x2 t( y2
x1 ) y1 )
0t 1
在此直线段上,F表示为关于t的复合函数
G(t) F(x1 t(x2 x1), y1 t( y2 y1)), 0 t 1
的实数,必存在点 P0 D,使得f (P0 )
y
证明 作辅助函数 F(P) f (P) , P D
易见F仍在D上连续,且由不等式知道
F(P1) 0, F(P2 ) 0. 假设P1,P2是D的内点,
P1
下面证明必存在 P0 D,使F (P0 ) 0.
O
D
P2
x
由于D为区域,用有限段都在D中的折线 连接P1和P2。 若有某一个连接点所对应的函数值为0,则定理已证。否则
§3 二元函数的连续性
二元函数的连续性概念
定义 设f为定义在点集 D R2上的二元函数, P0 D。对于任给
的正数 ,总存在相应的正数 ,只要P U (P0 ; ) D,就有 f (P) f (P0 )
则称f关于集合 D在点P0 连续, 也称f在点P0连续。 若f在D上任何点都关于集合 D连续,则称 f为D上的连续函数。
由上述定义:若 P0是D的孤立点,则 P0必定是f关于D的连续点;
若P0是D的聚点,则f关于D在P0连续等价于
lim
P P0
f (P)
f (P0 )
PD
如果P0是D的聚点,而(2)式不成立,则称 P0是f的 不连续点。
特别当(2)式 左边极限存在但不的等 于f (P0 )时,P0是f的
可去间断点。
当函数f (x, y)在其定义域的内点 (x0 , y0 )连续时, f (x, y0 )在x0和f (x0 , y)在y0
都连续;但是,二元函数对单个自变量都连续并不能保证该函数的连续性。
1, 例如二元函数 f (x, y) 0,
f (0, y) f (x,0) 0,
xy 0
在原点处显然不连续,但由于xy 0z因来自在原点处 f对x和对y分别都连续。
O
y
x
定理1(复合函数的连续性)设函数u (x, y)和v (x, y)在xy平面上
点P0 (x0 , y0 )的某邻域内有定义,并 在点P0连续;函数 f (u, v)在uv平面上点 Q0 (u0 , v0 )
的某邻域内有定义,并 在点Q0连续,其中 u0 (x0 , y0 ),v0 (x0 , y0 ) 则复合函数 g(x, y) f [(x, y), (x, y)]在点P0也连续。
即f (P0 )
时,f在点P0连续。
( x, y )D
如果在全增量中取 x 0或y 0,则相应的函数增量为偏增量,
记作 x f (x0 , y0 ) f (x0 x, y0 ) f (x0 , y0 )
y f (x0 , y0 ) f (x0 , y0 y) f (x0 , y0 )
一般说来,函数的全增量并不等于相应的两个偏增量之和。
则f在D上 一致连续。即对任何 0,总存在只依赖于的正数,
使得对一切点 P、Q, 只要(P,Q) ,就有 f (P) f (Q)
证明 假设f在D上连续而不一致连续, 则存在某 0 0,对于
任意小的
0,
例如
1 n
,n
1,2,
,总有相应的Pn、Qn
D,
虽然(Pn ,Qn )
1 ,但是
n
f
(Pn )
则f在D上有界,且能取得最大 值与最小值。
证明 先证明f在D上有界。否则对每个正 整数n,必存在点 Pn D,
使得 f (Pn ) n, n 1,2,
于是得到一个有界点列 Pn D,且总能使 Pn 中有无穷多个不同的点 。
由聚点定理的推论, Pn存在收敛子列Pnk
,设
lim
k
Pnk
P0,且D是闭域,
综合起来,当x x0 , y y0 时,有 g(x, y) g(x0 , y0 ) f (u,v) f (u0 ,v0 )
所以说复合函数 f ((x, y), (x, y))在点P0 (x0 , y0 )连续。
有界闭域上连续函数的 性质
定理2 (有界性与最大、最小值定理)若函数f在有界闭域 D R2上连续,
考察D上的连续正值函数 F (P) 1 M f (P)
由已知,F在D上有界,又因 f不能在D上达到上确界 M,所以存在
收敛点列Pn D
使 lim n
f
(P)
M。于是有lim n
F(Pn )
,与F在D上
有界的结论相矛盾。所以f在D上能取得最大值。
定理3 (一致连续性定理) 若函数f在有界闭域 D R2上连续,
k
f
(Pnk
)
f
(Qnk
)
f (P0 ) f (Q0 ) 0
这与 f (Pnk ) f (Qnk ) 0 0相矛盾。所以f在D上一致连续。
定理4 (介值性定理) 设函数f在区域D R2上连续,若 P1,P2为D中
任意两点,且 f (P1) f (P2 ),则对任何满足不等式 f (P1) f (P2 )
它是[0,1]上的一元连续函数,且 F(P1) G(0) 0 G(1) F(P2 )
由一元函数根的存在性定理,在(0,1)内存在一点 t0,使得G(t0 ) 0.

x0 x1 t0 (x2 x1 )
y0 y1 t0 ( y2 y1 )
则有P0 (x0 , y0 ) D,使得 F (P0 ) G(t0 ) 0
设P0 (x0 , y0 )、 P(x, y) D, x x x0 , y y y0
则称 z f (x0 , y0 ) f (x, y) f (x0 , y0 ) f (x0 x, y0 y) f (x0 , y0 )
为函数f在P0的 全增量。
即当 lim z 0 (x,y )(0,0)
相关文档
最新文档